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Abstract

We present a very short proof of Liouville’s theorem for solutions to a non-uniformly elliptic radially

symmetric equation. The proof uses the Ricatti equation satisfied by the Dirichlet to Neumann map.

Mathematics subject classification numbers: primary: 35B05 secondary: 34A30

Introduction

The classical version of Liouville’s theorem asserts that if a harmonic function defined on all of Euclidean

space is bounded, it must be constant. This fundamental result has been generalized in many directions,

and its study for manifolds is a large field of research. Several years ago, in connection with their work

on the De Giorgi conjecture, Ghoussoub and Gui [GG] raised the question of whether Liouville’s

theorem holds in Euclidean space for solutions of non uniformly elliptic equations of the form

∇ · σ2∇ϕ = 0

in place of harmonic functions. Here σ(x)2 is bounded and positive, but need not be bounded away

from zero. It was known from the work of Berestycki, Caffarelli and Nirenberg [BCN] that in two

dimensions this version of Liouville’s theorem holds. However Ghoussoub and Gui [GG] showed that

that in dimensions 7 and higher it does not. The remaining cases, dimensions 3 through 6 were settled,

also in the negative, by Barlow [B].

The situation is quite different if σ is assumed to be radially symmetric. In this case Liouville’s theorem

does hold in any dimension. This is known from work of Losev [L] (see also [LM], which contains

further references). Of course, the radially symmetric case is much simpler, since separation of variables
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reduces the problem to question about ODE’s. Specifically, any solution ϕ is a linear combination of

solutions of the form ϕ(x) = u(|x|)Y (x/|x|), where Y is an eigenfunction of the spherical Laplacian

with eigenvalue µ2, and u satisfies the ODE (1) below.

This paper is just a small remark about this simple case. We show that the Ricatti equation for the

Dirichlet to Neumann map leads to a very short proof. Of course, in our setting the Dirichlet to Neuman

map is just a function, namely the function f defined by (3) below. But it is interesting to note that the

Dirichlet to Neumann map satisfies an operator version of the same Ricatti equation (4) that f satisfies,

even when σ is not radially symmetric. Perhaps this can be used to give a proof of Liouville’s theorem

for perturbations of radially symmetric σ. However, we did not see a simple way of doing this.

Growth of solutions

Theorem 1 Suppose that u solves the radial Laplace equation

(σ2(r)u′(r))′ +
(n − 1)σ2(r)

r
u′(r) − µ2σ2(r)

r2
u(r) = 0 (1)

for r ∈ (0,∞). Assume n ≥ 3 and σ2(r) ∈ C1([0,∞)) with 0 < σ2(r) ≤ 1. Define β(µ) to be

β(µ) = −n − 2

2
+

√

(

n − 2

2

)2

+ µ2

If u is bounded by

|u(r)| ≤ C(1 + rβ) (2)

then β ≥ β(µ).

Remark: This theorem gives a minimal growth rate, depending on µ, for a solution u to the radial

Laplace equation. It implies Liouville’s theorem, since a bounded solution (β = 0) is only possible

when β(µ) = 0. In this case µ = 0, and u(r) = C is the only solution bounded at the origin.

Remark: When σ(r) = 1 the solution bounded at the origin is u(r) = rβ(µ). Thus the value of β(µ) is

optimal.

Proof: Suppose that u is a solution satisfying (2). We must show that β ≥ β(µ).

Define

f(r) =
rn−1σ2(r)u′(r)

u(r)
(3)
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Then f satisfies the Ricatti type equation

f ′(r) = rn−3µ2σ2(r) − 1

rn−1σ2(r)
f2(r) (4)

We begin by showing that f is well defined and positive. This follows from the ODE version of

Calderon’s identity, namely,

σ2(r)u′(r)u(r)rn−1 =

∫ r

0

σ2(s)
(

u′(s)2 +
µ2

s2
u2(s)

)

sn−1ds > 0 (5)

To prove this we first integrate by parts to obtain

0 <

∫ r

a

σ2(s)
(

u′(s)2 +
µ2

s2
u2(s)

)

sn−1ds

= σ2(s)u′(s)u(s)sn−1
∣

∣

∣

r

a
−

∫ r

a

u(s)
{ d

ds

(

σ2u′sn−1
)

− µ2

s2
u2(s)sn−1

}

ds

= σ2(s)u′(s)u(s)sn−1
∣

∣

∣

r

a

(6)

Then (5) follows from

lim
a→0

σ2(a)u′(a)u(a)an−1 = 0 (7)

To see this, notice that the equation implies that (σ2rn−1u′)′ = µ2σ2rn−3u, so that the bounds on σ2

and u imply that near zero,

0 ≤ (σ2rn−1u′)′ ≤ Crn−3

Integrating from 0 to a and letting a tend to zero gives (7) and thus (5). This shows that neither u nor u′

can vanish, and that f is well defined, does not blow up, and is positive. Since u cannot change sign,

so we may as well assume that u > 0.

The idea of the proof is to estimate the quantity

Q(r) =

∫ r

1

u′(x)/u(x) + εf ′(x)/f(x)dx (8)

from above and below for large r.

We begin with the upper bound. Performing the integral in (8) yields

Q(r) = ln(u(r)) + ε ln(f(r)) + C

Here C denotes a generic constant that may depend on µ but not r. Dropping the negative second

term in (4) and recalling that σ2(r) ≤ 1 yields

f ′(r) ≤ rn−3µ2σ2(r) ≤ rn−3µ2
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Integrating this yields

f(r) ≤ µ2

n − 2
rn−2 + C.

This estimate together with our growth assumptions on u imply

Q(r) ≤ β ln(r) + ε(n − 2) ln(r) + C

Now we turn to the lower bound. Using the expression given by (4) for f ′ we obtain

u′(x)/u(x) + εf ′(x)/f(x) =
f(r)

rn−1σ2(r)
+ ε

(

rn−3µ2σ2(r)

f(r)
− f

rn−1σ2(r)

)

≥ (1 − ε)
f(r)

rn−1σ2(r)
+ ε

rn−3µ2σ2(r)

f(r)

Now assume that 0 ≤ ε ≤ 1. Since for positive numbers a, b and c we have

ac + b/c ≥ 2
√

ab

we find

u′(x)/u(x) + εf ′(x)/f(x) ≥ 2µ
√

ε(1 − ε)/r.

This implies

Q(r) ≥ 2µ
√

ε(1 − ε) ln(r) + C

Comparing the upper and lower bounds for Q(r) for large r yields

β ≥ 2µ
√

ε(1− ε) − ε(n − 2)

Since this holds for every ε ∈ [0, 1], the theorem now follows from the computation

max
ε∈[0,1]

2µ
√

ε(1 − ε) − ε(n − 2) = −n− 2

2
+

√

(

n − 2

2

)2

+ µ2 = β(µ)
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