Maximum Flows, Minimum cuts, And LONGEST PATHS

Steph van Willigenburg
Math 442-201 2019WT2

2 April 2020

Networks

Definition

Let D be a connected digraph. Then it is a network if each arc $a \in A(D)$ has a weight, called capacity $c(a)$.

Let v be a vertex. The sum of capacities of arcs coming in is the in-flow, inflow (v). The sum of capacities of arcs going out is the out-flow, outflow (v).

Example Below we have inflow $(v)=$ outflow $(v)=$

Flows

DEfinition

Let D be a network with exactly one source A and one sink Z. Then a flow is a function that assigns a flow in $a, \phi(a) \geq 0$ to every $a \in A(D)$ so
(1) $\phi(a) \leq c(a)$
(2) inflow $(v)=\operatorname{outflow}(v)$ for all $v \in V(D)$ and $v \neq A, Z$.

Note: $\phi(a)=0 \forall a$ is a zero-flow; $\phi(a)=c(a)$ is a saturated arc.

Example

FLOW VALUE

DEFINITION

Let D be a network with exactly one source A, one sink Z, and a flow ϕ. We call

$$
\operatorname{inflow}(Z)=\operatorname{outflow}(A)
$$

the flow value.
Goal: We want to maximize this - find the maximum flow.

Example Below we have flow value $=$ max. flow value $=$

Cuts

DEFINITION

Let D be a network with exactly one source A and one sink Z. A set of arcs S whose deletion disconnects A and Z is a cut. The sum of capacities of $s \in S$ going from component with A to component with Z is capacity of cut.

Goal: We want to minimize this - find the minimum cut.

Example

Max flow-Min cut

Theorem

Let D be a network with exactly one source A and one $\operatorname{sink} Z$.
The maximum

flow value $=$ | The capacity |
| :---: |
| of a |
| minimum cut. |

Note: Find any flow $=$ any cut to answer. Proof is about 45 mins!

Example max. flow $=\quad=$ min. cut.

AlGorithm for longest Path

Let D be an acyclic network with source A and sink Z and $\ell(v)$ denote the label of v. Compute the longest distance from vertices A to Z.

- Let $\ell(A)=0$. Make it permanent. Choose a vertex v all of whose arcs coming in have permanent labels v_{1}, \ldots, v_{k}.
Note: Permanent labels cannot be changed.
Example

D

AlGorithm for longest Path

Let D be an acyclic network with source A and sink Z and $\ell(v)$ denote the label of v. Compute the longest distance from vertices A to Z.

- Find $\max \left\{\ell\left(v_{i}\right)+d_{i}\right\}_{i=1}^{k}$ where $v_{i} \xrightarrow{d_{i}} v$ and make this permanent.
- Repeat until all vertices have permanent labels.

Note: Permanent labels cannot be changed.
Example

AlGorithm for Longest Path

Let D be an acyclic network with source A and sink Z and $\ell(v)$ denote the label of v. Compute the longest distance from vertices A to Z.

- The longest distance from A to Z is label at Z. The longest path found by starting at Z, include arc capacity d between v, w if

$$
\ell(w)-\ell(v)=d
$$

Example Longest distance $=\quad$ Longest path $=$

What We Would normally do final CLASS...

This can take all class and is a fun application of our theory:

In SUMMARY

- Studied networks
- Studied flows and maximum flows
- Studied cuts in networks
- Max-flow min-cut theorem
- Algorithm for longest path

Thanks for a great Math 442 !

