# SEARCHING TREES, WEIGHTED GRAPHS, AND SHORTEST PATHS 

Steph van Willigenburg<br>Math 442-201 2019WT2

24 March 2020

## SpANning TREES OF THE COMPLETE GRAPH

 Last time:
## Theorem

There are

$$
n^{(n-2)}
$$

non-isomorphic labelled trees with $n \geq 2$ vertices.

This time:


Wikimedia

Corollary

$$
\tau\left(K_{n}\right)=n^{n-2}
$$

## PROOF OF $\tau\left(K_{n}\right)=n^{n-2}$

Label vertices of $K_{n}$ with $1,2, \ldots, n$, and $\mathcal{T}$ be set of all non-iso labelled trees, $n$ vertices.
(1) Each spanning tree of $K_{n}$ is now a labelled tree so

$$
\tau\left(K_{n}\right) \leq|\mathcal{T}| .
$$

(2) Each $T \in \mathcal{T}$ is iso to a spanning tree of $K_{n}, \hat{T}$, by the iso

$$
\text { edge } i j \in E(T) \mapsto \text { edge } i j \in E(\hat{T})
$$

SO

$$
\tau\left(K_{n}\right) \geq|\mathcal{T}|
$$

(3) By Cayley's theorem

$$
\tau\left(K_{n}\right)=|\mathcal{T}|=n^{n-2}
$$

## Rooted trees

## Definition

Let $T$ be a tree. We say it is rooted if it has a distinguished vertex $v$. We call $v$ the root.

Note: We draw root at top, leaves at bottom.

## Example

## Breadth first search (BFS)

Given a rooted tree $T$ with root $v$.
(1) From $v$ visit all vertices path length 1 away from $v$.
(2) $i:=i+1$.
(3) From $v$ visit all vertices path length $i$ away from $v$.
(1) Repeat 2 and 3 until all vertices visited.

Note: For consistency $\rightarrow$ go left.

## Example

## Depth first search (DFS)

Given a rooted tree $T$ with root $v$.
(1) From $v$ visit $v^{\prime}$ path length 1 away from $v$.
(2) Visit $v^{\prime \prime}$ not already visited, path length 1 away from $v^{\prime}$.
(3) $v^{\prime}:=v^{\prime \prime}$.
(1) Repeat 2 and 3 until can go no further. Back-track to last vertex choice $v^{\prime \prime \prime}$ and $v^{\prime}:=v^{\prime \prime \prime}$.
(6) Repeat 2, 3 and 4 until all vertices visited.

Note: For consistency $\rightarrow$ go left.

Example

## Weighted graphs

## DEFINITION

Let $G$ be a graph. We say $G$ is weighted if each $e \in E(G)$ has a weight $w(e)$. The sum of all weights is the weight of $G W(G)$.

Note: Normally positive integers.
Example
$G=$
$A$ is distance
from $B$ and $W(G)=$

## Shortest path problem - Applied BFS

## Definition

Let $G$ be a weighted graph, and $u, v \in V(G)$. A path from $u$ to $v$ with smallest sum of edge weights is called a shortest path from $u$ to $v$.

## Example

The shortest path from $A$ to $D$ is

## DiJkstra's ALGORITHM FOR SHORTEST PATH

 Let $G$ be a connected weighted graph and $\ell(v)$ denote label of $v$. Compute shortest distance from vertices $A$ to $Z$.- Let $\ell(A)=0$. Make it permanent. Assign temporary labels $\ell(A)+d$ to all adjacent to $A$ distance $d$ away. Make smallest temporary into permanent.
Note: Permanent labels cannot be changed.
Example



## DIJKSTRA'S ALGORITHM FOR SHORTEST PATH

 Let $G$ be a connected weighted graph and $\ell(v)$ denote label of $v$. Compute shortest distance from vertices $A$ to $Z$.- If $v$ just permanent. Assign temporary labels $\ell(v)+d$ to all adjacent to $v$ distance $d$ away if smaller label than present or no label. Make smallest temporary into permanent.
- Repeat until all vertices have labels that are permanent.

Note: Permanent labels cannot be changed.
Example


## DIJKSTRA'S ALGORITHM FOR SHORTEST PATH

 Let $G$ be a connected weighted graph and $\ell(v)$ denote label of $v$. Compute shortest distance from vertices $A$ to $Z$.- The shortest distance from $A$ to $Z$ is label at $Z$. The shortest path found by starting at $Z$, include edge weight $d$ between $v, w$ if

$$
\ell(w)-\ell(v)=d
$$

Example Shortest distance $=\quad$ Shortest path $=$


## In SUMMARY

- Spanning trees of the complete graph
- Breadth first search
- Depth first search
- Weighted graphs
- Dijkstra's algorithm for shortest path

Thanks! See you next time!

