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Abstract. The question of classifying when two skew Schur functions are equal is a sub-
stantial open problem, which remains unsolved for over a century. In 2022, Aliniaeifard, Li
and van Willigenburg introduced skew Schur functions in noncommuting variables, s(δ,D),
where D is a connected skew diagram with n boxes and δ is a permutation in the symmetric
group Sn.

In this paper, we combine these two and classify when two skew Schur functions in
noncommuting variables are equal: s(δ,D) = s(τ,T ) such that D 6= T if and only if D is a

nonsymmetric ribbon, T is the antipodal rotation of D and τ−1δ is an explicit bijection
between two set partitions determined by D.

1. Introduction

The problem of classifying when two skew Schur functions are equal has been open since
Schur introduced them in 1901 [14]. While partial progress has been made [10, 11, 12, 16],
only a few special cases have been classified, for example [6, 8, 9, 15]. The most notable
of these classifications was that of ribbon Schur functions [6], where the classification had
further impact [2, 3, 4, 7]. Another long-standing problem was to find a basis analogous to
that of Schur functions for the algebra of symmetric functions in noncommuting variables.
This problem was posed in 2004 by Rosas and Sagan [13], and was eventually resolved in
2022 by Aliniaeifard, Li and van Willigenburg [1]. In this short paper we combine these two
problems and classify succinctly when two skew Schur functions in noncommuting variables
are equal:

Main Theorem. Given two connected skew diagrams D and T such that D 6= T , we have
that the skew Schur functions in noncommuting variables

s(δ,D) = s(τ ,T )
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if and only if

(1) D is a nonsymmetric ribbon and

(2) T = D∗, and

(3) the bijection τ−1δ : j 7→ n + 1− τ−1δ(j) preserves each block of the set partition [α]
where n = |D| and α is the row-length composition of D.

In particular, in Section 2, we give all the background needed to understand the above
theorem, and prove some small but valuable lemmas. Then we devote Section 3 to proving
the above theorem, which we restate just before the proof as Theorem 3.1.

2. Background

We begin by reviewing the combinatorial concepts we need, before introducing our algebras
and functions of study.

A composition α = (α1, . . . , αl) of n is a finite sequence of positive integers α1, . . . , αl such

that
∑l

i=1 αi = n, denoted by α � n. We call the αi the parts of α, `(α) = l the length of α
and |α| = n the size of α. We denote by 0 the unique composition of length and size 0. If
the parts of α appear in weakly decreasing order, then we call this a partition λ, denoted by
λ ` n, and if the parts of α are allowed to include 0 then we call this a weak composition.
Note that every composition α determines a partition λ(α) = (λ(α)1, . . . , λ(α)`(α)) obtained
by listing the parts of α in weakly decreasing order. Given a composition α = (α1, . . . , α`(α))
we define

α! = α1! · · ·α`(α)! and α∗ = (α`(α), . . . , α1).

Meanwhile, given two compositions of n, α = (α1, . . . , α`(α)) and β = (β1, . . . , β`(β)), we say
that β is a coarsening of α (or α is a refinement of β), denoted by β < α, if β is obtained

from α by adding together adjacent parts of α, and β dominates α if
∑i

j=1 βj ≥
∑i

j=1 αj for

all 1 ≤ i ≤ min{`(α), `(β)}.

Example 2.1. If α = (1, 2, 1, 3, 2) � 9 then `(α) = 5, |α| = 9 and λ(α) = (3, 2, 2, 1, 1). Note
that α! = 1!2!1!3!2! = 24, α∗ = (2, 3, 1, 2, 1), and (1, 3, 3, 2) < (1, 2, 1, 3, 2).

Given a partition λ = (λ1, . . . , λ`(λ)), we say that its diagram, also denoted by λ, is the
array of left-justified boxes with λi boxes in row i from the top. Given two partitions
λ = (λ1, . . . , λ`(λ)) ` n and µ = (µ1, . . . , µ`(µ)) ` m such that `(µ) ≤ `(λ) and µi ≤ λi for
all 1 ≤ i ≤ `(µ) we say that µ is contained in λ, denoted by µ ⊆ λ, and moreover the skew
diagram λ/µ of size (n−m) = |λ/µ| is the array of boxes contained in λ but not in µ when
the array of boxes of µ is positioned in the top-left corner of the array of boxes of λ. Given
a skew diagram λ/µ we define (λ/µ)∗ to be the 180◦ antipodal rotation of λ/µ, and we say
that it is symmetric if λ/µ = (λ/µ)∗.
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We say that a skew diagram is connected if each pair of adjacent rows overlap in at least
one column, and say that it is a ribbon if each pair of adjacent rows overlap in exactly one
column. How much certain sets of rows overlap will be important for the rest of our paper
and so we define this formally now, in addition to often referring to skew diagrams by letters
such as D in order to streamline notation.

Definition 2.2. Let D be a skew diagram occupying r rows. For each k ∈ {1, . . . , r}, we
define the k-row overlap composition to be the (weak) composition

α(k)(D) = (r
(k)
1 , . . . , r

(k)
r−k+1)

where r
(k)
i is the number of columns occupied in common by the rows i, i+ 1, . . . , i+ k − 1.

Let λ(k)(D) be the k-row overlap partition, that is, the partition determined by rearranging
the parts of α(k)(D) in weakly decreasing order. Furthermore, the row-length composition is
α(D) = α(1)(D), and the row-length partition is λ(D) = λ(α(D)).

Example 2.3. The skew diagram for D = (5, 5, 4, 4, 2)/(4, 3, 3, 1) is a ribbon where |D| = 9
and is the skew diagram on the left, while D∗ is the skew diagram on the right.

D = D∗ =

Note that α(D) = α(1)(D) = (1, 2, 1, 3, 2), α(2)(D) = (1, 1, 1, 1), α(3)(D) = (0, 0, 0), α(4)(D) =
(0, 0), α(5)(D) = (0) and λ(D) = (3, 2, 2, 1, 1).

Observe that for a skew diagram D,

α(D∗) = (α(D))∗

and that if D is a ribbon, then because we know that every pair of adjacent rows overlap in
exactly one column we have that α(D) determines the ribbon exactly, and hence there is a
natural bijection between ribbons of size n and compositions of size n.

We now move from diagrams to set partitions. Given [n] = {1, . . . , n}, a set partition
π = π1/ · · · /πl of [n] is a family of disjoint nonempty subsets of positive integers π1, . . . , πl
such that ∪li=1πi = [n], denoted by π ` [n]. We call the πi the blocks of π, `(π) = l the
length of π, and |π| = n the size of π. We usually list the blocks by increasing least element,
omitting set parentheses and commas for ease of legibility, and denote by ∅ the unique
set partition of length and size 0. Note that every set partition π determines a partition
λ(π) = (λ(π)1, . . . , λ(π)`(π)), obtained by listing the cardinalities of the block sizes of π in
weakly decreasing order, and we set λ(π)! = λ(π)1! · · ·λ(π)`(π)!.
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Example 2.4. Note that the family of disjoint subsets {1}, {2, 4}, {3}, {5, 6, 7}, {8, 9} is a
set partition of [9], and as a set partition π we write

π = 1/24/3/567/89 ` [9]

with `(π) = 5, |π| = 9, λ(π) = (3, 2, 2, 1, 1) and λ(π)! = 3!2!2!1!1! = 24.

Given two set partitions π ` [n] and σ = σ1/ · · · /σ`(σ) ` [m], we say that their slash product
π | σ is

π | σ = π/(σ1 + n)/ · · · /(σ`(σ) + n) ` [n+m],(2.1)

where σi+n = {s+n : s ∈ σi} for 1 ≤ i ≤ `(σ). We also say that two set partitions π, σ ` [n]
satisfy π ≤ σ if σ is obtained from π by merging blocks of π. Returning to compositions,
given a composition α = (α1, . . . , α`(α)) � n, its corresponding set partition [α] ` [n] is

[α] = 1 · · ·α1/(α1 + 1) · · · (α1 + α2)/ · · · /

`(α)−1∑
i=1

αi

+ 1 · · ·n(2.2)

= [α1] | [α2] | · · · | [α`(α)].

We use [αi]α to denote each block of [α], in order to avoid confusion with the set [αi] =
{1, . . . , αi}.

Example 2.5. If π = 1/24/3 ` [4] and σ = 123/45 ` [5] then π | σ = 1/24/3/567/89 ` [9].
Meanwhile if α = (1, 2, 1, 3, 2) then

[α] = 1/23/4/567/89 = [1] | [2] | [1] | [3] | [2]

with [α4]α = {5, 6, 7}.

We now turn our attention to the Hopf algebras of symmetric functions Sym and symmetric
functions in noncommuting variables NCSym, respectively. The Hopf algebra of symmetric
functions Sym is the graded Hopf algebra

Sym = Sym0⊕ Sym1⊕ · · · ⊂ Q[[x1, x2, . . .]]

where [[·]] means that the variables commute, Sym0 = span{1} and the nth graded piece for
n ≥ 1 has the following bases

Symn = span{hλ : λ ` n} = span{sλ : λ ` n}
where these functions are defined as follows, given a partition λ = (λ1, . . . , λ`(λ)) ` n.

The complete homogeneous symmetric function, hλ, is given by

hλ = hλ1 · · ·hλ`(λ)
where hi =

∑
j1≤···≤ji xj1 · · ·xji .
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Example 2.6. h(2,1) = (x1x2 + x21 + · · · )(x1 + x2 + · · · )

For the next basis we begin with two partitions λ = (λ1, . . . , λ`(λ)) and µ = (µ1, . . . , µ`(µ))
such that µ ⊆ λ, and define the Jacobi-Trudi matrix of the skew diagram λ/µ to be

(2.3) JT (λ/µ) =
(
hλi−µj−i+j

)
1≤i,j≤`(λ)

where we set µj = 0 for `(µ) < j ≤ `(λ), h0 = 1 and any function with a negative index
equals 0. Then the skew Schur function, sλ/µ, is given by

(2.4) sλ/µ = det JT (λ/µ)

and if µ = 0 then the Schur function, sλ, is given by

(2.5) sλ = det JT (λ).

Example 2.7. s(2,1) = det

(
h2 h3
h0 h1

)
= h2h1 − h3h0 = h(2,1) − h(3)

In particular, if λ/µ is a ribbon corresponding to the composition α, then the ribbon Schur
function, rα, is given by [6, Proposition 2.1]

rα = (−1)`(α)
∑
β<α

(−1)`(β)hβ.

Example 2.8. r(2,1) = h(2,1) − h(3)

The Jacobi-Trudi matrix also satisfies some particularly useful properties.

Lemma 2.9. Given a skew diagram λ/µ, let Aij = λi−µj − i+ j for any i, j. Then for any
1 ≤ i < j ≤ `(λ), and 1 ≤ k < m ≤ `(λ), we have that Aik + Ajm = Aim + Ajk.

Proof. This follows by the fact that both sides equal λi + λj − µk − µm − i+ k− j +m. �

Lemma 2.10. [12, Proposition 6.2] Let λ/µ be a skew diagram with ` = `(λ).

(1) The largest subscript occurring on any nonzero entry hL in the Jacobi-Trudi matrix
JT (λ/µ) is L = λ1 + `− 1 and this subscript occurs exactly once, on the (1, `)-entry
hL.

(2) The subscripts on the diagonal entries in JT (λ/µ) are exactly

α(λ/µ) = (λ1 − µ1, . . . , λ` − µ`)
and the monomial hλ1−µ1 · · ·hλ`−µ` occurs in the determinant sλ/µ

(a) with coefficient +1, and
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(b) as the monomial whose subscripts rearranged into weakly decreasing order give
the smallest partition of |λ/µ| in dominance order among all nonzero monomials.

Meanwhile, the Hopf algebra of symmetric functions in noncommuting variables NCSym is
the graded Hopf algebra

NCSym = NCSym0⊕NCSym1⊕ · · · ⊂ Q〈〈x1, x2, . . .〉〉

where 〈〈·〉〉 means that the variables do not commute, NCSym0 = span{1} and the nth
graded piece for n ≥ 1 has the following bases

NCSymn = span{hπ : π ` [n]} = span{sπ : π ` [n]}

where these functions are defined following [1], given a set partition π = π1/ · · · /π`(π) ` [n].

The complete homogeneous symmetric function in NCSym, hπ, is given by [1, Lemma 2.14]

hπ =
∑
ε

∑
(i1,...,in)

xiε(1) · · ·xiε(n)

where

(1) the first sum is over all ε ∈ Sn that fixes the blocks of π,

(2) the second sum is over all n-tuples of positive integers (i1, . . . , in) such that if j and
k are in the same block of π with j < k, then ij ≤ ik.

Example 2.11. h13/2 = 2x1x1x1 + x1x1x2 + x2x1x1 + 2x1x2x1+x1x2x3 + · · ·

These functions multiply together in a natural way.

Lemma 2.12. [5, Corollary 2.41] For set partitions π and σ we have that

hπhσ = hπ|σ.

Hence, much like their counterparts in Sym, given a composition α = (α1, . . . , α`(α)) we have
that

h[α] = h[α1] · · ·h[α`(α)].
We also have that [13, Section 2] given a permutation δ ∈ Sn

δ ◦ hπ = hδπ

where δ acts on π by sending every element i to δ(i).

Example 2.13. 321 ◦ h12/3 = h1/23, where the permutation 321 ∈ S3 is written in one-line
notation.
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For the next basis, much like classical Schur functions, we will again need to compute a
determinant, however now it will need to be noncommutative, which we recall as follows [1,
Equation 2.6]. We define the noncommutative analogue of Leibniz’ determinantal formula
for any matrix A = (aij)1≤i,j≤n with noncommuting entries aij to be

(2.6) det(A) =
∑
ε∈Sn

sgn(ε)a1ε(1) · · · anε(n)

that takes the product of the entries from the top row to the bottom row, and sgn(ε) is the
sign of the permutation ε. Given two partitions λ = (λ1, . . . , λ`(λ)) and µ = (µ1, . . . , µ`(µ))
such that µ ⊆ λ, we define the noncommutative Jacobi-Trudi matrix of the skew diagram
λ/µ to be

(2.7) JT (λ/µ) =

(
1

(λi − µj − i+ j)!
h[λi−µj−i+j]

)
1≤i,j≤`(λ)

where we set µj = 0 for `(µ) < j ≤ `(λ), h[0] = h∅ = 1 and any function with a negative
index equals 0. If |λ/µ| = n and δ ∈ Sn, then the skew Schur function in NCSym, s(δ,λ/µ), is
given by [1, Definition 4.2]

(2.8) s(δ,λ/µ) = δ ◦ det JT (λ/µ).

If δ = id, then we call this the source skew Schur function in NCSym, s[λ/µ], hence given by
[1, Definition 3.1]

(2.9) s[λ/µ] = det JT (λ/µ) = det

(
1

(λi − µj − i+ j)!
h[λi−µj−i+j]

)
1≤i,j≤`(λ)

.

Source skew Schur functions have the following property.

Lemma 2.14. For any connected skew diagram D of size n, the source skew Schur function
s[D] is a linear combination of h[γ] with γ � n.

Proof. Let D = λ/µ with |λ/µ| = n. For any w ∈ S`(λ), let w(α) = (w(α1), . . . , w(α`(λ)))
where w(αi) = λi − µw(i) − i+ w(i). Then the determinantal formula of s[λ/µ] gives that

s[λ/µ] = det
(
(λi − µj − i+ j)!−1h[λi−µj−i+j]

)
1≤i,j≤`(λ)

=
∑

w∈S`(λ)

sgn(w)

`(λ)∏
i=1

w(α)!−1h[w(α)].(2.10)

Now by construction w(α) � w(α1) + · · ·+ w(α`(λ)) and

`(λ)∑
i=1

w(αi) =

`(λ)∑
i=1

λi − µw(i) − i+ w(i) =

`(λ)∑
i=1

λi − µi = n

as desired, because w is a permutation. �
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Given π ` [n] let us arrange the blocks such that reading from left to right

(1) block sizes weakly decrease, and

(2) smallest elements of blocks of the same size are strictly increasing.

Let δπ be the permutation in one-line notation obtained by removing the slashes from π with
the blocks arranged as just described. Then the (standard) Schur function in NCSym, sπ,
is given by [1, Definition 4.2]

(2.11) sπ = δπ ◦ s[λ(π)] = δπ ◦ det

(
1

(λ(π)i − i+ j)!
h[λ(π)i−i+j]

)
1≤i,j≤`(π)

.

Example 2.15. The source Schur function in noncommuting variables s[(2,1)] is

s[(2,1)] = det

(
1
2!
h[2]

1
3!
h[3]

1
0!
h[0]

1
1!
h[1]

)
= det

(
1
2!
h12

1
3!
h123

1
0!
h∅

1
1!
h1

)
=

1

2!
h12

1

1!
h1 −

1

3!
h123

1

0!
h∅ =

1

2
h12|1 −

1

6
h123 =

1

2
h12/3 −

1

6
h123.

If π = 13/2, then δπ = 132 ∈ S3 in one-line notation and so

s13/2 = 132 ◦ s[(2,1)] = 132 ◦
(

1

2
h12/3 −

1

6
h123

)
=

1

2
h13/2 −

1

6
h123.

Meanwhile the skew Schur function in noncommuting variables s(321,(2,2)/(1)), where 321 ∈ S3

is in one-line notation, is

s(321,(2,2)/(1)) = 321 ◦ det

(
1
1!
h[1]

1
3!
h[3]

1
0!
h[0]

1
2!
h[2]

)
= 321 ◦ det

(
1
1!
h1

1
3!
h123

1
0!
h∅

1
2!
h12

)
= 321 ◦

(
1

1!
h1

1

2!
h12 −

1

3!
h123

1

0!
h∅

)
= 321 ◦

(
1

2
h1|12 −

1

6
h123

)
= 321 ◦

(
1

2
h1/23 −

1

6
h123

)
=

1

2
h12/3 −

1

6
h123.

Our classification will explain why s[(2,1)] = s(321,(2,2)/(1)) later.

In particular, if λ/µ is a ribbon corresponding to a composition α, then the ribbon Schur
function in NCSym, r[α], is given by [1, Corollary 6.4]

r[α] = (−1)`(α)
∑
β<α

(−1)`(β)
h[β]
β!
.(2.12)

Example 2.16. r[(2,1)] = 1
2
h[(2,1)] − 1

6
h[(3)]
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Connecting our two Hopf algebras Sym and NCSym is the homomorphism

ρ : Q〈〈x1, x2, . . .〉〉 → Q[[x1, x2, . . .]]

that lets the variables commute, and explicitly relates the functions we have met as follows.

Lemma 2.17.

(1) [13, Theorem 2.1] ρ(hπ) = λ(π)!hλ(π)

(2) [1, Lemma 4.4] ρ(s(δ,λ/µ)) = sλ/µ

(3) [1, Corollary 6.4] ρ(r[α]) = rα

As a direct consequence, it follows that necessary conditions for the equality of two skew
Schur functions are also necessary conditions for the equality of two skew Schur functions in
NCSym, and so one ingredient for the proof of our classification is the following necessary
condition, and it is in fact the final ingredient necessary to prove our classification.

Lemma 2.18. [12, Corollary 8.11] For two skew diagrams D and T , if sD = sT , then D and
T must have the same k-row overlap partitions for all k.

3. Proof of our main result

We are now ready to prove our main result, in which we classify when two skew Schur
functions in NCSym are equal, recalling that a skew diagram D has its 180◦ antipodal
rotation denoted by D∗, is nonsymmetric if D 6= D∗, and is a ribbon if each pair of adjacent
rows overlap in exactly one column.

Theorem 3.1. Given two connected skew diagrams D and T such that D 6= T , we have that
the skew Schur functions in NCSym

s(δ,D) = s(τ ,T )

if and only if

(1) D is a nonsymmetric ribbon and

(2) T = D∗, and

(3) the bijection τ−1δ : j 7→ n + 1− τ−1δ(j) preserves each block of the set partition [α]
where n = |D| and α is the row-length composition of D.

Proof. In order to make the notation in our proof easier to read, if D, T are skew diagrams
of size n and δ, τ ∈ Sn, then we write (δ,D) ∼ (τ, T ), if s(δ,D) = s(τ,T ). Additionally, we
denote (id, T ) by (T ) where id is the identity permutation.
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Note that (δ,D) ∼ (τ, T ), that is, δ ◦ s[D] = τ ◦ s[T ] if and only if (τ−1δ) ◦ s[D] = s[T ], namely
(τ−1δ,D) ∼ (T ). Hence it suffices to only prove the sufficient and necessary conditions in
this latter case.

Throughout we also use the notations of our Lemmas in the previous section.

For one direction, if D is a ribbon corresponding to a composition α, and T = D∗ 6= D, then
by comparing entries on the main diagonal of JT (D) and JT (T ) we see that (τ−1δ) ◦ h[α] =

h(τ−1δ)[α] = h[α∗] since the bijection τ−1δ : j 7→ n + 1 − τ−1δ(j) preserves each block of [α].
For any composition β satisfying α4β, we have [α] ≤ [β] and thus the greatest lower bound
of all [β] such that α4β equals [α]. As a result, (τ−1δ) ◦h[β] = h[β∗] for all β < α. In view of
(2.12), we find that (τ−1δ) ◦ r[α] = r[α∗], namely (δ,D) ∼ (τ, T ). This completes the proof in
this direction.

For the other direction, suppose that (δ,D) ∼ (τ, T ), then we have (τ−1δ) ◦ s[D] = s[T ], that
is, by (2.10) with `(λ) = `,

s[T ] =
∑
w∈S`

sgn(w)
∏̀
i=1

w(α)!−1h(τ−1δ)[w(α)].

Let

α = (A11, . . . ,Aii,Ai+1 i+1, . . . ,A``) and γ = (A11, . . . ,Ai i+1,Ai+1 i, . . . ,A``)
be the two (weak) compositions w(α) corresponding to when w = id and w = (i i + 1),
respectively. So in particular, α is our usual row-length composition.

By Lemma 2.14 we find that (τ−1δ)[α] = [µ] and (τ−1δ)[γ] = [ν] for some µ, ν � n. Both [µ]
and [ν] have common blocks (τ−1δ)[Ajj]α for all j 6∈ {i, i+ 1} since [α] and [γ] have common
blocks [Ajj]α = [Ajj]γ for all j 6∈ {i, i+ 1}.

We claim that two blocks (τ−1δ)[Aii]α and (τ−1δ)[Ai+1 i+1]α must be adjacent in the sense
that the union of (τ−1δ)[Aii]α and (τ−1δ)[Ai+1 i+1]α is a set of consecutive integers.

To see this, since
Aii +Ai+1 i+1 = Ai i+1 +Ai+1 i,

by Lemma 2.9, and Aii < Ai i+1, by the definition of the Jacob-Trudi matrix, we have that

[Aii]α ( [Ai i+1]γ ⊆ [Ai i+1]γ ∪ [Ai+1 i]γ = [Aii]α ∪ [Ai+1 i+1]α.(3.1)

It follows that

(τ−1δ)[Aii]α ( (τ−1δ)[Ai i+1]γ ⊆ (τ−1δ)[Aii]α ∪ (τ−1δ)[Ai+1 i+1]α.(3.2)

Note that (τ−1δ)[Ai i+1]γ is a block of [ν], which by definition is a set of consecutive integers,
implying that (τ−1δ)[Aii]α and (τ−1δ)[Ai+1 i+1]α must be adjacent as claimed. Consequently,
because this is true for all 1 ≤ i ≤ `− 1, we have that either

• the permutation τ−1δ preserves every block of [α], or
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• the bijection τ−1δ : j 7→ n+ 1− τ−1δ(j) preserves every block of [α].

Before we analyze these two cases, we observe that (τ−1δ)[A1`] = [A1`]. This is true because
[A1`] is the unique largest block of any set partition [w(α)] and (τ−1δ)[w(α)] as a result of
(1) of Lemma 2.10. Now we begin our analysis.

We begin with the simpler case, where τ−1δ : j 7→ n + 1 − τ−1δ(j) preserves every block of
[α] and α 6= α∗. In this case we have that

A11 + · · ·+A`` = A1`

because of the following. First note that since τ−1δ : j 7→ n + 1 − τ−1δ(j) preserves every

block of [α], this implies that 1 ∈ τ−1δ[A11], and hence that n ∈ (τ−1δ)[A11]. From our
observation above we also know that (τ−1δ)[A1`] = [A1`]. Therefore, since A11 < A1` (for
` 6= 1) we obtain that

n ∈ (τ−1δ)[A11] ( (τ−1δ)[A1`] = [A1`]

implying that A1` ≥ n. Second, note that A1` ≤ n because A1` is a part of a composition of
n.

Consequently, since A1` ≥ n and A1` ≤ n, we have that

A1` = n = A11 + · · ·+A``.
By repeatedly applying Lemma 2.9, we are led to

A1` = A11 + · · ·+A`` = A1` +A21 + · · ·+A` `−1,
which gives that Aj+1 j = 0 for all 1 ≤ j ≤ `−1, because D is connected and so by definition
Aj+1 j ≥ 0. Hence, s[D] is the determinant of a matrix whose subdiagonal entries are all
h0 = 1, which implies that the row overlap of each pair of adjacent rows in D is 1, that is,
D is a ribbon. Also T = D∗ 6= D because α 6= α∗ by assumption. This completes the case
where τ−1δ : j 7→ n+ 1− τ−1δ(j) preserves every block of [α] and α 6= α∗.

For the other case, where τ−1δ preserves every block of [α], we will show that the only
possible way to realize (τ−1δ,D) ∼ (T ) is that D = T .

Since (τ−1δ)[α] = [α] by assumption, and (τ−1δ) ◦ hπ = h(τ−1δ)π for any set partition π, and
we know (3.2), we obtain that

[Aii]α ( (τ−1δ)[Ai i+1]γ ⊆ [Aii]α ∪ [Ai+1 i+1]α = [Ai i+1]γ ∪ [Ai+1 i]γ,

by (3.1). Consequently, because we know that (τ−1δ)[Ai i+1]γ and (τ−1δ)[Ai+1 i]γ are blocks
of [ν] they must each be a set of consecutive integers, and so (τ−1δ)[Ai i+1]γ = [Ai i+1]γ and
(τ−1δ)[Ai+1 i]γ = [Ai+1 i]γ. We also have that

(τ−1δ)[Ajj]γ = (τ−1δ)[Ajj]α = [Ajj]α = [Ajj]γ
for all j 6∈ {i, i+1} since [α] and [γ] have common blocks [Ajj]α = [Ajj]γ for all j 6∈ {i, i+1},
and so we have established that τ−1δ preserves every block of [γ], that is, (τ−1δ)[γ] = [γ].
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Now if (τ−1δ,D) ∼ (T ), then s(τ−1δ,D) = s(id,T ) and so

sD = ρ(s(τ−1δ,D)) = ρ(s(id,T )) = sT(3.3)

according to Lemma 2.17. We will now keep (3.3) in mind to employ both the commutative
and noncommutative settings at once, in order to obtain our result for noncommuting vari-
ables. This we will do by determining the subscripts on the main diagonal and subdiagonal
entries of the Jacobi-Trudi matrix JT (T ).

First we determine the subscripts on the main diagonal entries of the Jacobi-Trudi matrix
JT (T ). In view of Lemma 2.18, the 1- and 2-row overlap partitions of D and T are the
same, that is, the set of subscripts on the main diagonal and subdiagonal entries of JT (D)
are the same as the ones of JT (T ), respectively. By (2) (a)–(b) of Lemma 2.10, only the
identity permutation, id, gives rise to the term with subscripts Ajj for 1 ≤ j ≤ ` in s[D] and
s[T ] respectively. As a result, it follows from (τ−1δ)[α] = [α] that the subscript of the (j, j)th
entry of JT (T ) must be Ajj. Thus, we conclude that the subscripts on the main diagonal
entries of the Jacobi-Trudi matrix JT (T ) are identical to those of the Jacobi-Trudi matrix
JT (D).

Now we turn our attention to the subscripts on the subdiagonal entries of the Jacobi-Trudi
matrix JT (T ). Because we verified earlier that (τ−1δ)[γ] = [γ], the (weak) composition
γ = (A11, . . . ,Ai i+1,Ai+1 i, . . . ,A``) appears as the subscript of a complete homogeneous
symmetric function in the determinantal expansion of JT (T ). Since the Ajj are the sub-
scripts of the (j, j)th entries on the main diagonal of JT (T ), by above, and

Ai i+1 > Aii > Ai+1 i,

the subscript of the (i+ 1, i)th entry of JT (T ) must be Ai+1 i by Lemma 2.9.

Because this is true for all 1 ≤ i ≤ `− 1, we obtain that the subscripts on the subdiagonal
entries of the Jacobi-Trudi matrix JT (T ) are identical to those of the Jacobi-Trudi matrix
JT (D). Thus,

JT (T ) = JT (D)

because the subscripts on the main diagonal and subdiagonal entries of any Jacobi-Trudi
matrix determine the remaining subscripts of the remaining entries by the definition of the
Jacobi-Trudi matrix. This leads to D = T and τ−1δ preserves every block of w(α) for any
w ∈ S`, by definition. This completes the case where τ−1δ preserves every block of [α].

Consequently, putting both these cases together, if D 6= T , then D must be a ribbon and
T = D∗ 6= D. This completes the proof of the other direction, and we are done. �
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