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A simple bijection is given between dissections of a convex (n+ 2)-gon with d
diagonals not intersecting in their interiors and standard Young tableaux of shape
(d+1,d+1,1""179),  © 1996 Academic Press, Inc.

For 0<d<n—1, let f(n, d) be the number of ways to draw d diagonals
in a convex (n + 2)-gon, such that no two diagonals intersect in their inte-
rior. For instance, f(n, n— 1) is just the Catalan number C, = (*")/(n+1).
A result going back to Kirkman [3], Prouhet [4], and Cayley [1] (with
Cayley giving the first complete proof) asserts that

1 n+d+2\/n—1
f(”’d):nwuz< d+1 >< d > (D

K. O’Hara and A. Zelevinsky observed (unpublished) that the right-hand
side of (1) is just the number of standard Young tableaux (as defined,
e.g., in [5, p.66]) of shape (d+1, d+1, 1"~ '), where 1"~ '~ denotes
a sequence of n—1—d 1’s. It is natural to ask for a bijection between
the polygon dissections and the standard Young tableaux. If one is willing
to accept the formula for the number of standard Young tableaux of a fixed
shape (either in the original form due to MacMahon or the hook-length
formula of Frame-Robinson-Thrall), then one obtains a simple proof
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of equation (1). In this note we give a simple bijection of the desired
type.

First we recall that there is a well-known bijection [2] between dis-
sections D of an (n+2)-gon with d diagonals and integer sequences
V(D)= (ay,as,...a,,4,,) such that (a) either a,=—1 or a,>1,
(b) exactly n terms are equal to —1, (c) a; +a,+ --- +a,; >0 for all i, and
(d)a,+a,+ --- +a,. . =0. This bijection may be defined recursively as
follows. Fix an edge e of the dissected polygon D. When we remove e
from D, we obtain a sequence of dissected polygons D,, D,, ..., D, (where
k+1 is the number of sides of the region of D to which e belongs),
arranged in clockwise order, with D; and D, , intersecting at a single
vertex. If D, consists of a single edge, then define y(D,)= —1, and set
recursively (D)= (k— 1, y(D,)*, y(D,)*, ..., W(D,_1)*, ¥(D,)), where
W(D,)* denotes y(D,) with a —1 appended at the end.

Given a sequence (a,, d,, ..., 4, 4. 1) as above, define a standard Young
tableau T of shape (d+1,d+ 1, 1”7~ 1=9) as follows. We insert the elements
1,2, .., n+d+1 successively into 7. Once an element is inserted, it remains
in place. (There is no “bumping” as in the Robinson-Schensted corre-
spondence.) Suppose that the positive a;’s are given by b, b,, ..., b ., in
that order. The insertion is then defined by the following three rules:

o If a;,>0, then insert i at the end of the first row. (We write our
tableaux in “English” style, so the longest row is at the top.)

e If q;=—1 and the number of —1’s preceding «; is given by
by+by+ --- +b; for some j>0, then insert i at the end of the second
row.

e If ;= —1 and the number of —1’s preceding ¢, in not of the form
by+b,+ --- +b;, then insert i at the bottom of the first column.

It is an easy exercise to check that the above procedure yields the desired

bijection.

ExamPLE. Let the sequence corresponding to a dissection D (with
n=14, d=6) be given by

(4929 _19 19 _la _19 3a _19 _19 19 19 _19 _15 _19
-1, -1, —-1,2, -1, —1, —1).
We have (b,, ..., b;)=(4,2,1,3,1, 1, 2). We have printed in boldface those

— I’s that are preceded by b; + --- +b; —1’s for some j. The corresponding
standard tableau (D) is given by
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