DIGRAPHS, DETAILS, AND ACYCLIC ORIENTATIONS

Steph van Willigenburg
Math 442-201 2019WT2

31 March 2020

DIRECTED GRAPH

Definition

A directed graph (or digraph) D has vertices $V(D)$ and directed arcs $A(D)$ connecting the vertices. It is simple if

- finite vertices
- no arc joining vertex to itself
- not multiple arcs going in same direction.

Note: Every arc must have a direction.

Example
$D=\quad$ is a simple digraph.

Underlying graph

DEFINITION

Let D be a digraph. Then the underlying graph of $D, U(D)$, is the graph obtained by removing all the arc directions.

Note: $U(D)$ simple $\Rightarrow D$ simple, but D simple $\nRightarrow U(D)$ simple.
Example
$D=\quad$ is a simple digraph with $U(D)=$

IsOMORPHIC

DEFINITION

Let D_{1} and D_{2} be two digraphs. They are isomorphic if and only if $U\left(D_{1}\right) \cong U\left(D_{2}\right)$ and the isomorphism preserves the arc orderings.

Example

Degrees

DEFINITION

Let D be a digraph. The number of arc ends meeting at a vertex v is called the degree, $\operatorname{deg}(v)$. Arcs coming in is the indegree, indeg (v). Arcs going out is the outdegree, outdeg (v).

Note:

- $\operatorname{deg}(v)=\operatorname{indeg}(v)+\operatorname{outdeg}(v)$.
- $\operatorname{indeg}(v)=0$ is a source, outdeg $(v)=0$ is a sink.

Example
$D=$

$$
\text { has } \operatorname{indeg}(v)=, \text { outdeg }(v)=, \operatorname{deg}(v)=
$$

Adjacency matrix

DEFINITION

Let D be a digraph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$. If two vertices are joined by an arc they are adjacent. The adjacency matrix $A=\left(a_{i j}\right)$ of D has

$$
a_{i j}=\text { no. arcs from } v_{i} \text { to } v_{j} .
$$

Note: Vertex v_{i} is a

- sink if row i is all 0 ,
- source if column i is all 0 .

Example
$D=$

(STRONGLY) CONNECTED

Many concepts are similar to graphs, e.g. a directed path/cycle is a path/cycle whose directions you follow.

DEFINITION

Let D be a digraph. It is connected if $U(D)$ is connected. It is strongly connected if it is connected and a directed path between every two vertices in both directions.

Example
$D=$

$$
\tilde{D}=
$$

is connected but not strongly.
is both connected and strongly.

ORIENTABLE

Definition

Let G be a graph. If we can turn edges into arcs so digraph is strongly connected, then G is orientable.

Note: If G is Eulerian then G is orientable - just mark the direction of travel on the Eulerian trail.

Example
$G=$
$H=$
is orientable.
is not orientable.

Orientations

Definition

Let G be a graph. If we turn edges into arcs, then the digraph D_{G} is an orientation of G.

If D_{G} has no directed cycles, then it is an acyclic orientation. The number of acyclic orientations is $a(G)$.

Example Orientations of K_{3} are below, so $a(G)=$

Acyclic orientations

Theorem (Stanley, 1973)

Let G be a simple graph with n vertices. Then

MIT
Proof idea About 30 mins, using a deletion/contraction for $a(G)$, and then an induction.

Example Let $G=K_{3}$.

In SUMMARY

- Digraphs and underlying graphs
- Details: isomorphic, adjacency matrix, directed paths and cycles
- Connected and strongly connected
- Orientable and Eulerian graphs
- Enumerating acyclic orientations

