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Abstract

We consider random Schrödinger operators on tree graphs and prove absolutely continuous

spectrum at small disorder for two models. The first model is the usual binary tree with certain

strongly correlated random potentials. These potentials are of interest since for complete corre­

lation they exhibit localization at all disorders. In the second model we change the tree graph

by adding all possible edges to the graph inside each sphere, with weights proportional to the

number of points in the sphere.

Mathematics subject classification number: 82B44

1. Introduction

Proving the existence of absolutely continuous spectrum for random Schrödinger operators

at weak disorder remains a challenging problem. The extended states conjecture, asserting the

existence of absolutely continuous spectrum at low disorder for the Anderson model on Z
d, d ≥ 3
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remains the most important open problem in the field. When Z
d is replaced by the Bethe Lattice

(or tree graph) this conjecture has been proved by Klein [K], extended and reproved byAizenman,

Sims and Warzel [ASW1], [ASW2], [ASW3], [AW1], and given yet another proof by the present

authors [FHS2]. Our proof, which only applied to binary trees, has been simplified and extended

by Halasan [H] to cover trees with higher branching number, and with additional vertices. (See

also Spitzer [Sp].) Recent work on trees includes level statistics by Aizenman and Warzel [AW2]

and localization respectively singular continuous spectrum by Breuer [B1] and [B2], and by Breuer

and Frank [BF].

There is a large gap between the known results for the tree and the open problem on Z
d. This

present paper is an attempt to address some of the problems that would come up on Z
d in simpler

models. The paper has two parts. In the first part we consider a binary tree with a transversely

2­periodic random potential. The potential is defined by choosing two values of the potential at

random, independently for each sphere or level (that is, a set of vertices a fixed distance in the

graph from the origin) in the tree. These two values are then repeated periodically across the

sphere. The point of this model is that although the underlying graph is still a tree, we have

negated some of the advantage of the exponential spreading of the tree.

In fact, such two­periodic potentials can exhibit either dense point spectrum or absolutely

continuous spectrum. In our previous paper [FHS1], the values (q1, q2) were chosen close to

(δ,−δ) for δ > 0. In this case we obtained a deterministic result proving existence of absolutely

continuous spectrum. On the other hand, if (q1, q2) are chosen randomly on the diagonal q1 = q2

then the potential is radial, and this model is equivalent to a one­dimensional Anderson model

that exhibits localization at all disorders.

We will prove that if the potentials (q1, q2) are sufficiently uncorrelated (see assumption (8)

below) then there will be some absolutely continuous spectrum, as is the case for the Anderson

model. However, since in some sense this model is so close to being one­dimensional, the proof

has some features not appearing in [FHS2]. In both [FHS2] and the present paper, the proofs

follow from an estimate of an average over potential values q of functions µ(z, q), similar in both

models, that measure the contraction of a relevant map of the plane. We seek an estimate of the

form
∫

µ(z, q)dν(q) < 1 for z near the boundary at infinity. In [FHS2] we use the independence

of the potentials across the sphere in proving that µ(z, 0) is already less than one. Then small

values of q in the integral are handled by semi­continuity. In the present situation µ(z, q) for q = 0

is identically equal to one, and perturbations in q send it in both directions. Thus we must use

cancellations in the integral over q in an essential way.

Our method extends to the case where the joint distributions are not identical, as long as they

are all centered and satisfy certain uniform bounds. This is significant since in this case we lose

the self­similarity that has been used in previous proofs.

2



Another obvious way that Z
d differs from the tree is in the presence of arbitrarily large loops.

In the second part of this paper, we show how to introduce (weighted) loops with unbounded

size into the model from the first part. We introduce connections between every pair of vertices in

a given sphere, weighted to make the total weight of the added edges equal to one in each sphere.

This is a sort of mean field interaction. These connections mean that when we remove the interior

of some ball from the graph, the resulting exterior domain does not consist of disconnected pieces

equivalent to the original graph, as is the case for the tree. Nevertheless, we can prove absolutely

continuous spectrum for this model using results from the first part of this paper in a two­step

procedure. To reduce the technical complication, we will only consider a Bernoulli distribution

for the potentials in this section.

In the next section we review the basic set­up for calculating a diagonal matrix element of

the Green’s function for discrete random Schrödinger operators, using a decomposition of the

graph and the corresponding sequence of forward Green’s functions. In Section 3 we specialize

to a tree model with a strongly transversely correlated random potential and present Theorem

2, the first main theorem. The bounds on the moment required in the proof of this theorem are

given in Section 4 but the proof of the main technical Lemma 4 is postponed to Section 6. Section

5 deals with extensions and open problems related to our method of proof. The last two sections

are devoted to the mean field tree model. Theorem 9 is our second main result. A proof of the

main technical Lemma 12 needed for this theorem is relegated to Section 8.

2. Review of basic setup

Let (V,E) be a graph with vertex set V and edges E ⊆ V × V , and let γ : E → R
+ be a

bounded symmetric function. Let L be the Laplacian with matrix elements given by

Lv,w =

{

γ((v, w)) if (v, w) ∈ E

0 otherwise

.

We assume that the number of edges joining a vertex is uniformly bounded. Then L is a bounded,

self­adjoint operator on ℓ2(V ).

Given a potential q : V → R, letQ be the operator of multiplication by qwith matrix elements

Qv,w = q(v)δv,w. We are interested in the spectrum of the discrete Schrödinger operator

H = L+Q

acting in ℓ2(V ). Let 0 ∈ V denote a distinguished vertex. We will study the spectral measure for

H for the vector δ0 ∈ ℓ2(V ) given by

δ0(v) =
{

1 if v = 0
0 otherwise

3



through its Borel transform given by the Green’s function G0(λ) =
〈

δ0, (H − λ)−1δ0
〉

.

Our approach is based on a decomposition of V as a disjoint union and the corresponding

direct sum decomposition of ℓ2(V )

V =

∞
⋃

n=0

Sn, ℓ2(V ) =

∞
⊕

n=0

ℓ2(Sn).

We assume that S0 = {0} and that vertices in Sn are only connected to vertices in Sn−1, Sn and

Sn+1. (We will take the sets Sn to be spheres containing all vertices a distance n in the graph

from 0.) Then the block matrix forms of L and H have zeros away from the diagonal and first

off­diagonal blocks.

L =









D0 ET
0 0 0 · · ·

E0 D1 ET
1 0 · · ·

0 E1 D2 ET
2 · · ·

...
...

...
...

. . .









, H =









D0 +Q0 ET
0 0 0 · · ·

E0 D1 +Q1 ET
1 0 · · ·

0 E1 D2 +Q2 ET
2 · · ·

...
...

...
...

. . .









.

According to the formula for L, the matrix Dn is the Laplacian for the sphere Sn, while En has

non­zero entries corresponding to the connections between Sn and Sn+1. Let Pn denote the

projection of ℓ2(V ) onto ℓ2(Sn) and define Pn,∞ =
∑∞

k=n Pk. Define Hn = Pn,∞H Pn,∞ and the

forward Green’s functions

Gn(λ) = Pn(Hn − λ)−1Pn.

Each Gn(λ) is a dn × dn matrix, where dn is the number of vertices in Sn and lies in the Siegel

upper half space SHdn
, that is, the space of symmetric dn × dn matrices with positive definite

imaginary part; H := SH1 is the usual complex upper half plane.

The forward Green’s functions are related by the formula

Gn(λ) = Φn(Gn+1, Qn, λ), (1)

where Φn : SHdn+1
× Sdn

× H → SHdn
is given by

Φn(Gn+1, Qn, λ) = −
(

ET
nGn+1En −Dn −Qn + λ

)−1
.

Here Sd is the set of d×d real symmetric matrices. To see this, note thatGn(λ) is the top left corner

block of








Dn +Qn − λ ET
n 0 0 · · ·

En

0
...

Hn+1 − λ









−1

.

Thus, according to Schur’s formula

[

A BT

B C

]−1

=

[

(A−BTC−1B)−1 (BTC−1B −A)−1BTC−1

C−1B(BTC−1B −A)−1 (C −BA−1BT )−1

]

(2)
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for the inverse of a symmetric block matrix we have

Gn(λ) = −



[ET
n 0 0 · · · ] (Hn+1 − λ)−1





En

0
...



−Dn −Qn + λ





−1

,

which implies (1).

Now suppose that the potential is chosen at random, independently for every sphere Sn

according to a probability distributionNn on R
dn . Then the matricesGn(λ) are random variables,

distributed according to somemeasureRn,λ on SHdn
, and (1) implies thatRn,λ is the push­forward

of Rn+1,λ ×Nn under Φn. This means that for every integrable function f on SHdn

∫

SHdn

f(Z) dRn,λ(Z) =

∫

SHdn+1

∫

Rdn

f(Φn(Z,Q, λ)) dNn(Q) dRn+1,λ(Z). (3)

The measure in which we really are interested is R0,λ, the distribution for G0, which is a

probability measure on H. In our examples, we will use formula (3) to prove a bound of the form

sup
| Re(λ)|≤λ0
0<Im(λ)≤ǫ

∫

H

w1+α(z)dR0,λ(z) <∞, (4)

where α > 0 and w(z) is a weight function satisfying

Im(z) ≤ Cw(z) (5)

for z in a neighbourhood of the boundary at infinity ∂∞H. In the upper half plane model of

hyperbolic space H, the boundary at infinity is R ∪ {i∞}. A neighbourhood of ∂∞H is the

complement of a closed bounded set in H ∪ ∂∞H. Here and throughout the paper, C denotes a

generic constant that may change from line to line. Notice that the integral in formula (4) is the

expectation E
[

w1+α(G0(λ))
]

.

Lemma 1 Suppose that (4) holds for some α > 0 and some weight function w(x) satisfying (5). Then the

spectral measure µ0 of which G0(λ) is the Borel transform is almost surely purely absolutely continuous

in (−λ0, λ0).

Proof: (Following Klein [K] and Simon [Si].) By Fatou’s lemma and (4)

E

(

lim inf
ǫ↓0

∫ λ0

−λ0

w1+α(G0(x+ iǫ))dx

)

≤ lim inf
ǫ↓0

∫ λ0

−λ0

E
(

w1+α(G0(x+ iǫ))
)

dx < C.

This implies that for almost every choice of potential

lim inf
ǫ↓0

∫ λ0

−λ0

(Im(G0(x+ iǫ)))
1+α

dx ≤ C lim inf
ǫ↓0

∫ λ0

−λ0

(w(G0(x+ iǫ)))
1+α

dx < C.

So, for such a potential, there exists a sequence ǫn ↓ 0 such that

sup
n

∫ λ0

−λ0

(Im(G0(x+ iǫn)))
1+α

dx < C.
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Then, since π−1 ImG0(x+ iǫ)dx converges to dµ0(x) weakly (see [Si]) as ǫ ↓ 0 we find that for any

compactly supported continuous function f

∣

∣

∣

∣

∣

∫ λ0

−λ0

f(x)dµ0(x)

∣

∣

∣

∣

∣

= lim
n→∞

π−1

∣

∣

∣

∣

∣

∫ λ0

−λ0

f(x) ImG0(x+ iǫn)dx

∣

∣

∣

∣

∣

≤ lim sup
n→∞

π−1

[

∫ λ0

−λ0

|f(x)|qdx
]1/q [

∫ λ0

−λ0

(ImG0(x+ iǫn))
1+α

dx

]1/(1+α)

≤ C‖f‖q.

Here q is the dual exponent to 1 + α in Hölder’s inequality. This implies that dµ0(x) = g(x)dx for

some g ∈ L1+α and completes the proof.

3. A binary tree with transversely 2-periodic potentials

We now specialize to a binary tree.

S SS1 2 3 ...S0

Rooted binary tree with transversely 2-periodic potential.

For a tree, the forward Green’s functions are diagonal, and with

Gn+1(λ) = diag[z1, z2, . . . , z2n+1 ],

Qn = diag[q1, q2, . . . , q2n ],

we have

Φn(Gn+1, Qn, λ) = diag

[ −1

z1 + z2 + λ− q1
, . . . ,

−1

z2n+1−1 + z2n+1 + λ− q2n

]

.

To define a two­periodic potential we choose for each sphere (except the root) two potential

values q = (q1, q2) at random, independently for each sphere, according to an identical joint

distribution ν. In the diagram, the spheres are outlined by boxes. For each sphere (except the

first), after choosing q = (q1, q2), we set the potential at all the black vertices equal to q1 and the

potential at all the white vertices equal to q2. The potential value at 0 is chosen according to some

single site distribution ν(0).
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Wemake the following assumptions about this distribution ν. The distribution has bounded

support:

ν is supported in {q = (q1, q2) : |q1| ≤ 1, |q2| ≤ 1}. (6)

The distribution is centred on zero:

∫

(q1 + q2)dν(q) = 0. (7)

Let cij =
∫

qiqjdν(q). Then

c = c11 + c22 > 0 and δ =
2c12

c11 + c22
< 1/2. (8)

The first inequality in (8) simply says that q is not identically zero. The second is a bound on

the correlation. Completely correlated potentials (that is, the one­dimensional case where the

spectrum is localized) would correspond to δ = 1.

To adjust the disorder, we multiply the potential by a coupling constant a > 0 and study the

Schrödinger operator Ha = L+ aQ. This amounts to replacing ν with the scaled distribution νa

satisfying
∫

f(q) dνa(q) =

∫

f(aq) dν(q).

The scaled distribution νa is supported in {q = (q1, q2) : |q1| ≤ a, |q2| ≤ a}.
We can now formulate the main theorem for this section.

Theorem 2 Let ν(0) be a probability measure of bounded support for the potential at the root, let ν be

a probability measure on R
2 satisfying (6), (7) and (8) and let Ha be the random discrete Schrödinger

operator on the binary tree corresponding to the transversely two­periodic potential defined by the scaled

distribution νa. There exists λ0 ∈ (0, 2
√

2) such that for sufficiently small a the spectral measure for Ha

corresponding to δ0 has purely absolutely continuous spectrum in (−λ0, λ0).

For a two­periodic potential, the formula (3) can be simplified. In this case the measureNn is

independent of n and concentrated on the two­dimensional hyperplane where q1 = q3 = q5 = · · ·
and q2 = q4 = q6 = · · ·. Thus, introducing a coupling constant a, the measureNn is a product of νa

with delta functions for the hyperplane. For these potentials the diagonal entries ofGn(λ) exhibit

the same symmetry as the potentials, so the probability distribution for Gn(λ) is determined by

the joint distribution ra,λ for (z1, z2), which also is independent of n. With this notation, the

formula (3) can be written

∫

H×H

f(z1, z2) dra,λ(z1, z2)

=

∫

H×H×R2

f

(

− 1

z1 + z2 + λ− q1
,− 1

z1 + z2 + λ− q2

)

dνa(q) dra,λ(z1, z2).
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It is convenient to introduce a new random variable u = z1 + z2 + λ for every sphere except

the first. Let ρa,λ denote the distribution on H for u. Then, taking f(z1, z2) = g(z1 + z2 + λ) in the

formula above we obtain our main recursion formula
∫

H

g(u) dρa,λ(u) =

∫

H×R2

g(φq,λ(u)) dνa(q) dρa,λ(u), (9)

where

φq,λ(u) = − 1

u− q1
− 1

u− q2
+ λ. (10)

A source of difficulty is the singular behaviour of φq,λ near the diagonal of q. When q1 = q2, (and

Im(λ) ≥ 0) then φq,λ is a linear fractional transformation that defines an injective map from H to

H. In fact, if λ ∈ R the map is a hyperbolic isometry. However, as soon as q1 6= q2 the map φq,λ

covers H twice. This can be seen even when we only consider real values of u. In this case φq,λ(u)

ranges over all of R for u in the interval (q1, q2) (supposing for the moment that q1 < q2). This

interval shrinks and then disappears as q1 approaches q2.

We now introduce the weight function cd(u). For λ ∈ (−2
√

2, 2
√

2) the fixed point solution

of u 7→ φ0,λ(u) is uλ = λ/2 + i
√

2 − λ2/4. Define

cd(u) =
|u− uλ|2

Im(u)
. (11)

Our goal is to bound the moment

Ma,α,λ =

∫

H

cd(u)1+αdρa,λ(u). (12)

Given Lemma 1, such a bound for R0,λ in place of ρa,λ will provide a proof of Theorem 2. This is

done in the following lemma.

Lemma 3 Let ν(0) be a probability measure of bounded support for the potential at the root, and suppose

that

sup
| Re λ|≤λ0
0<Im λ≤ǫ

Ma,α,λ < C

for some positive a, α and ǫ. Then the spectral measure for δ0 corresponding to the transversely two­periodic

random potential with coupling constant a has purely absolutely continuous spectrum in [−λ0, λ0].

Proof: Let w(z) = |z − i|2/ Im(z). The recursion formula (3) for the first level implies
∫

H

w(z)1+α dR0,λ(z) =

∫

H×R

w(−(u− q)−1)1+α dν(0)(q) dρa,λ(u)

≤
(

sup
H

∫

R

(

w(−(u− q)−1)

cd(u) + 1

)1+α

dν(0)(q)

)

(Ma,α,λ + 1),

so the lemma follows from Lemma 1 and the bound

sup
H

∫

R

(

w(−(u− q)−1)

cd(u) + 1

)1+α

dν(0)(q) ≤ C

by our assumption on ν(0).
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4. Bounding Ma,α,λ

Lemma 3 shows that our main theorem follows from a bound for Ma,α,λ. We now explain

howwe can obtain such a bound. Beginning with (12) we introduce a cutoff function χ, 0 ≤ χ ≤ 1

with support in a neighbourhood of the boundary at infinity of H, and with χ = 1 near infinity.

Since cd is bounded on the compact support of 1 − χ,

Ma,α,λ ≤
∫

H

χ(u) cd(u)1+αdρa,λ(u) + C,

where C only depends on the support of χ. Now we apply the recursion formula (9) to conclude

Ma,α,λ ≤
∫

H

∫

R2

χ(φq,λ(u)) cd(φq,λ(u))1+α dνa(q)dρa,λ(u) + C.

Since the image of φq,λ(u) as q ranges over the support of νa, λ ranges over the rectangle |Re(λ)| ≤
λ0, 0 ≤ Im(λ) ≤ ǫ and u ranges over the support of 1 − χ is compact, the function cd(φq,λ(u)) is

bounded there, and we may again insert a cutoff and conclude

Ma,α,λ ≤
∫

H

∫

R2

χ(u) χ(φq,λ(u)) cd(φq,λ(u))1+α dνa(q)dρa,λ(u) + C. (13)

The constant C is different from the previous equation, but can still be taken to be independent of

λ in the range of values we are considering.

Here is the essential idea of our argument. Introduce

µq,λ(u) =
cd(φq,λ(u))

cd(u)
=

|(2u− q1 − q2)uλ − 2(u− q1)(u− q2)|2
2(|u− q1|2 + |u− q2|2)|u− uλ|2

(14)

and the averaged version

µa,α,λ(u) =

∫

R2

µ1+α
q,λ (u) dνa(q).

Then (13) implies

Ma,α,λ ≤
∫

H

χ(u)µa,α,λ(u) cd(u)1+αdρa,λ(u) + C.

So if we knew that µa,α,λ(u) ≤ 1 − ǫ1 on supp(χ) for a suitable range of λ, then we would obtain

Ma,α,λ ≤ (1− ǫ1)Ma,α,λ +C which gives the desired bound onMa,α,λ. Notice that the averaging

over q is essential for obtaining such a bound, since µ0,λ(u) = 1.

Also note that µq,λ(u) is continuous as u and λ approach the real axis, except at u = q1 = q2.

This includes u = i∞, by which we mean continuity as w → 0 when we set u = −1/w. At the

singular point we can define µq,λ(u) to be supremum of all possible limits. In this way we can

extend µq,λ(u) to an upper semi­continuous function whose domain includes real values of u and

λ.

Here is the bound for µa,α,λ(u). This is themain technical result in the first part of the paper.

9



Lemma 4 Suppose that ν is a probability measure on R
2 satisfying (6), (7) and (8). Assume u and λ are

real, |λ| < 2
√

2 and a and R are positive real numbers satisfying R ≥ 2 and aR ≤ 1/4. Then there exist

positive constants Ci such that with c and δ defined by (8)

µa,α,λ(u) ≤



















1 − c(1 − δ)

20R2
+ C1aR+ C2α for |u| ≤ aR

1 − a2c

|u|2
(

p(u, λ, δ)

2|u− uλ|2
−
(

C3

R
+ C4α

))

for |u| ≥ aR

, (15)

where

p(u, λ, δ) = (1 − 2δ)u2 − (1 − δ)λu+ 1 − δ.

This lemma is proved in a separate section. When |u| → ∞ the bound tends to 1, so this

bound alone is not sufficient. To procede we must iterate the procedure leading to (13). Starting

with (13) (with q replaced by q1) we apply (9) to arrive at

Ma,α,λ ≤
∫

H

∫

R2

∫

R2

χ(u) χ(φq1,λ(u)) cd(φq1,λ ◦ φq2,λ(u))1+α dνa(q1)dνa(q2) dρa,λ(u) + C

=

∫

H

∫

R2

∫

R2

χ(u)µ1+α
q1,λ(u) χ(φq1,λ(u))µ1+α

q2,λ(φq1,λ(u))dνa(q1)dνa(q2)dρa,λ(u) + C.

(16)

In view of Lemma 3, the following lemma will complete the proof of Theorem 2.

Lemma 5 Suppose that ν satisfies (6), (7) and (8). Then there exists λ0 ∈ (0, 2
√

2) such that for small

enough a and ǫ

sup
| Re λ|≤λ0
0<Im λ≤ǫ

Ma,α,λ < C.

Proof: Let

ma,α,λ(u) = χ(u)

∫

R2

∫

R2

µ1+α
q1,λ(u) χ(φq1,λ(u))µ1+α

q2,λ(φq1,λ(u))dνa(q1)dνa(q2).

Given (16), it suffices to show that there exists λ0 ∈ (0, 2
√

2) and ǫ1 > 0 so that

ma,α,λ(u) ≤ 1 − ǫ1 (17)

for all u in a neigbourhood of infinity in H and for a and α sufficiently small. An obvious estimate

forma,α,λ(u) is

ma,α,λ(u) ≤ χ(u)µa,α,λ(u) sup
q1∈supp(νa)

[

χ(φq1,λ(u))µa,α,λ(φq1,λ(u))
]

. (18)

We begin by choosing λ0 with

λ0 < 2

√

1 − 2δ

1 − δ
.
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Then a simple calculation shows that the polynomial p(u, λ, δ) in Lemma 4 is bounded below

p(u, λ, δ) ≥ p0 > 0

for all u ∈ R and λ with |λ| ≤ λ0. Choosing R sufficiently large and α suffciently small we can

simplify the estimate in Lemma 4 to read

µa,α,λ(u) ≤











1 − 2ǫ2 + C1aR for |u| ≤ aR

1 − a2ǫ3
|u|2 for |u| ≥ aR

for some ǫ2, ǫ3 > 0 and for all u ∈ ∂∞H = R∪{i∞}. Then, choosing a small (depending on R) we

obtain

µa,α,λ(u) ≤











1 − ǫ2 for |u| ≤ aR

1 − a2ǫ3
|u|2 for |u| ≥ aR

. (19)

In particular, µa,α,λ(u) ≤ 1 for all u ∈ ∂∞H. By upper semi­continuity of µ, we can extend this

estimate to a neighbourhood of ∂∞H to conclude

χ(u)µa,α,λ(u) ≤ 1 + ǫ4, (20)

where ǫ4 can be made arbitrarily small by shrinking the support of χ.

To estimate the right side of (18) we consider u in two regions. The first region are the points

near u ∈ R with |u| ≤ C. For these points, the estimate (19) and upper semi­continuity of µa,α,λ(u)

imply

µa,α,λ(u) ≤ 1 − ǫ5

for some ǫ5 > 0. This, combined with (20), where we have shrunk the support of χ to make ǫ4

sufficiently small, proves (17) for these values of u.

On the other hand, if u is in the region near u ∈ R with |u| ≥ C (including i∞) then u is

bounded away from the singularity of φq1,λ(u) for q1 ∈ supp(νa), so for these values of u and

small q1, the values of φq1,λ(u) are close to φ0,λ(u) and therefore |φq1,λ(u)| is uniformly bounded.

This means we can exchange the roles of the two factors in (18) and obtain (17) for these values of

u as well.
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5. Extensions and open problems

For δ = 0, that is, when the random variables q1 and q2 are independent, our result gives

λ0 = 2. An obvious question is “How large can λ0 actually be?”. When λ0 is larger than 2 the

polynomial p(u, λ, δ) in (15) changes sign so the estimate for µa,α,λ(u) goes above 1 for some

values of u. However, the product on the right side of (18) remains bounded below 1 if λ0 is

only slightly larger than 2, since the second term in the product compensates. So, our proof can

accommodate λ0 slightly larger than 2. To push λ0 even higher, we can consider iterating the

procedure leading to (16) an arbitrary number of times. This would presumably allow even larger

values of λ0 at the expense of more complicated proofs. The determination of the exact range of

absolutely continuous spectrum (as indeed the question of band­edge localization for this model)

remains open.

At first glance, it appears that the assumption that the distributions νa are identical for each

sphere seems essential. Dropping it means that we lose self­similarity in the tree. However, in

fact it is possible to handle the case where the distribution for the nth sphere νa,n can depend on

n, provided that each distribution satisfies the assumptions (6), (7) and (8). Then the distributions

ρa,λ,n and the momentsMa,α,λ,n also vary from sphere to sphere. In this setup we are interested

in Ma,α,λ,1. The methods in this paper (with two iterations) can then be used to show that for

suitable a, α and λ

Mλ,n ≤ (1 − ǫ)Mλ,n+2 + C. (21)

(Wehavedropped thea andα subscripts.) Here ǫ andC arepositive constants that are independent

of n and λ. Iterating this bound N times gives

Mλ,1 ≤ (1 − ǫ)NMλ,1+2N + C

(

N−1
∑

k=1

(1 − ǫ)k

)

≤ (1 − ǫ)NMλ,1+2N +
C

ǫ
.

This estimate may appear useless, but for Im(λ) > 0 we actually have an n independent (but λ

dependent!) bound onMλ,n, because the support of ρa,λ,n is contained in a λ dependent compact

set. Hence we obtain

Mλ,1 ≤ (1 − ǫ)NCλ +
C

ǫ

and we may send N → ∞ to obtain the desired bound onMλ,1.

6. Proof of Lemma 4

The goal of this section is to prove the estimates in Lemma 4 on µ defined by (14) for u and λ

real. Notice that when λ ∈ R and |λ| < 2
√

2 then Im(uλ) > 0 and |uλ|2 = 2.

12



We will blow up the singularity on the diagonal by introducing polar co­ordinates r and ωi,

i = 1, 2 defined by

u− q1 = rω1, u− q2 = rω2, ω2
1 + ω2

2 = 1.

We begin with the estimate for |u| small.

Lemma 6 Suppose |λ| < 2
√

2, |qi| ≤ a and |u| ≤ aR where R ≥ 2 and aR ≤ 1/4. Then

µq,λ(u) ≤ |ω1 + ω2|2
2

+ CaR.

Proof: We can write

µq,λ(u) =
|(ω1 + ω2)uλ + 2rω1ω2|2

2|u− uλ|2
.

We have
2

|u− uλ|2
=

2

2 − λu+ u2
≤ 1

1 − λu/2
≤ 1 + |λ||u|

since |λu/2| ≤ 1/2 and (1 − x)−1 ≤ 1 + 2|x| for |x| ≤ 1/2. Next, we have

|(ω1 + ω2)uλ + 2rω1ω2|2
4

≤ |ω1 + ω2|2
2

+ r + r2/4,

since |ω1 + ω2| <
√

2, |ω1ω2| ≤ 1/2. With our bounds on qi and R we have

r2 = |u− q1|2 + |u− q2|2 ≤ 2a2(1 +R)2.

Combining these estimates completes the proof.

Now we turn to the estimate for large |u|.

Lemma 7 Suppose |λ| < 2
√

2, |qi| ≤ a and |u| ≥ aR where R ≥ 2. Then

µq,λ(u) ≤ 1 +
1

u
〈l,q〉 − 1

u2
〈q, (Q− C/R)q〉

with

q =

[

q1
q2

]

,

l =
−2u2 + λu

2|u− uλ|2
[

1
1

]

,

Q =
1

2|u− uλ|2
[

u2 − λu+ 1 −2u2 + λu− 1
−2u2 + λu− 1 u2 − λu+ 1

]

.

The constantC = C1/(1−λ2/8)+C2 whereC1 andC2 are some (explicitly computable positive) numbers.

Proof: Let δi = qi/u and note that |δi| < 1/R. We can write

µq,λ(u) =
1

4|u− uλ|2
|2(u− uλ) − (δ1 + δ2)(2u− uλ) + 2δ1δ2u|2

2

|1 − δ1|2 + |1 − δ2|2
. (22)

13



The third term on the right can be written

2

|1 − δ1|2 + |1 − δ2|2
=

1

1 − (δ1 + δ2) + (δ21 + δ22)/2
.

If x ≤ δ < 1 then (1− x)−1 ≤ 1 + x+ (1 + δ/(1− δ))x2. Using this with x = (δ1 + δ2)− (δ21 + δ22)/2

and δ = (2R − 1)/R2, which implies δ/(1 − δ) ≤ 6/R we find, after some calculation, that this

term can be estimated by

2

|1 − δ1|2 + |1 − δ2|2
≤ 1 + (δ1 + δ2) + 2δ1δ2 +

(

1

2
+

40

R

)

(δ21 + δ22).

We now turn to the middle term on the right side of (22). Multiplying out the square, using

Re(uλ) = λ/2, and making some simple estimates, we arrive at

|2(u− uλ) − (δ1 + δ2)(2u− uλ) + 2δ1δ2u|2

≤ 4|u− uλ|2 − 4(δ1 + δ2)(|u− uλ|2 + u(u− λ/2))

+ 2δ1δ2(|2u− uλ|2 + 4u(u− λ/2))

+ (δ21 + δ22)(|2u− uλ|2 +R−1(9|u|2 + 2|λu|)).

We now combine these estimates. In the error terms, we can control quadratic terms in u using

|u|2 ≤ 1

1 − λ2/8
|u− uλ|2.

A straightforward calculation completes the proof.

In preparation for the proof of Lemma 4 we prove the following lemma. Recall that ω1 and

ω2 are functions of u and q. Explicitly,

ωi(u,q) =
u− qi

√

(u− q1)2 + (u− q2)2
,

so that ωi(u, aq) = ωi(u/a,q). Also, with the notation of (8) we have

∫

R2

(q1 − q2)
2dν(q) = c11 + c22 − 2c12 = c(1 − δ).

Lemma 8 For R ≥ 2 and |u| ≤ aR,

∫

R2

|ω1 + ω2|2
2

dνa(q) ≤ 1 − c(1 − δ)

20R2
. (23)

Proof: We begin with a scaling argument. The scaling properties of ωi(u,q) and νa imply that

bounding the left side of (23) for |u| ≤ aR is equivalent to bounding

∫

R2

|ω1 + ω2|2
2

dν(q)

for |u| ≤ R.
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Referring to the following diagram, we have ω1 = − cos(θ + π/4) and ω2 = − sin(θ + π/4).

1(q , q ) 2

(−R,−R)

(R,R)

(u,u)

θ

Co-ordinates ω1, ω2 relative to (u, u).

Then |ω1 + ω2|2/2 = (1 + 2ω1ω2)/2 = (1 + cos(2θ))/2. From this we see that the maximum occurs

at an endpoint for θ, when (u, u) = (R,R) or (u, u) = (−R,−R). This leads to

|ω1 + ω2|2
2

≤ | ±R− q̄|2
| ±R− q̄|2 + q̃2

= 1 − q̃2

|R± q̄|2 + q̃2
,

where q̄ = (q1 + q2)/2 and q̃ = (q1 − q2)/2. Since |q̄| ≤ 1 and R ≥ 2 we have |R ± q̄| ≤ 2R. This

implies
|ω1 + ω2|2

2
≤ 1 − q̃2

4R2 + 1
= 1 − (q1 − q2)

2

20R2
.

Integrating this formula completes the proof.

We are now ready to give the proof of Lemma 4.

Proof of Lemma 4: The estimates of Lemma 6, Lemma 7 and the estimate (1 + x)1+α ≤ 1 + (1 +

α)x+ α(1 + α)x2 for x > −1 can be used to show

µq,λ(u)1+α ≤



















|ω1 + ω2|2
2

+ C1aR+ C2α for |u| ≤ aR

1 +
1 + α

u
〈l,q〉 − 1

u2
〈q, (Q− C3/R− C4α)q〉 for |u| ≥ aR

.

We now integrate this estimate with respect to νa. For |u| ≤ aR, we use Lemma 8. When we

integrate the estimate for |u| ≥ aR, the linear term vanishes, thanks to (7). The quadratic term

gives the estimate on the right side in (15).

7. A mean field model

In this section we add a weighted complete graph to every sphere in the tree. Since the

weights are chosen to make the total added weights the same in each sphere, this is a sort of mean

field model. Pick a number γ > 0. Each added edge (dotted line in the diagram below) in the nth

sphere Sn is given the weight γ2−n.
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S SS1 2 3 ...S0

Rooted binary tree with mean-field edges insides spheres and transversely 2-periodic potential.

We call this graph the mean field binary tree. The spectrum of the free Laplacian on

the mean field tree is the union of two intervals [−2
√

2 + γ, 2
√

2 + γ] ∪ [−2
√

2, 2
√

2] and is

purely absolutely continuous. This can be seen by diagonalizing the Laplacian using a Haar

basis, as in [AF]. The (normalized) Haar basis {e0, e1, . . . , e2n−1} for C
2n

is defined as follows.

Let (e0)(j) = 2−n/2, j = 1, . . . , 2n. For k = 0, 1, . . . , n − 1 we set (e2k)(j) = 2−(n−k)/2 if

j = 1, . . . , 2n−k−1, (e2k)(j) = −2−(n−k)/2 if j = 2n−k−1 + 1, . . . , 2n−k, and 0 otherwise. Finally, we

define the non­zero components of ei for 2k ≤ i < 2k+1 to be (ei)(j) = (e2k)(j − i+ 2k).

Here is a diagram of the Haar basis for ℓ2(Sn) = C
2n

with n = 3. Each vector is normalized

to make the basis orthonormal. This basis has a natural tree structure determined by the supports

of the vectors. The highest level is the constant vector, and the lowest level consists of vectors

with two non­zero entries of ±2−1/2.

Haar basis for ℓ2(S3).

To simplify the calculations, we will consider this model when the transversely two­periodic

potential is defined by the product of two independent Bernoulli distributions for q1 and q2,

ν =
1

4

(

δ(q1 − 1) + δ(q1 + 1)
)(

δ(q2 − 1) + δ(q2 + 1)
)

.
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Theorem 9 Let ν(0) be a probability measure of bounded support for the potential at the root and ν

be the product of Bernoulli distributions defined above and let Ha,γ be the random discrete Schrödinger

operator on the mean field binary tree corresponding to the transversely two­periodic potential defined

by the scaled distribution νa and weight γ. There exist 0 < λ0, λ1 < 2
√

2 such that for sufficiently

small a the spectral measure for Ha corresponding to δ0 has purely absolutely continuous spectrum in

{λ : |λ| ≤ λ0, |λ− γ| ≤ λ1}.

In this theorem, the constant λ0 has the same value as in the first part of the paper, while λ1

can be taken to be any positive number less than 2
√

2.

The forward Green’s functionsGn are not diagonal. In the basic recursion formula (1) for the

forward Green’s functions on the mean field tree the matrices En andQn are unchanged from the

binary tree, but the matrices Dn are now 2−nγ times the Laplace operator for the complete graph

on Sn. This Laplace operator is a 2n × 2n matrix with each diagonal entry equal to zero and each

off­diagonal entry equal to 1. Thus

Dn = γ(P − 2−nI),

where P projects onto 2−n/2[1, 1, . . . , 1]T . Introduce the dn × dn matrix

Un = ET
nGn+1En −Dn + λ = ET

nGn+1En − γP + λn,

where

λn = λ+ γ2−n. (24)

Then the basic recursion formula reads

Un−1 = −ET
n−1(Un −Qn)−1En−1 − γP + λn−1.

The range of P is the span of the first vector in the Haar basis. Since the representation of a

two­periodic potential in this basis is not too complicated, it is natural to change to this basis to

simplify the problem.

Let Vn be the 2n × 2n orthogonal change of basis matrix to the Haar basis, whose columns

consist of the Haar basis vectors.

Lemma 10

(i) V T
n PVn = diag[1, 0, 0, . . .].

(ii) V T
n E

T
n Vn+1 =

√
2[I,0].

(iii) Let Q = diag[q1, q2, q1, q2, . . .] be a two­periodic potential. Setting q̄ = (q1 + q2)/2 and

q̃ = (q1 − q2)/2 we have

V T
n QVn = q̄I + q̃

[

0 V T
n−1

Vn−1 0

]

.
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The proof of this lemma is a straightforward computation, which we omit. Now we write

the matrix Un in the Haar basis. Define

Ũn = V T
n UnVn.

In view of Lemma 10, the recursion formula for Ũn reads

Ũn−1 = −2[I,0]

(

Ũn − q̄ − q̃

[

0 V T
n−1

Vn−1 0

])−1 [
I
0

]

− γ diag[1, 0, 0, . . .] + λn−1, (25)

whereλn is givenby (24). This recursion formulapreservesmatrices of the formdiag[u1, u2, u2, . . .].

Lemma 11 Suppose that Ũn = diag[u1, u2, u2, . . .]. Then Ũn−1, defined by the recursion formula above,

has the form

Ũn−1 = diag[ψq,λ,γ,n−1(u1, u2), φq,λ,n−1(u2), φq,λ,n−1(u2), . . .],

where

ψq,λ,γ,n(u1, u2) = − 2

u1 − q̄ − q̃2(u2 − q̄)−1
+ λn − γ,

φq,λ,n(u2) = − 2

u2 − q̄ − q̃2(u2 − q̄)−1
+ λn,

(26)

and λn is given by (24).

Proof: We have
(

Ũn − q̄ − q̃

[

0 V T
n−1

Vn−1 0

])−1

=

[

A BT

B C

]

,

where
A = diag[u1 − q̄, u2 − q̄, u2 − q̄, . . .],

B = −q̃Vn−1,

C = (u2 − q̄)I.

The top left block of this inverse is given by Schur’s formula (A−BTC−1B)−1. SinceBTC−1B =

q̃2(u2−q̄)−1V T
n−1Vn−1 = q̃2(u2−q̄)−1I , the result is a diagonalmatrixwith

(

u1−q̄−q̃2(u2−q̄)−1
)−1

in the upper left corner and
(

u2− q̄− q̃2(u2− q̄)−1
)−1

in the other diagonal positions. The recursion

formula picks out this block, multiplies by−2 and then adds−γ diag[1, 0, 0, . . .]+λn−1. This gives

the formulas (26).

The fact that the recursion formula for Ũn preserves diagonal matrices having the form

diag[u1, u2, u2, . . .] means that Ũn must actually have this form. This follows from the limit

formula for the forward Green’s functions proved in [FHS1] which implies that these matrices

will lie in any set that is preserved by the recursion flow. Thus, there are two random variables

u1 and u2 for each sphere that describe the forward Green’s function. For the nth sphere, they are

18



distributed according to some joint measure ρa,λ,γ,n for (u1, u2). Since the variables for adjacent

spheres are related by (26) the recursion formula for these measures reads

∫

H×H

w(u1, u2)dρa,λ,γ,n(u1, u2)

=

∫

H×H

∫

R2

w(ψq,λ,γ,n(u1, u2), φq,λ,n(u2)) dνa(q) dρa,λ,γ,n+1(u1, u2).

Define the moments

Ma,α,λ,γ,n =

∫

H×H

cd1,n(u1)
1+αdρa,λ,γ,n(u1, u2),

where

cd1,n(u1) =
|u1 − uλn−γ |2

Im(u1)

and uλ is the same fixed point as in (11). Our goal is to bound Ma,α,λ,γ,0 for a and α small

and λ and γ in some range. When n = 0 then Ũ0 = U0 = [u1] = ET
0 G1E0 + λ. Since G0 =

−(ET
0 G1E0 + λ− q0)

−1 we can use the argument of Lemma 3 to prove the existence of absolutely

continuous spectrum from such a bound.

Observe now that the recursion for u2 is the same as the formula for u in the first part of the

paper, except that λ is replaced by λn. Explicitly,

φq,λn
(u) = φq,λ,n(u),

where the φ is given on the left by (10) and on the right by (26). We claim this implies that

M
(2)
a,α,λ,γ,n =

∫

H×H

cd2,n(u2)
1+αdρa,λ,γ,n(u1, u2) ≤ C, (27)

provided |λ| < λ0. Here

cd2,n(u2) =
|u2 − uλn

|2+
Im(u2)

.

The function |z|+ is equal to |z| except near z = 0 where it has been modified to be bounded

away from zero. This makes no difference to the growth properties, but will allow us to make a

needed lower bound in the next section. For large n the bound (27) follows from the results in the

first part of the paper (extended to distributions that vary from sphere to sphere) since the small

perturbations γ2−n of λ are easily absorbed in the proof. The result for large n suffices, since it

is easy to iterate the bound (27) a finite number of steps. All that is required is an upper bound

µq,λn
(u) ≤ C, for µ given by (14).

Similarly, it is enough to bound Ma,α,λ,γ,n for large n. We follow the same basic steps as

before to begin the proof of such a bound. Let χ(u1) be a cutoff with support where u1 is in a
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neighbourhood of ∂∞H. Then, one iteration gives

Ma,α,λ,γ,n

=

∫

H×H

cd1,n(u1)
1+αdρa,λ,γ,n(u1, u2)

≤
∫

H×H

∫

R2

cd1,n(ψq,λ,γ,n(u1, u2))
1+αχ(u1)dνa(q)dρa,λ,γ,n+1(u1, u2) + C

=

∫

H×H

∫

R2

(

cd1,n(ψq,λ,γ,n(u1, u2)) − C1cd2,n(u2) + C1cd2,n(u2)
)1+α

· χ(u1)dνa(q)dρa,λ,γ,n+1(u1, u2) + C

≤
∫

H×H

∫

R2

2α
[

cd1,n(ψq,λ,γ,n(u1, u2) − C1cd2,n(u2)
]1+α

+
χ(u1)dνa(q)dρa,λ,γ,n+1(u1, u2)

+ 2αC1+α
1 M

(2)
a,α,λ,γ,n + C.

The notation [x]+ denotes max{0, x}, not to be confused with |z|+. Here we used the convexity of

x 7→ x1+α. The positive constant C1 can be chosen as large as we please.

Now we define

µq,λ,γ,n(u1, u2) =
cd1,n(ψq,λ,γ,n(u1, u2)) − C1cd2,n(u2)

cd1,n+1(u1)
, (28)

and the averaged version

µa,α,λ,γ,n(u1, u2) =

∫

R2

[µq,λ,γ,n]
1+α
+ (u1, u2) dνa(q).

Then, provided |λ| ≤ λ0 so thatM
(2)
a,α,λ,γ,n is bounded, we can rewrite the estimate above as

Ma,α,λ,γ,n ≤
∫

H×H

2αµa,α,λ,γ,n(u1, u2)χ(u1) cd1,n+1(u1)
1+αdρa,λ,γ,n+1(u1, u2) + C.

A second iteration results in

Ma,α,λ,γ,n ≤
∫

H×H

∫

R2

22αµa,α,λ,γ,n(ψq,λ,γ,n+1(u1, u2), φq,λ,n+1(u2))χ(ψq,λ,γ,n+1(u1, u2))

· [µq,λ,γ,n+1(u1, u2)]
1+α
+ χ(u1) dνa(q) cd1+α

1,n+2(u1)dρa,λ,γ,n+2(u1, u2) + C.

(29)

Lemma 12 There exist 0 < λ0, λ1 < 2
√

2 such that for |λ| ≤ λ0, |λ− γ| ≤ λ1, a, α sufficiently small,

n sufficiently large and χ supported sufficiently near ∂∞H, there is ǫ > 0 such that

∫

R2

22αµa,α,λ,γ,n(ψq,λ,γ,n+1(u1, u2), φq,λ,n+1(u2))χ(ψq,λ,γ,n+1(u1, u2))

· [µq,λ,γ,n+1(u1, u2)]
1+α
+ χ(u1)dνa(q) ≤ 1 − ǫ.

This lemma, proved below, implies the main result for the mean field model.
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Proof of Theorem 9: Inserting the estimate of Lemma 12 into (29) gives

Ma,α,λ,γ,n ≤ (1 − ǫ)Ma,α,λ,γ,n+2 + C

for n large. This is the same estimate as (21) so we can follow the argument given there to bound

Ma,α,λ,γ,n for n large. As noted above, this is sufficient to prove the theorem.

8. Proof of Lemma 12

The function µq,λ,γ,n(u1, u2) is the rational function given by

µq,λ,γ,n(u1, u2) =
|(u2 − q̄)uλn−γ − (u1 − q̄)(u2 − q̄) + q̃2|2 Im(u1)
(

|u2 − q̄|2 Im(u1) + q̃2 Im(u2)
)

|u1 − uλn+1−γ |2
− C1

Im(u1)|u2 − uλn
|2+

Im(u2)|u1 − uλn+1−γ |2
.

For |λ − γ| ≤ λ1 < 2
√

2, the fixed point uλn−γ lies in the upper half plane for n sufficiently

large, and is bounded away from ∂∞H. The function µq,λ,γ,n(u1, u2) always appears with a cutoff

function χ(u1) that ensures that u1 is in a neigbourhood of ∂∞H and thus that, for n sufficiently

large, |u1 − uλn+1−γ | is bounded below by a positive constant. The variable u2 can range over all

of H.

Introduce polar co­ordinates r, ω1 and ω2 for Im(u1) and Im(u2) as

Im(u1) = rω1, Im(u2) = rω2, ω2
1 + ω2

2 = 1.

Then

µq,λ,γ,n(u1, u2) =
|(u2 − q̄)uλn−γ − (u1 − q̄)(u2 − q̄) + q̃2|2ω1
(

|u2 − q̄|2ω1 + q̃2ω2

)

|u1 − uλn+1−γ |2
− C1

ω1|u2 − uλn
|2+

ω2|u1 − uλn+1−γ |2
.

With a Bernoulli distribution, the potential takes on four possible values (±a,±a). The corre­

sponding values of µ are as follows.

µ++
a,λ,γ,n(u1, u2) =

|u1 − uλn−γ − a|2
|u1 − uλn+1−γ |2

− C1
ω1|u2 − uλn

|2+
ω2|u1 − uλn+1−γ |2

.

The formula for µ−− is identical, except that −a is replaced with a. For the other two values, we

have µ+− = µ−+, with

µ+−
a,λ,γ,n(u1, u2) =

|u2(u1 − uλn−γ) − a2|2ω1
(

|u2|2ω1 + a2ω2

)

|u1 − uλn+1−γ |2
− C1

ω1|u2 − uλn
|2+

ω2|u1 − uλn+1−γ |2
.
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Lemma 13 For u1 in a neigbourhood of ∂∞H and a bounded,

µ++
a,λ,γ,n(u1, u2) ≤ 1 + C

a+ 2−n

|u1 − uλn+1−γ |
.

Proof: Dropping the second term we have

µ++
a,λ,γ,n(u1, u2) ≤

∣

∣

∣

∣

1 +
uλn+1−γ − uλn−γ − a

u1 − uλn+1−γ

∣

∣

∣

∣

2

.

Expanding the square, using that |uλn−γ −uλn+1−γ | ≤ C2−n and that |(a+C2−n)/(u1 −uλn+1−γ)|
is bounded, since a is bounded and u1 is bounded away from uλn+1−γ near ∂∞H completes the

proof.

The following lemma is the most involved estimate in this section.

Lemma 14 Suppose that u1 lies in a sufficiently small neighbourhood of infinity. Then for C1 and n

sufficiently large and a sufficiently small, there exists a positive constant C such that

µ+−
a,λ,γ,n(u1, u2) ≤ 1 − C

√
C1(a− 2−n)

|u1 − uλn+1−γ |
. (30)

Proof: To simplify the appearance of the formulas, we introduce the notation

An = u1 − uλn−γ , Bn = u2 − uλn
.

We begin by establishing the inequality

µ+−
a,λ,γ,n(u1, u2) ≤

[

|u2An − a2| − a
√
C1|Bn|+

]2

+

|u2|2|An+1|2
. (31)

Let x = ω2/ω1 ∈ [0,∞]. We must maximize

µ+−
a,λ,γ,n(u1, u2) =

|u2An − a2|2
(|u2|2 + xa2)|An+1|2

− C1
|Bn|2+

x|An+1|2

over x. We will assume without loss that a > 0. Differentiating with respect to x we obtain the

following equation for the critical point:

|u2An − a2|2a2

(|u2|2 + xa2)2
=
C1|Bn|2+

x2
,

or

|u2An − a2|ax = ±
√

C1|Bn|+(|u2|2 + xa2).

Since x is non­negative we must choose ± = +. This results in the critical point

x =

√
C1|Bn|+|u2|2

a(|u2An − a2| − a
√
C1|Bn|+)

.
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The critical point will lie in [0,∞] provided

|u2An − a2| ≥ a
√

C1|Bn|+, (32)

in which case a calculation shows that the critical value is
(

|u2An − a2| − a
√
C1|Bn|+

)2

|u2|2|An+1|2
. (33)

At the endpoint x = 0 we find that µ+− tends to −∞ while the limit as x → ∞ is 0. This implies

that when (32) holds, then the maximum occurs at the critical value, and otherwise the maximum

is 0. This proves (31).

Nowwe can proceed with the proof of estimate (30). Wemay assume that (32) holds, because

otherwise µ+− is zero and the desired estimate is true. This implies that for some ǫ > 0 (e.g.,

ǫ = a√
C1|Bn|+

)

|u2An| ≥ a(1 − ǫ)
√

C1|Bn|+.

Here we use that |Bn|+ ≥ C. Thus we may assume

a
√
C1|Bn|+
|u2An|

≤ 1 + 2ǫ (34)

provided 0 < ǫ < 1/2 and use this in estimating (33). Expanding the square in (33) we end up

with an estimate for µ+− given by

µ+−
a,λ,γ,n(u1, u2) ≤

|An|2
|An+1|2

+
a|Bn|+

|u2||An+1|

(

2a|An|
|An+1||Bn|+

+
a3

|u2||An+1||Bn|+
− 2

√
C1|An|

|An+1|
+

2
√
C1a

2

|u2||An+1|
+
C1a|Bn|+
|u2||An+1|

)

.

Now we may use (34), |Bn|+ ≥ C and |An|/|An+1| ≤ 1 + C2−n/|An+1| to arrive at the estimate

µ+−
a,λ,γ,n(u1, u2) ≤ 1 + C2−n/|An+1| −

a|Bn|+
|u2||An+1|

((1 − 2ǫ)
√

C1 − Ca).

Finally, the bound |Bn|+/|u2| ≥ C completes the proof.

Proof of Lemma 12: With the Bernoulli distribution, the average defining µ has four terms, so,

dropping the subscripts and using the estimates from this section we have

µ(u1, u2) =
1

4

(

[µ++]1+α
+ + [µ−−]1+α

+ + [µ+−]1+α
+ + [µ−+]1+α

+

)

≤ 1

2

(

[

1 + C
a+ 2−n

|u1 − uλn−1−γ |

]1+α

+

[

1 − C
√

C1
a− 2−n

|u1 − uλn−1−γ |

]1+α
)

For a small and n large, both terms inside the square brackets are a small perturbation of 1. But

since we are free to take C1 large, we may assume that the relative size of the term with the good

(negative) sign is much larger. This leads to the estimate

µ(u1, u2) ≤ 1 − C
√

C1
a− 2−n

|u1 − uλn−1−γ |
+ C(a+ 2−n)2
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for a, α small and n, C1 large.

To prove the lemma we must estimate the expression (again dropping most subscripts)

1

4

∑

q∈(±a,±a)

22αµ(ψq(u1, u2), φq(u1, u2))χ(ψq(u1, u2)) [µq(u1, u2)]
1+α
+ χ(u1)

When |u1| ≤ C we can estimate µ by 1 + C(a + 2−n)2 and pull it out of the sum. What results is

another copy of µ evaluated at bounded u1. This can be estimated by 1 − ǫ. Since for small α the

quantity 22α is close to 1, we end up with the desired bound of 1− ǫ for a, α small and n, C1 large.

For u1 near infinity we estimate the occurances of µ in the sum by the bound for µ++

which is slightly greater than one. Then we just need to guarantee that one of the µ terms

will be evaluated with ψq(u1, u2) bounded. This happens when q = (a, a) since in this case

ψq(u1, u2) = −2/(u1 − q̄) + λn − γ indepedendently of u2.
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