Liouville’s theorem in the radially symmetric case
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Abstract

We present a very short proof of Liouville’s theorem for solutions to a non-uniformly elliptic radially

symmetric equation. The proof uses the Ricatti equation satisfied by the Dirichlet to Neumann map.

Mathematics subject classification numbers: primary: 35B05 secondary: 34A30

Introduction

The classical version of Liouville’s theorem asserts that if a harmonic function defined on all of Euclidean
space isbounded, it mustbe constant. This fundamental result has been generalized in many directions,
and its study for manifolds is a large field of research. Several years ago, in connection with their work
on the De Giorgi conjecture, Ghoussoub and Gui [GG] raised the question of whether Liouville’s

theorem holds in Euclidean space for solutions of non uniformly elliptic equations of the form
V- -0?Vp=0

in place of harmonic functions. Here o(x)? is bounded and positive, but need not be bounded away
from zero. It was known from the work of Berestycki, Caffarelli and Nirenberg [BCN] that in two
dimensions this version of Liouville’s theorem holds. However Ghoussoub and Gui [GG] showed that
that in dimensions 7 and higher it does not. The remaining cases, dimensions 3 through 6 were settled,

also in the negative, by Barlow [B].

The situation is quite different if o is assumed to be radially symmetric. In this case Liouville’s theorem
does hold in any dimension. This is known from work of Losev [L] (see also [LM], which contains

further references). Of course, the radially symmetric case is much simpler, since separation of variables
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reduces the problem to question about ODE’s. Specifically, any solution ¢ is a linear combination of
solutions of the form ¢(z) = u(|z|)Y (x/|z|), where Y is an eigenfunction of the spherical Laplacian

with eigenvalue 2, and u satisfies the ODE (1) below.

This paper is just a small remark about this simple case. We show that the Ricatti equation for the
Dirichlet to Neumann map leads to a very short proof. Of course, in our setting the Dirichlet to Neuman
map is just a function, namely the function f defined by (3) below. But it is interesting to note that the
Dirichlet to Neumann map satisfies an operator version of the same Ricatti equation (4) that f satisfies,
even when o is not radially symmetric. Perhaps this can be used to give a proof of Liouville’s theorem

for perturbations of radially symmetric 0. However, we did not see a simple way of doing this.

Growth of solutions

Theorem 1 Suppose that u solves the radial Laplace equation

n — 0'2 r 2(72 r
(o)) + LTy - 7y < g )

T r

forr € (0,00). Assumen > 3and o2(r) € C1([0,00)) with 0 < o2(r) < 1. Define 3(p) to be

If w is bounded by

then B > B(p).

Remark: This theorem gives a minimal growth rate, depending on p, for a solution u to the radial
Laplace equation. It implies Liouville’s theorem, since a bounded solution (3 = 0) is only possible

when 3(u) = 0. In this case p = 0, and u(r) = C is the only solution bounded at the origin.

Remark: When o(r) = 1 the solution bounded at the origin is u(r) = 78(*). Thus the value of B(u) is

optimal.

Proof: Suppose that u is a solution satisfying (2). We must show that 5 > G(u).

Define



Then f satisfies the Ricatti type equation

1
rn=lo2(r)

J'(r) = 1) - 72(r) (4)

We begin by showing that f is well defined and positive. This follows from the ODE version of

Calderon’s identity, namely,
a2 () (ru(r)rmt = / o?(5s) (u’(s)2 + %uQ(S))S”_lds >0 (5)
0

To prove this we first integrate by parts to obtain

0< /aT o?(s) (u'(s)2 + Z—zug(s))s"dds

Then (5) follows from

lim o?(a)u' (a)u(a)a™ =0 (7)

2,.n—1,/\/ 2 2,.n—3

To see this, notice that the equation implies that (027"~ /)’ = p?02r"~3u, so that the bounds on o

and u imply that near zero,

0 S (0_27,1171”/)/ S C,rn73

Integrating from 0 to a and letting a tend to zero gives (7) and thus (5). This shows that neither u nor v’
can vanish, and that f is well defined, does not blow up, and is positive. Since u cannot change sign,

so we may as well assume that u > 0.

The idea of the proof is to estimate the quantity

Q) = [ ol(@)/u(w) + ef @) (@) ®)
from above and below for large r.

We begin with the upper bound. Performing the integral in (8) yields
Q(r) = In(u(r)) +eln(f(r)) + C

Here C' denotes a generic constant that may depend on p but not r. Dropping the negative second

term in (4) and recalling that o2 (r) < 1 yields

f/(T) S T’n_S,LLQO'Q(T) S ’I“n_SILLQ
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Integrating this yields
2

H n—2
< — .
f(r)_n_2r +C

This estimate together with our growth assumptions on u imply

Q(r) < Bln(r) +e(n—2)In(r) + C

Now we turn to the lower bound. Using the expression given by (4) for f’ we obtain

’ / o f(?") 7171_3”20'2 (T) /
@) ule) + e @10 = s e )

rn—1g52 £(r) o rm=1g2(r)
T 3202 (r
> (1—¢) r"fl(a;(r) +€ ;L(T) (r)

Now assume that 0 < € < 1. Since for positive numbers a, b and c we have

ac+b/ec> 2V ab

we find
W' (@) /u(z) + ef (2)/ f(x) = 2u\/e(1 =€) /.
This implies

Q(r) > 2u\/e(1 —¢e)In(r) + C

Comparing the upper and lower bounds for Q(r) for large r yields

52 2py/dT =) - eln—2)

Since this holds for every € € [0, 1], the theorem now follows from the computation

2
max /a1~ ) —eln—2) = "2 4 <n;2) +u? = Bw)

e€l0,1] 2
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