SEARCHING TREES, WEIGHTED GRAPHS, AND SHORTEST PATHS

Steph van Willigenburg Math 442-201 2019WT2

24 March 2020

SPANNING TREES OF THE COMPLETE GRAPH Last time:

THEOREM

There are

 $n^{(n-2)}$

non-isomorphic labelled trees with $n \ge 2$ vertices.

Wikimedia

This time:

COROLLARY

 $\tau(K_n) = n^{n-2}$

PROOF OF $\tau(K_n) = n^{n-2}$

Label vertices of K_n with 1, 2, ..., n, and T be set of all non-iso labelled trees, n vertices.

• Each spanning tree of K_n is now a labelled tree so

 $\tau(K_n) \leq |\mathcal{T}|.$

• Each $T \in T$ is iso to a spanning tree of K_n , \hat{T} , by the iso edge $ij \in E(T) \mapsto$ edge $ij \in E(\hat{T})$

so

 $\tau(K_n) \geq |\mathcal{T}|.$

By Cayley's theorem

 $\tau(K_n) = |\mathcal{T}| = n^{n-2}. \quad \Box$

ROOTED TREES

DEFINITION

Let T be a tree. We say it is rooted if it has a distinguished vertex v. We call v the root.

Note: We draw root at top, leaves at bottom.

BREADTH FIRST SEARCH (BFS)

Given a rooted tree T with root v.

• From v visit all vertices path length 1 away from v.

2 i := i + 1.

- From v visit all vertices path length i away from v.
- Repeat 2 and 3 until all vertices visited.

Note: For consistency \rightarrow go left.

DEPTH FIRST SEARCH (DFS)

Given a rooted tree T with root v.

- From v visit v' path length 1 away from v.
- **2** Visit v'' not already visited, path length 1 away from v'.

v' := v''.

- Repeat 2 and 3 until can go no further. Back-track to last vertex choice v''' and v' := v'''.
- Sepeat 2, 3 and 4 until all vertices visited.

Note: For consistency \rightarrow go left.

WEIGHTED GRAPHS

DEFINITION

Let G be a graph. We say G is weighted if each $e \in E(G)$ has a weight w(e). The sum of all weights is the weight of G W(G).

Note: Normally positive integers.

Example

G =

A is distance

from B and W(G) =

SHORTEST PATH PROBLEM - APPLIED BFS

DEFINITION

Let G be a weighted graph, and $u, v \in V(G)$. A path from u to v with smallest sum of edge weights is called a shortest path from u to v.

Example

The shortest path from A to D is

DIJKSTRA'S ALGORITHM FOR SHORTEST PATH

Let G be a connected weighted graph and $\ell(v)$ denote label of v. Compute shortest distance from vertices A to Z.

- Let ℓ(A) = 0. Make it permanent. Assign temporary labels
 ℓ(A) + d to all adjacent to A distance d away. Make smallest temporary into permanent.
- Note: Permanent labels cannot be changed.

DIJKSTRA'S ALGORITHM FOR SHORTEST PATH

Let G be a connected weighted graph and $\ell(v)$ denote label of v. Compute shortest distance from vertices A to Z.

- If v just permanent. Assign temporary labels l(v) + d to all adjacent to v distance d away if <u>smaller</u> label than present or <u>no</u> label. Make smallest temporary into permanent.
- Repeat until all vertices have labels that are permanent.

Note: Permanent labels cannot be changed.

DIJKSTRA'S ALGORITHM FOR SHORTEST PATH

Let G be a connected weighted graph and $\ell(v)$ denote label of v. Compute shortest distance from vertices A to Z.

• The shortest distance from A to Z is label at Z. The shortest path found by starting at Z, include edge weight d between v, w if

$$\ell(w)-\ell(v)=d.$$

Example Shortest distance =

Shortest path =

IN SUMMARY

- Spanning trees of the complete graph
- Breadth first search
- Depth first search
- Weighted graphs
- Dijkstra's algorithm for shortest path

Thanks! See you next time!