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Abstract

We consider the problem of constraining a particle to a smooth compact submanifold 3. of
configuration space using a sequence of increasing potentials. We compare the classical and
quantum versions of this procedure. This leads to new results in both cases: an unbounded
energy theorem in the classical case, and a quantum averaging theorem. Our two step
approach, consisting of an expansion in a dilation parameter, followed by averaging in normal
directions, emphasizes the role of the normal bundle of 3., and shows when the limiting phase

space will be larger (or different) than expected.

1. Introduction

Consider a system of non-relativistic particles in a Euclidean configuration space R"*™ whose

motion is governed by the Hamiltonian

H = ~{p,p) + V(). (L.1)

N =



We are interested in the motion of these particles when their positions are constrained to lie on some
n-dimensional smooth compact submanifold ¥ C R™*". In both classical and quantum mechanics
there are accepted notions about what the constrained motion should be:

In classical mechanics, the Hamiltonian for the constrained motion is assumed to have the form
(1.1), but whereas p and z originally denoted variables on the phase space T*R"t™ = Rt™ x RT™,
they now are variables on the cotangent bundle T*3. The inner product (p, p) is now computed using
the metric that X inherits from R™"*™, and V' now denotes the restriction of V to 3.

In quantum mechanics, (p, p) is interpreted to mean —A, where A is the Laplace operator, and
V (z) is the operator of multiplication by V. For unconstrained maotion A is the Euclidean Laplacian
on R™*™ and the Hamiltonian acts in LZ(R™™). For constrained motion, the Laplace operator for %
with the inherited metric is used, and the Hilbert space is L?(X, dvol).

In both cases the description of the constrained motion is intrinsic: it depends only on the Rie-
mannian structure that ¥ inherits from R™+™, but not on other details of the imbedding.

Of course, a constrained system of particles is an idealization. Instead of particles moving exactly
on ¥, one might imagine there is a strong force pushing the particles onto the submanifold. The motion
of the particles would then be governed by the Hamiltonian

Hy = 3(pp) + V(@) + M7 (z) (1.2)

where W is a positive potential vanishing exactly on ¥ and A is large. (The fourth power is just for
notational convenience later on.) Does the motion described by H , converge to the intrinsic constrained
motion as A tends to infinity? Surprisingly, the answer to this question depends on exactly how it is
asked, and is often no.

A situation in classical mechanics where the answer is yes is described by Rubin and Ungar
[RU]. An initial position on 3 and an initial velocity tangent to X are fixed. Then, for a sequence of \’s
tending to infinity, the subsequent motions under H , are computed. As A becomes large, these motions
converge to the intrinsic constrained motion on X. This result is widely known, since it appears in
Arnold’s book [Al] on classical mechanics. However, from the physical point of view, it is neither
completely natural to require that the initial position lies exactly on X, nor that the initial velocity be
exactly tangent. Rubin and Ungar also consider what happens if the initial velocity has a component
in the direction normal to X. In this case, the motion in the normal direction is highly oscillatory, and
there is an extra potential term, depending on the initial condition, in the Hamiltonian for the limiting
motion on 3. In their proof, X is assumed to have co-dimension one. A more complete result is given
by Takens [T]. Here the initial conditions are allowed to depend on A in such a way that the initial
position converges to a point on ¥ and the initial energy remains bounded. (We will give precise
assumptions below.) Once again, the limiting motion on X is governed by a Hamiltonian with an

additional potential. Takens noticed that a non-resonance condition on the eigenvalues of the Hessian
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of the constraining potential W along X is required to prove convergence. He also gave an example
showing that if the Hessian of W has an eigenvalue crossing, so that the non-resonance condition is
violated, then there may not be a good notion of limiting motion on 3. In his example, he constructs
two sequences of orbits, each one converging to an orbit on Y. These limiting orbits are identical until
they hit the point on X where the eigenvalues cross. After that, they are different. This means there
is no differential equation on X governing the limiting motion. For other discussions of the question
of realizing constraints see [A2] and [G]. A modern survey of the classical mechanical results that
emphasizes the systematic use of weak convergence is given by Bornemann and Schutte [BS].

The quantum case was considered previously by Tolar [T], da Costa [dC1, dC2] and in the path
integral literature (see Anderson and Driver [AD]). Related work can also be found in Helffer and
Sjostrand [HS1] [HS2], who obtained WKB expansions for the ground state, and in Duclos and Exner
[DE], Figotin and Kuchment [FK], Schatzman [S] and Kuchment and Zeng [KZ]. The most general
formal expansions appear in the preprint of Mitchell [M]. (We thank the referee for this reference.)
There are really two aspects to the problem of realizing constraints: a large A\ expansion followed by
an averaging procedure to deal with highly oscillatory normal motion. Previous work in quantum
mechanics concentrated on the first aspect (although a related averaging procedure for classical paths
with a vanishingly small random perturbation can be found in [F] and [FW]). Already a formal large
A expansion reveals the interesting feature that the limiting Hamiltonian has an extra potential term
depending on scalar and the mean curvatures. Since the mean curvature is not intrinsic, this potential
does depend on the imbedding of X in R,

It is not completely straightforward to formulate a theorem in the quantum case. We have chosen
a formulation, modeled on the classical mechanical theorems, tracking a sequence of orbits with initial
positions concentrating on X via dilations in the normal direction. Actually we consider the equivalent
problem of tracking the evolution of a fixed vector governed by the Hamiltonian H conjugated by
unitary dilations. In order to obtain simple limiting asymptotics for the orbit we must assume that all
the eigenvalues of the Hessian of the constraining potential W are constant on 3. In fact we will assume
that W is exactly quadratic. Our theorems show that for large A the motion is approximated by the
motion generated by an averaged limiting Hamiltonian H , with superimposed normal oscillations
generated by \?>Hp, where Hy is the normal harmonic oscillator Hamiltonian. The Hamiltonians H g
and Hp commute, so the motions are independent. These theorems do not require any non-resonance
conditions on the eigenvalues of the Hessian of T¥. However, the limiting Hamiltonian H 5 does not
actin L?(X), butin L2(NY) where N is the normal bundle of X. Itis only in certain situations where
one can effectively ignore the motion in the normal directions and obtain a unitary group on L2(3)
implementing the dynamics of the tangential motion. This occurs, for example, if (a) the eigenvalues of
the Hessian of W are all distinct and non-resonant, (b) the normal bundle is trivial, and (c) we confine

our attention to a simultaneous eigenspace of all the number operators for the normal motion. In the
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general situation, the dynamics of the additional degrees of freedom in NY cannot be factored out,
and we must be content with analysis on L2(NY).

Our formulation of the quantum theorems invites comparison with the classical mechanical results
of Rubin and Ungar [RU] and Takens [T]. It turns out that extra potentials that appear in the two cases
are quite different, and there is no obvious connection. Upon reflection, the reason for this difference is
clear. If we have a sequence of initial quantum states whose position distribution is being squeezed to
lie close to X2, then by the uncertainty principle, the distribution of initial momenta will be spreading
out, and thus the initial energy will be unbounded. However, the classical mechanical convergence
theorems above all deal with bounded energies. The danger in considering unbounded energies is
that even if the initial energy in the tangential mode is bounded, the coupling between tangential and
normal modes may resultin unbounded tangential energy in finite time. Our assumptions, which allow
us to obtain a classical theorem despite the unbounded energy, are motivated by quantum mechanics.
Our results for classical mechanics with unbounded initial energies are quite similar to our results in

guantum mechanics.
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Section 2 contains a statement of the theorem of Rubin, Ungar and Takens on limiting orbits when
the initial energies remain bounded. In Section 3 we state our expansion and averaging theorems in
classical mechanics when the initial energies scale as they do in quantum mechanics. We also describe
when the limiting motion can be thought of as a motion on X. These classical results are motivated by
the parallel results in quantum mechanics, which we present in Section 4. The proofs of the theorems in
Sections 3 and 4 are found in Sections 6 and 8 respectively, while Sections 5 and 7 contain background
material needed in the proofs. This paper is an expanded and improved version of the announcement

[FH].



2. Classical mechanics: bounded energy

To give a precise statement of our results we must introduce some notation. Let X be a smooth
compact n-dimensional submanifold of R**™. The normal bundle to X is the submanifold of R x
R™+t™ given by

NY ={(o,n):0 € ¥, n € N,X}

Here N, X denotes the normal space to X at o, identified with a subspace of R,

There is a natural map from N into R**™ given by
t:(o,n) —o+n.

We now fix a sufficiently small ¢ so that this map is a diffeomorphism of NX; = {(o,n) : ||n| < ¢}
onto a tubular neighbourhood of ¥ in R?*™. Then we can pull back the Euclidean metric from R"*+™
to NX5. Since we are interested in the motion close to > we may use N3 5 as the classical configuration
space. This will be convenient in what follows, and is justified below.

We will want to decompose vectors in the cotangent spaces of NYs into horizontal and vertical
vectors, so we now explain this decomposition. Let 7 : NX — 3 denote the projection of the normal
bundle onto the base given by 7 : (o,n) — o. The vertical subspace of T(5,n)N2 is defined to be
the kernel of dr : T, ,) N¥ — TX. The horizontal subspace is then defined to be the orthogonal
complement (in the pulled back metric) of the vertical subspace. Using the identification of T, ,) V¥
with T(’tI’n)NE given by the metric we obtain a decomposition of cotangent vectors into horizontal
and vertical components as well. We will denote by (¢, ) the horizontal and vertical components of a

vectorinT* (NY.

(o,n)

The decomposition can be explained more concretely as follows. For each point o € ¥, we may
decompose T,R"*™ = T, %@ N, X into the tangent and normal space. Using the natural identification
of all tangent spaces with R"*™, we may regard this as a decomposition of R**™. Let PI and P;V
be the corresponding orthogonal projections. Since we are thinking of N¥ as an n + m~dimensional
submanifold of R™*™ x R"*™, we can identify T, )N X with the n 4+ m-dimensional subspace of
R™t™ x R™*™ given by all vectors of the form (X,Y") = (5(0),7(0)), where (o(t),n(t)) is a curve in

N passing through (o, n) at time ¢ = 0. The inner product of two such tangent vectors is
(X1, 1), (X2, Y2)) = (X1 + Y1, Xp +Y2) (2.1)

where the inner product on the right is the usual Euclidean inner product. For a tangent vector (X,Y"),

the decomposition into horizontal and vertical vectors is given by

(X,Y) = (X,PTY) + (0,PNY)
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In the statements of our theorems we will want to express the fact that two cotangent vectors, for
example &, () and £(t) in Theorem 2.1, are close, even though they belong to two different cotangent
spaces. To do this we may use the imbedding to think of the vectors as elements of R2("+™) Then it
makes sense to use the (Euclidean) norm of their difference, ||£x(t) — £(t)|| to measure how close they
are. We will use the symbol || - || in this situation, while |¢| will denote the norm of £ as a cotangent
vector.

We will assume that the constraining potential is a C'* function of the form

W(o,n) = 5(n, A(o)n) (2.2)

N =

where for each o, A(o) is a positive definite linear transformation on N,X. The Hamiltonian (1.2) can
then be written

Ha(0,m,60) = 5(6,6) + 5 (1.1) + V(o + 1) + X1 W (0,1) (23)

Notice that on the boundary of N3, ,for 0 < 6; < 9,
HA(O', n7§a 77) 2 Cl)\4 — C2

with
¢ = inf W(o+n)>0
(o,n):0€%,||n||=01

Ccy = sup V(o +n)|
(o,n):0€%,||n||=01

By conservation of energy, this implies that an orbit under H that starts outin N3, with initial energy
less than ¢; A* — ¢, can never cross the boundary, and therefore stays in N¥s,. We will only consider
such orbits in this paper, and therefore are justified in taking our phase space to be T* N5, or even
T*NY if we extend H in some arbitrary way.

Since we expect the motion in the normal directions to consist of rapid harmonic oscillations, it is
natural to introduce action variables for this motion. There is one for each distinct eigenvalue w2 (o)
of A(o). Let P, (o) be the projection onto the eigenspace of w2 (o). This projection is defined on N, Y,
which we may think of as the range of PV in R**+™. Thus the projection is defined on vertical vectors
in T, ) IN¥ and, via the natural identification, on vertical vectors in T(*U;n)NE. With this notation, the
corresponding action variable, multiplied by A? for notational convenience, is given by

Mwa (o)
2

I(i\(o'v n,§&, 77) = ! <777 Pan> + <TL, Pan> (24>

2w (o)

Notice that the total normal energy is given by 3" wa I2. The following is a version of the theorem of

Takens and Rubin, Ungar.

Theorem 2.1 Let Y be a smooth compact n-dimensional submanifold of R™*™. Let the Hamiltonian H on

T*NY be given by (2.3) where V, W € C°°, W has the form (2.2) and satisfies
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(i) The eigenvalues w? (o) of A(o) have constant multiplicity.
Suppose that (o, na, x, 7y ) are initial conditions in 7* N'3s satisfying
@) llox = aoll + [I§Ex — &oll — 0,
(0) I (ox, nx, Ex,m0) — I >0,
as A — oo. Let (o (t),na(t),Ex(t), na(t)) denote the subsequent orbit in 7* N'X 5 under the Hamiltonian

H). Suppose that (o(t), £(t)) is the orbit in 7 with initial conditions (o, &y) governed by the Hamiltonian
1
Wo.6) = 5{6.€)q +V(0) + Y Llwa(0).
«

Then forany T" > 0

s loa(t) — o (®)]| + [|Ex(t) — @) — O

as A — 00.

Implicitinthis statementis the fact that the approximating orbit stays in the tubular neighbourhood
for 0 <t < T, provided X is sufficiently large. This theorem is actually true in greater generality. We
can consider smooth constraining potentials W where % (n, A(c)n) is the first term in an expansion.
If we choose our tubular neighbourhood so that W (o + n) > ¢|n|? and impose the non-resonance
condition wq (o) # wg(o) + wy (o) for every choice of «, 3 and « and for every o, then the same
conclusion holds. This theorem is also really a local theorem: if we impose the conditions on W and
the non-resonance condition locally, and take 7' to be a number less than the time where o (t) leaves
the set where condition (i) is true, then the same conclusion holds as well.

Actually, Takens [T] only treats the case where all the eigenvalues w,, are distinct and the normal
bundle is trivial. On the other hand, he does not require that 70 > 0. This positivity is a technical
requirement of our proof and arises because action angle co-ordinates are singular on the surface

Ig = 0. Since Theorem 2.1 is a minor variation of known results, we will not give a proof here.

3. Classical mechanics: unbounded energy

We now describe our theorems in classical mechanics where the initial energies are diverging as
they do in the quantum case. In quantum mechanics, the ground state energy of a harmonic oscillator
—1(d/dz)? + A Mw?2? is A>w/2. Thus we will assume that the initial values of the action variables 1.}
scale like A\2I0, and therefore that the initial normal energy diverges like A2. Examining the effective
Hamiltonian h(o, £) in Theorem 2.1, one would expect there to be a diverging A% >~ | 19w, (o) potential
term similar to the constraining potential but with strength A\2. If this potential is not constant, and
thus has a local minimum (called a mini-well in [HS1, HS2]), no limiting orbit could be expected in
general unless the initial positions were chosen to converge to such a minimum. For simplicity, we will

assume that there are no mini-wells, i.e., the frequencies w,, are constant.
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The first step in our analysis is a large A expansion. It is convenient to implement this expansion
using dilations in the fibre of the normal bundle. It is also convenient to assume that our configuration
space is all of NX. This makes no difference, since the orbits we are considering never leave N ;.

The dilation dy : N¥. — NX is defined by

dx(o,n) = (0, n)
As with any diffeomorphism of the configuration space, d, has a symplectic lift D) to the cotangent
bundle given by

Dy=d" =d;_,
The expression for D), in local co-ordinates is given by (5.1).

Instead of the original Hamiltonian H we may now consider the equivalent pulled back Hamil-
tonian Ly = H) o D;l. Since D, is a symplectic transformation, orbits under H, and orbits under
L, are mapped to each other by D, and its inverse. Therefore, it suffices to study the dynamics of the
scaled Hamiltonian L.

A formal large A expansion yields
Lyx=Hp+ N Hp + O()fl)
where Hp is the harmonic oscillator Hamiltonian

Ho(a,n,&1) = 5(n1) + 5, Alo)n) (31)

and H g is the bundle Hamiltonian given by
1

HB(Jvnagvn) = §<Jfa<]§>0' + V(U) (32)
The inner product (-, ), is the inner product on T*% defined by the imbedding. Here .J denotes the
identification of the horizontal subspace of T(’;_R)NE with the horizontal subspace of T}% given in
terms of the bundle projection map =, ,, by J = dw;;ll. This map is well defined on the horizontal
subspace, since dmg », : T(4,n) N2 — T,¥ isanisomorphism when restricted to the horizontal subspace
of T{s,nyNX. Thus, its adjoint dry ,, is an isomorphism of 773 onto the horizontal subspace of
T(Tzn)

map J simply identifies dz; € T(’tm)NE with dz; € T} 3.

N3Y. In local co-ordinates x;, y; defined in section 5 below, where z; are co-ordinates for ¥, the

Additional understanding of the Hamiltonians H g and Hpcan be obtained if we introduce another
metricon NX. If (X,Y) € T(, )N, let

(7)), (X, V) = [IX]7+ A7 B (3.3)
(In Section 7 we describe in what sense this is a limiting form of the pulled-back, scaled, Euclidean

metric.) If (-, ->’\ denotes the corresponding metric on the cotangent space, then
1 A2
Hp + N Ho = Z{(&n). (€m)* + 5 (. Ao)n) + V(o)

The local co-ordinate expressions for Hg and Hp are given in (5.9) and (5.10).

We will use the notation ¢ to denote the Hamiltonian flow governed by the Hamiltonian H.
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Theorem 3.1 Let X be a smooth compact n-dimensional submanifold of R*™™, Let Ly = Hy o D;l, where
the Hamiltonian H) on T* N is given by (2.3). Assume that V, W € C°°, W has the form (2.2), and that the
eigenvalues w? of A(o) do not depend on .

Suppose that -y, are initial conditions in 7* N'Y with v, — g as A — oc.

Then forany T" > 0

2
sup {|6f> (1) = 61120 (30) | — 0
0<t<T

as A — oo.

In this theorem the normal energy of the initial conditions, A\ Ho (7, ) grows like A2, since Ho ()
is converging to Ho(v0). This leads to increasingly rapid normal oscillations for both orbits d)tL* (72)
and qbf{B*’\QHO (7). Neither orbit converges as A becomes large. It is only their difference that
converges.

The convergence of the initial conditions is stated for the scaled variables v,. To find out what
this implies for the original variables (5, 71, 5, ) = D;lm we must determine the action of D on
horizontal and vertical vectors. This results in the following conditions

(@) o — oo,

(b) Anx — no,

(©) &\ — J&, and

(d) A ix — o
where (09, no,&0,m0) = 0. Here we are thinking of o, n as vectors in R**™ and ¢, i as vectors
in R2("*+™) We may also compute what these conditions mean for the initial velocities (X2, 1)) €
T(,.7,) N2, again thought of as vectors in R2("*™)_ |t turns out that

(c) X\ — Xy, and

@)Xy, — Y.

This theorem gives a satisfactory description of the limiting motion if the Poisson bracket of Hp
and Ho vanishes. Then the flows generated by Hp and Hp commute and the motion is given by the
rapid oscillations generated by A\ Hp superimposed on the flow generated by Hz. In this situation we
can perform averaging by simply ignoring the oscillations.

An example where {Hpg, Hp} is zero is when X has codimension one, or, more generally, if the
connection form, given by (3.10) below, vanishes. Then Hpg only involves variables on T*3, so the
motion for large )\ is a motion on X with independent oscillations in the normal variables. The Poisson
bracket { Hg, Ho } also vanishes if all the frequencies w,, are equal, but in this case the motion generated
by Hp need not only involve the variables on T*%.

The motion generated by H 5 can be thought of as a generalized minimal coupling type flow. (See
[GS] for a description of the geometry of this sort of flow.) The flow has the property that the trajectories

in N'X are parallel along their projections onto . In particular, |n|? is preserved by this motion.
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In general, when the frequencies are not all equal, the flows generated by H g and A2 H,, interact,
and Hgp + A\2>Hp generates a more complicated flow which need not be simply related to the flows

generated by Hp and Hp. Let H g be defined by

T
Hp(y) = lim T_l/o Hp o ¢ (v)dt. (3.4)

T—o0

The existence of this limit follows from the Fourier expansion discussed below. This averaged Hamil-
tonian Poisson commutes with Hp. It turns out that the flow for large A is the one generated by this

Hamiltonian, with superimposed normal oscillations.

Theorem 3.2 Assume that the assumptions of Theorem 3.1 hold. Let Hp, Hp and H 5 be the Hamiltonians

given by (3.1), (3.2) and (3.4) respectively. Letyy € T*NX and T > 0. Then

2 2 T
sup (o741 (30) = 670 0 672 (3)| | = 0 (3.5)

0<t<T

as A — oo.

In this theorem we do not impose a non-resonance condition. However, the form of the averaged
Hamiltonian H 5 depends crucially on whether or not resonances are present.
To explain this further we introduce scaled action variables. Recall that the scaled Hamiltonian

was defined by L) = H) o D;l. We perform a similar scaling on the action variables and define I, by
I} o Dt = N2,

Then

1 Wa
Ia(o—anvfan) = ﬂ<nvpan> + 7<naPan>'

«
Suppose that there are my distinct eigenvalues w?. Then the flows ¢{° are commuting harmonic
oscillations in the normal variables. They are periodic, satisfying (bfj_% = qbf“ We therefore obtain a

group action ® of the mg torus 77 on T* N defined by
By =l o0 gm0,

for 7 = (71,...,7Tm,) € T™°. Notice that ¢;'° = ®;, where w = (W1, ..., Wm,)-

Now we may perform a Fourier expansion of Hg o ®.. yielding
HB o (bT _ Z ei(V7T>Fu
vEZ™O

so that

Hgo ¢ffo _ Z eit(u,w)FV

VEZ™O
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It turns out that only finitely many F,’s are non-zero. Thus we may exchange the integral and limitin

the definition of H 5 with the Fourier sum to obtain

T
Hp= )Y <Tlim T—l/o e”<”7w>dt> F,= Y F,.

—00
vEZ™O0 vEZ™O0 : (v,w)=0
The non-resonance condition on the eigenvalues w = (w1, . . ., wm, ) iN this situation would be
If v #0and F, # 0then (v,w) # 0. (3.6)

If this condition holds, we find that H g = Fp.

We now examine the case mo = m, where there are m distinct frequencies w,. We wish to describe
how the limiting motion generated by H 5 can be thought of as taking place on ¥. To begin, since
{Hg,I,} = 0 for each «, each I, is a constant of the motion, so the motion takes place on the level
setsof I, ..., I,,. Furthermore, we want to to disregard the normal oscillations. Technically, we may
do this by replacing the original phase space T*NY, with its quotient by the group action ®. This
amounts to ignoring the angle variables in local action angle co-ordinates.

It turns out that

T*NS/® = T*S x R™, (3.7)

where the variables in R™ are the action variables. Since these are constant, we may think of the
motion as taking place on T*3. To describe the identification (3.7) we first make a new direct sum
decomposition of each cotangent space T(’gﬁn)NE. Since there are m distinct eigenvalues w, . .., wm,
the corresponding eigenvectors, defined globally up to sign, give an orthonormal frame for the normal
bundle. In this situation the co-ordinates y; = (n,n;(o)) are also globally defined up to sign. Thus the
subspace of T(*U;n)NE spanned by dy, . . ., dy,, is globally defined. This subspace is complementary to
the horizontal subspace, but is not necessarily orthogonal. Given horizontal and vertical components
(&,m) of a vector in T(’jm)NE, we may write £ +n = &; + 1 where &; is horizontal and #; is in the

span of dyi, ..., dy,. The map from T*NY — T*¥ x R™ given by

(077%5777) = (07 ng,ll(O', n7§a 77)7 s 7ITn(Ua n7§a 77))

is invariant under ® and gives rise to the identification (3.7).
Now suppose that the values of I1,..., I, have been fixed by the initial condition. Then the

Hamiltonian governing the motion on T*3 depends on these “hidden” variables, and is given by

hp(o,& 1, Im) = =(§,8) 6 + V(o) + Vi(o; I,y . .., In), (3.8)

N =

provided the non-resonance condition holds. Given that the eigenvalues are distinct, the following

implies (3.6)
If 5, k, I and m are all distinct then w; + w, £ w; —wp, # 0
(3.9)
If , k and [ are all distinct then 2w; + wy, —w; # 0
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The extra potential V; is defined in terms of the frame for the normal bundle, ny(0),...,nm, (o),

consisting of normalized eigenvectors of A(c). Let by ; be the associated connection one-form given

by
bi[-] = (r, dru']) (3.10)
Then
IkIlw 2
V1(U;I17~-~Jm)zz—w |bk| (3.11)
k,l ’

Notice that the norm |by ;| is insensitive to the choice of signs for the frame.

4. Quantum mechanics

In quantum mechanics, we wish to understand the time evolution generated by H for large A,
where H) is the Hamiltonian given by (1.2) with (p, p) = —A. As in the classical case, it is convenient
to replace the original configuration space R™*™ with the normal bundle NX. We will show that if
the initial conditions in L?(R"*™) are supported near ¥ then, to a good approximation for large ), the
time evolution stays near . Thus we lose nothing by inserting Dirichlet boundary conditions on the
boundary of the tubular neighbourhood of 33, and may transfer our considerations to L?(Ns, dvol),
where dvol is computed using the pulled back metric. If we extend the pulled back metric, and make
a suitable definition of H) in the complement of NX 5, we may remove the boundary condition. Thus
we may assume that that the Hamiltonian H, acts in L?(N'%, dvol).

More precisely, we let g be any complete smooth Riemannian metric on N that equals the
metric induced from the imbedding in the region { (o, n) : ||n|| < €}, for some e < . For example, such
a gy could be obtained by smoothly joining the induced metric for small ||n|| with the metric (-, )1
given by (3.3) for large ||n||. Let dvol denote the Riemannian density for g . Let V (o, n) be a smooth
bounded function on N3 such that V(o,n) = V(o 4+ n) when ||n|| < e. Our goal in this section is to

analyze the time evolution generated by

1 A4
H), = —§A+V(o,n)+7<n,A(o)n> (4.1)
acting in L2(INX, dvol). Here A denotes the Laplace-Beltrami operator for gys.

We now introduce the group of dilations in the normal directions by defining
(DY) (o,n) = A2 (a, An).

This is a unitary operator from L2(NY, dvoly) to L?(NY, dvol) where dvol, denotes the pulled back
density dvoly(o,n) = dvol(o, A\"1n). Since the spaces L?(NY, dvoly) depend on ), and we want to

deal with a fixed Hilbert space as A\ — oo, we perform an an additional unitary transformation. Let
dvolys = )\lim dvoly = dvoly ® dvolgm
— 00
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Then the quotient of densities dvolx/dvoly is a function on NX and we may define M) to be the
operator of multiplication by /dvolys/dvoly. The operator M, is unitary from L?(NY, dvolyy) to
L?(NYX, dvoly). Let

Uy = Dy M. (4.2)

Notice that the support of a family of initial conditions of the form Uy is being squeezed close to X as
A — oo. We want to consider such a sequence of initial conditions. Therefore it is natural to consider
the conjugated Hamiltonian

Ly =UyH\Uy,

since the evolution generated by L acting on ) is unitarily equivalent to the evolution generated by
H), acting on Ux).

As a first step we perform a large A expansion. Formally, this yields
Ly=Hp+ /\QHO + O(/\il)

where Ho is the quantum harmonic oscillator Hamiltonian in the normal variables, and H g is quantum

version of the corresponding classical Hamiltonian, except with an additional potential

nn—1 n?
e Y

K =
4

Here s is the scalar curvature and & is the mean curvature vector (see equations (7.2) and (7.1)). Notice
that this extra potential does depend on the imbedding of X in R™ ™, since the mean curvature does.

The quadratic forms for Hp and Hp are

(¥, Hoy) :/ %<Pvdvavdw>a,n + %<naA(0)n>|w|2dV01N2 (4.3)
NX
and
<1/),HB1/)>:/ %(JPHdw,JPHdwU—|—(V(U,O)+K(a))|w|2dvolNE. (4.4)
NX

Local co-ordinate expressions for these operators are given by (7.7) and (7.6) below. As in the classical

case, we can gain additional understanding of these operators by introducing the metric (3.3). Then

1 A2
HB + )\QHO - _EAX + 7<n,A(O’)TL> + V(Ua 0) + K(U)a

where A is the Laplace-Beltrami operator on VX with the metric (3.3). Note that the volume element
dvolyy is actually \™ times the usual volume element associated to this metric (see Section 7).

The operator Hy is explicitly given on C? functions in its domain by the formula

SN
N | =

m 2 m
(HOw)(O—a TL) = <_% Z % + <7”L, A(o)n}) 1/)(@ Z yknk(g))v
k=1 k=1

13



where {ny(c) : k = 1...m} is any orthonormal basis for NY and n = ;" ; yxni (o).

It is easy to show that with the metric (3.3), NX is complete so that any positive integer power
of Hg + A2 Hp is essentially self-adjoint on C5° for A > 0 [C]. Similarly, because Hy is basically a
harmonic oscillator Hamiltonian, it is straightforward to show that any positive integer power of Hp
is essentially self-adjoint on Cg°. The operator Hpg is more complicated, but also can be shown to be

essentially self-adjoint on Cg°. The argument is not difficult and will be omitted.

Theorem 4.1 Let X be a smooth compact n-dimensional submanifold of R**™. Let gnyx be a complete
smooth Riemannian metric on N'X that coincides with the induced metric when ||n|| < e, for some e < 4, and
suppose V' (o, n) is a bounded smooth extension of V(o + n). Let H ), be the Hamiltonian given by (4.1), acting
in L2(N'X, dvol). Assume that A(c) varies smoothly, and that the eigenvalues of w? of A(c) do not depend on
ag.

Let Ly = U3 H\U, acting in L?(NX, dvolys). Then, for every ¢ € L2(NX, dvolys;) and every T > 0

lim sup H (e_”L* — e_”(HB‘MzHO)) 1/)H =0
A—00 0<t<T

Just as in the classical case, this theorem provides a satisfactory description of the motion if
[Hp, Ho] = 0, so that exp(—it(Hp + \?Hp)) = exp(—itHg)exp(—itA2Hp). As before, this will
happen, for example, if X has co-dimension one, or if all the frequencies w,, are equal.

If 32 has co-dimension one, then the normal bundle is trivial. (We are assuming that X is compact.)
Then we have L?(NY,dvolys) = L%*(X,dvols) ® L*(R,dy) and Hg = hp ® I for a Schrodinger
operator hp acting in L?(X, dvols). Since Ho = I ® ho we have that exp(—it(Hp + \2Hp)) =
exp(—ithp) ® exp(—itA2ho). This can be interpreted as a motion in L?(3, dvols:) with superimposed
normal oscillations.

In the case where the frequencies w, are all equal, the normal bundle may be non-trivial, and
there is not such a simple tensor product decomposition of L?(NY, dvolyys). However, for some
initial conditions ¢ the limiting motion may again be thought of as taking place in L?(%, dvols)
with superimposed oscillations. For example, consider the subspace of functions in L?(NY, dvolyy)
that are radially symmetric in the fibre variable n. This subspace does have a tensor product de-
composition L(X,dvols) ® L2 4,,,(R™,d™y). It is an invariant subspace for Hp. Furthermore,
the restriction of Hp to this subspace has the form hp ® I. Thus, if g is a radial function in n,
then exp(—itLy)1y = exp(—ithp) ® exp(—itAho)g. As above, we interpret this as motion in
L?(%, dvoly;) with superimposed normal oscillations.

On the other hand, if the normal bundle is non-trivial, it may happen that the limiting motion takes
place on a space of sections of a vector bundle over X. Instead of giving more details about the general
case, we offer the following illustrative example. Instead of a normal bundle, consider the Mdbius

band B defined by R x R / ~, where (x,y) ~ (z + 1, —y). This an O(1) bundle over S* with fibre R.

14



An L? function v on B can be thought of as a function on R x R satisfying ¢)(z + 1, —y) = (x,y). If

we decompose ¢ (z, y), for fixed z, into odd and even functions of y

1#(% y) = weven(x; y) + wodd (l’, y)

then Yeven (T + 1,Y) = Yeven (2, y) and oda(z + 1,y) = —toad(z,y). (Notice that these are eigen-
functions for the left regular representation of O(1) on L?(R).) Thus 9even can be thought of as an
L?(R, dy) valued function on S*, while 1,44 can be thought of as an L?(RR, dy) valued section of a line

bundle over S! (which happens to be B itself). In this way we obtain the decomposition

L*(B) = L*(S*,dz) ® L?

even

(R,dy) @ T'(S", dz) ® L24q(R, dy)

where I is the space of L? sections of B.

In this example, the bundle is flat, so Hp = —DZ? + V(z) and Ho = —D3 + y*/2 acting in
L?(B, dxdy). Let hy = —D?2 + V (x) acting in L?(S*,dx) and h_ = —D2 + V(z) acting in T'(S*, dx).
Let hg = —D3 + y?/2 acting in L*(R, dy), with L2, (R, dy) and LZ2,,(R, dy) as invariant subspaces.

Then

. 2 . 2 . 2
e it(Hg+X"Ho) —e ithy ®e itA\“ho D e ith_ ®e itA“ho

So if the initial condition happens to lie in T' ® L2, then we would think of the limiting motion as
taking place in T", with superimposed oscillations in Lf)dd.

When Hp and Hp do not commute, we perform a quantum version of averaging. Define H 5 on
Cg° by

FszTlim T*l/ e'tHo fpe~itHoy, gt (4.5)
— 00 0

It can be shown that H p is essentially self-adjoint.

Theorem 4.2 Assume that the hypotheses of Theorem 4.1 hold. Let Hp, Hp, and ‘H 5 be the Hamiltonians
defined by (4.3), (4.4) and (4.5). Then, for every 1) € L*(NY, dvolys) and every T' > 0

_ 2 ) 2 _ i IT
lim  sup H(e it(Hp+A*Ho) _ ,~itA\’Ho , thB) wH —0
A—00 0<t<T

The proof that this limit defining H g exists parallels the discussion in classical mechanics. Suppose
that there are m, distinct eigenvalues w?, . .. ,w?m. Foreach a = 1,...,mo define the operators I, via

the quadratic forms

W dov) = [

<L<P‘/dw, PoPVdy) + =2 (n, Pan>|z/}|2) dvolys,
NX

2Wq

These operators all commute and satisfy

ZwaIa = Hp.
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An expression for I, in terms of local creation and annihilation operators will be given near the end
of Section 7. In that section we will show that e!" !> Hge~""!= is periodic in 7 with period 2. Thus if

we conjugate Hp with eiz Tala the resulting operator is defined on the torus 7" and has a Fourier

expansion
eiZTQIQ HBefiZTaIa _ Z €i<V’T>Fy
vEZ™O0
Here 7 = (71,...,Tm,) and the coefficients F), are differential operators. As in the classical case, the

sum is finite. Thus

ethoHBeftho — § ezt(u,w)FI/.
VEZ’IVLO

This shows that the limit defining H 5 exists, and is given by
Hp = > R
VEZMO: (1,w)=0
As in the classical case, we may look for conditions under which the limiting motion can be
considered to take place on Y. Suppose that the eigenvalues w1, ...,w,, are all distinct, and, in
addition, that the eigenvectors ny (o) can be chosen to be smooth functions on all of ¥. Then the
normal bundle is trivial, N = ¥ x R™ and L?(NY, dvolys) = L(Z, dvols) ® L2(R™,d™y). If the

non-resonance condition (3.9) holds, then
— 1
Hp = <_§AZ +V(O’)+K(O’)> ®1+ V.

The term V; is slightly different from (3.11), because terms arising in its computation do not all commute.

It is given by
kalwl 1 2
Vi = — =) |br.a|”-
=3 ( 2 2 o
k.l
The joint eigenspaces of I, ..., I,, are invariant subspaces for H 3. The restriction of H g to such a

joint eigenspace is the Schrédinger operator —3Ax + V(o) + K (o) + V1, acting in L?(X, dvoly), where
Vi is obtained from V; by replacing the operators I;, by their respective eigenvalues. Thus H 3 is a

direct sum of Schrodinger operators acting in L?(%, dvoly,).

5. Co-ordinate expressions

Our proofs will rely on local co-ordinate expressions for the quantities introduced above.
Suppose z(c) is a local co-ordinate map for 3. Its inverse o(z) is a local imbedding of R™ onto
¥ ¢ R™*™. Given a local orthonormal frame n1 (), . . . , n, (o) for the normal bundle, we obtain local

co-ordinates for N by setting
zi(oyn) =x;(0), i=1,...,n
yi(o,n) = (ni(o),n), i=1,...,m
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We then may form the standard bases 9/0x1, . ..,0/0x,,3/0y1, .. .,0/0yn for the tangent spaces of
N¥ and dx1, . ..,dx,,dys,. .., dy, for the cotangent spaces. This gives rise to local co-ordinates for
TNY and T*NYX in the standard way. For the cotangent bundle, we will denote these by (z,y,p,7) €
R2("+m) Thus (z,y, p, ) denotes the cotangent vector > p;dx; + > r;jdy; in the cotangent space over
(o), 32, yim;(0)).

The standard symplectic form for 7% N is the two form given by

m

w—del/\dxl—f—Zdrj/\dyj
i=1 7j=1

The dilation map D, is given in local co-ordinates by

Dx(z,y,p,7) = (z, Ay, p, A" 'r) (5.1)

Clearly this map preserves the symplectic form w.

We now compute the local expression for the metric. Let o;(z) € R™*™ denote the vector
do(x)/0x;. The tangent vector 9/0x; € T, )N corresponds to the vector in R2(n+tm) given by
(0i, 22 y;dnj(o)[o:]). The tangent vector 9/dy; corresponds to (0,n;(c)) Here o = o(z), 0; = 04(x)
and n = Zj y;n;(o(z)). Using (2.1) for the inner product, we find that the local expression for the

metric has block form

Gy +C + BBT B}_{I B] [GerC 0} [1 Br

Gla.y) = BT I 0 I 0 Illo I

(5.2)

where G, = Gx(x) is the metric for X with matrix entries (o;(x), 0;(z)), B = B(z,y) is the matrix
with entries

B j(z,y) Zyk dnilos], nj) (5.3)
k

and where C' = C(z, y) is the matrix with entries

Cii(z,y) Zyk ({(dnglos], 05) + (04, dngloj])) + Zykyl dny[oi), dnfo;]) — BBT

k k,l

(5.4)
= yk({dnk[oi], o) + (05, dniloj])) + > yeyildngloi], P dnilo;])
k k,l
The geometrical meaning of the term G, + C'is given in (7.12) below.
The inverse can be written
T
1 _|I -B (Gs+C)"t 0][I -B

G @y = {0 I 0 Iflo 1 (5:5)

The local expressions for the projections onto the vertical and horizontal subspaces can now be
computed. Let P, and Py denote the projections for the tangent space and PV and P the projections

for the cotangent spaces. Then

0 0 I 0
SR B



and
0 B

0 I

vV _ -1 _
P" =GPyG [ 0 0

} PH—GPHG‘l—{I _B]

Notice that the vertical subspace of 7', )N is the span of /01, . ..,0/0ynm and the horizontal
subspace of 77 , N is the span of dzy, ... ,dx,. The map dn,, : T(gn)NX — 1,3 sends 0/0x; €
TionyNY t0 0/0z; € ToX and sends 0/0y; € T(,,,)NX to 0. From this it follows that J = dw;jnl,
defined on the horizontal subspace of Ty, NX sends dx; € T, N¥ to dx; € T;%. If (o,n,&,7n) has
co-ordinates (x, y, p, ) then £ has co-ordinates

PH(z,y) [p} _ [p—B(w)?“]

r
so that J¢ has co-ordinates
p— B(J?, y)?"

We now compute the expressions for Hy, Hp and Hp in local co-ordinates. We will abuse notation
and use the same letters to denote functions on T* NY and their co-ordinate expressions. Suppose that

the co-ordinates of (o, n, &, n) are (z,y,p, r). Since

G-1PV = PVTG1PY = [8 ?] (5.6)
we have that
(n,m) = <PV m LGPV m> = (r,r) (5.7)

Here, and in what follows, inner products involving co-ordinate vectors always refer to Euclidean

inner products. For example, (r,r) = > r2. For the horizontal vectors, we have

i=1"4"

I —-B| 0 _ pH
[O I}P =r

so that
&) =( pH P} ,G-1pH [P}>
€= (" P )
=((p—Br),(G= +C)"'(p - Br))
Therefore the local co-ordinate expression for H) is

4

Ha(,y,p7) = 3 ((p~ Br), (G +C) " (p = Br)) + 3 r,7) + (9, Aw)y) + V()

Here C = C(z,y) and B = B(z,y) are the matrices appearing in the expression for the metric G,
A(x) is the matrix for A(o) in the basis given by the orthonormal frame n1, . .. n,, used to define the

co-ordinate system and V (z,y) = V (c(z) + 3 yrni(o(x))). Similarly

Hi(e,5,p,7) = 540 — Br), G5 (0 — Br) + V(,0) (5.9
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where B = B(xz,y) and Gy = Gx(x). Finally

(r,7) + 5 (s Ale)y) (510)

N =

Ho(mayvpar) =

The expressions for Hp and I, simplify if we can choose the vectors in the local orthonormal
frame to be eigenvectors of A(c). This is always possible if there are no eigenvalue crossings. When, in
addition, the eigenvalues w? (o) do not depend on o there are further simplifications. In what follows
we will assume that there are mg distinct constant eigenvalues wi fora =1,...,mg, where wi has
multiplicity k.. We will assume that the local orthonormal frame used to the define the co-ordinate
system consists of eigenvectors for A(c). We label them n, ;, wherea =1,...mpoand j = 1,...,kq
where for each «, n, ; is an eigenvector with eigenvalue w?. This means that the co-ordinates y and r
now also acquire a double labelling.

First of all we have
1 1
HO(xayvpvr) = 5<7’, 7’> =+ 5 Zw?xzy?x,j
e? J

If the co-ordinates of (o, n, &, n) are (z,y, p,r), then

(n, Pyn) = Z yfw-
J

The vertical cotangent vector 7 has co-ordinates P" f . The corresponding tangent vector has co-
ordinates G—1PV [ﬂ which equals 2 , by (5.6). Now the projection P,, acting on tangent vectors,
just picks off the basis vectors 0/0ya,;, i.e., Po0/0ys,; = d3,60/0yg, ;. Thus

(n, Pam) =Y 12 ;
j

Therefore
1 w,
Ioz(x7y7p’r) =5 E :T(Qx,j + — z :y(2¥7.7
2wq ; 2 r

Notice that in this situation, where the vectors in the local orthonormal frame are eigenvectors of A(o),
neither Hp nor I, depend on x or p.
Now we introduce local action-angle co-ordinates. In analogy with creation and destruction

operators in quantum mechanics, we define the complex quantities

so that



The action variables I, ; € R and angle variables ¢, ; € S' are then defined by

_ 2
ta,j = \/ o e

Notice that Zj I.,; = I. The change of co-ordinates from (z, y, p, r) to (z, ¢, p, I) is symplectic, since
Yodraj ANdyaj =y dl, ; Adpa ;. This makes it easy to compute the flow ¢f° in these co-ordinates.

Hamilton’s equations for the flow are
#;=0, pi=0, lo;=0
Pa,j = 08,0
Thus, under the flow d)f” each ¢, ; is translated by ¢ and all the other variables remain unchanged.
This implies that under the group action ®(7), with 7 = (71, ..., 7n,) the quantities a,,; evolve as

—iT, .
e YA, j-

We now compute the expression for Hp in action angle co-ordinates. We find

(Br)i = Bi(a)(@,y)Ta;

a,j
= D Vagem@rasys
Bk, j
e iy (80 ()
_ ((yv])v(ﬁvk) * * We
= Z — 5 (aa,j —ay ;)(apk +ag ) w_g

B.k,c,j

Here b§a7j)7(67,€) (%) = b(a,j),(8,k [oi(2)] is the antisymmetric matrix given by (3.10). The expression for

Hp is now obtained by substituting this formula for Br into (5.9), which we may rewrite as

1 ) . 1 )
Hp(w,p,0.1) = 5 zl:pig”pz - zl:(Br)ng”pz +35 zl:(BT)ig”(BT)z +V(x,0)
2 1, 2y
Here g*! = g“!(x) are the matrix elements of G'(z). To obtain the expression for Hp o ®(7) we
simply replace each occurrence of a,,; in the formula above with e™=a,, ;. Since Hp contains only
constant, quadratic and quartic terms in a,, 5, a;, ;, we see that the Fourier expansion of Hp o ®(7) has

finitely many terms, since the v = (v1,. .., v, )’s that appear have > |vo| € {0,2,4}.
6. Proofs of theorems in classical mechanics

Proof of Theorem 3.1: We begin with some remarks about the co-ordinate charts for T*N>. We
will assume that the frames used to defined the co-ordinates consist of eigenvectors of A(oc). We
assume that each chart has the form {(o,n,¢,m) : 0 € U,n € N,%,§ € T;, NXis horizontal,n €

Ty, NXis vertical}, where U is a co-ordinate chart for .. Since ¥ is compact, there is an atlas with
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finitely many charts, and there exists a positive number ¢; so that two points in T* N both lie in a
single chart if their projections onto X are a distance less than ¢; apart.

We use the notation

() = 6 (1), () = ¢+ Ho (),

Ouir first estimates are large A bounds on the components of

Y(t) = (oa(t), na(t), Ex(t), na (1))

that follow from the conservation of energy. These bounds are

Ina(®)], I ()] < © (6.1)

and

(&) < CA (6.2)

The analogous bounds also hold for 42 (t) = (a*(¢), n*(t), £*(t), n*(t)). Clearly |nx(t)| = |y (t)| and,
by (5.7), [nx(t)| = |ra(t)]. Thus, (6.1) implies that |y, (t)| and |rx(¢)| remain bounded.
To prove these we first consider the action ofD;1 onéy. Letyy = (ox, ma, Ex, ma) have co-ordinates

(Tx,Yx,Px;72)- Then &y € Ty, |, N3 has co-ordinates

pH b _ px — B(@x, ya)ra
X 0

We now wish to apply D;l. Since B(z,y) is linear in y, the scaling in y, and in r, cancel. In other

words

B(za, A lya)Ara = B(zx, ya)ra.

Thus D;lg)\ e 1T ANE has the same co-ordinates as &\ € N3X. This implies that as

*
AT TUAJU\

A — 00,

|D;1€A|2:<[m—3(gwyx)m G (@ A ) pA_B(g/\7y/\)7”/\}>

= ((px — B(zx,yr)ra), (G (za) + C(z, Aflyx))il(}?,\ — B(zx,yx)ra))
— ((po — B(®0,0)r0), Gx(x0) " (po — B(wo,y0)r0))

= |dr* " &

(6.3)

Thus, for large A, the initial energy satisfies

2

_ 1 A
Ly(va) = Hyo DY) < §|D)\1§)\|2 + Cv + = (Im* + (na, A(ox)nn)))

2
< CON,
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where Cy is an upper bound for V' in a neighbourhood of ¥. Given this bound on the initial energies,
we may assume that V' is bounded, as was explained in the introduction. We now estimate the energy

for later times ¢.

La(ya()) = Hx o DY (na(t)) 2 %IDilfx(t)l2 = [Vllso + CA (Inx (D) + Ina(t)]?)

> ||V ]loo + CA (Ina(t)]? + [na(t)?)

Since energy is conserved, i.e., Lx(y(t)) = Lx(7x), this implies (6.1). In a similar way we find that
IDYa()]? < CA%. (6.4)
Now for |y| < C; sufficiently large A there is a constant C' such that
G z,y) < CG (z,\"1y)
in any of the finitely many co-ordinate patches. Thus, (6.3) implies
NG NOIE

so that (6.4) implies (6.2).
The proof of bounds (6.1) and (6.2) for 4> (¢) is similar.

We now wish to improve the bound (6.2) to

< C (6.5)

for 0 < t < T. We begin by defining a function () that depends on our co-ordinate systems. Let
x1(0), ..., xn(o) be a partition of unity with each y, supported in a single co-ordinate patch. Define

Q = > Qkxk, where the local co-ordinate expression for Q. is

(p,Gs:(z)"'p) + 1.

N =

Qk(xap) =

(We are abusing notation by using the same letter Q. for the function on 7* N'¥ and its local co-ordinate

expression.) Given (6.1) we may find a constant C' such that

[Ex(®)* < CQRIM())

Thus bound (6.5) follows from an upper bound for @ along an orbit.
To establish such a bound we first estimate the time derivative of Q. (z(t), px(t)). This derivative

is given by the Poisson bracket.

%Qk(w(t),px(t)) ={Qk, L} (@A (1), pA(1), pA(1), (1))
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Recall that the orthonormal frame n1 (o), . . ., n.,, (o) giving our local co-ordinates consists of eigenvec-
tors of A(o). Thus
Ly = Hp + )\*Hp + E)

with
HB(a?,y,p,T) = Qk’(xvp) - <B(a:,y)r, Gg(l‘)71p> + %<B($,y)7“, GZ(x)ilB(xvy”» + V(J?,O),

1 1
Ho(mayvpar) = §<T,T> + Ezw'?y?
%

and

EA(J%ZU,pa 7") =
1

5 ((p=Bayr). ((Gs@) + @A) = Gul@) ™) (p— Bla.y)r) )

+V(z, A ly) = V(z,0)
Since Q. only depends on x and p any Poisson bracket {Qy, F'} is given in local co-ordinates by

 —0QLOF  9Qy OF
{Qk, F} a zz: 8pi 8:@ 8% api'

Thus {Qk, Ho} = {Qk, Qi } = 0. Using these formulas, together with (6.1) and (6.2) we find

d _
@), () < C (IpAa®1 + A pa@®[1?)
< OQr(wa(t), pa(t))
Next, writing Hamilton’s equations for x(¢) and using (6.1) we find

. O0Hp
< | 2228
lZA(1)] < o

< CQ%(iU,\(t)ap,\(t))

Since the cutoff functions, written in local co-ordinates, only depend on x we find that

(6.7)

Xkl < Clin| < CQ? (6.8)
Now we show if we evaluate Q) and @Q; at the same point v = (o, n, £, ) with |n|, |n| < C then

Q) — Q;(7)] < CQw(Y)E. (6.9)

To see this, we first compute how our co-ordinates change. If (z, 7, p, ) are the co-ordinates in the jth
chart, obtained from the co-ordinates in the ith chart by a change of co-ordinates on ¥ and a change of

frame, then
p=Mp+b

éil _ M_nglM_l
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where M is the n x n matrix with entries 0%;/0x; and b is a vector with components > 741,00k /0x;
for an orthogonal matrix valued function 6(x) given by taking inner products of the elements of the

old and new frames. Thus
Q; = (p,G5'p) +1
= Qr+2(b, M~'G3'p) + [Ib]* + 1
1
<Qr+CQ;
This implies (6.9).
Now we are ready to establish a bound for Q along an orbit. Let Q denote dQ(vx(t))/dt. Then
Q= Z Qixj + Q;X;
J
=3 Qix;+ Y QiXixk
J k,j
The first term is estimated using (6.6) yielding
D Qi <CY Qix;=0Q
J J
To estimate the second term, note that since Ek Xx = 1, we have Ek xx = 0. Thus
> Qrxixk =0
k.j
so that

> Qixixk =Y _(Q5 — Qu)X;xn
k,j

k,j
<CQ
by (6.8) and (6.9). Thus we have the differential inequality

Q<CQ
which implies

Q(t)) < Q(1A(0))e”*

This implies (6.5)
Note that (6.7) implies
[ENOINEAGIRE (6.10)

for0<t<T.

We will now show that there exists € > 0 such that if

lim sup ||ya(7) — 'y)‘(T)H =0 (6.11)
A—00 1¢(0,1]
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holds for some ¢t = ¢t; < T then (6.11) also holds for any t < ¢; + €. Since (6.11) holds for ¢ = 0 by the
assumption on the initial conditions, this will complete the proof.

So assume that (6.11) holds for t = t; < T'. To compare the two orbits for nearby times, we want
to ensure that they lie in the same co-ordinate patch. There exists an ¢; > 0 such that v, and 7 will lie
in the same co-ordinate chart if |0y, — o || < €1.

Choose \g so that A > \g implies

sup [lya(r) =M1 < er/3
TE[O,tl]

Now fix A > A\g. For¢ > ¢
loa(t) = @) < lloa(t) = oa(t)ll + [loa(tr) = o (E)[| + [lo* (1) — o ()]
<2t —1|C +e/3
where C is the constant from (6.10). Thus if we choose € < ¢;/3C then ~, and * will lie in the same
co-ordinate chart for ¢ € [t1,¢1 + €]. Notice that we do not rule out the the chart changes with .

We now write down the differential equation for v, and 7* in this common co-ordinate chart. Let

2 € R2(»+m) denote co-ordinates for T*N'Y, i.e.,

TV e R

Denote by z) the co-ordinates of v, and by 2> the co-ordinates of v*. For a Hamiltonian H, let Xz

denote the corresponding Hamiltonian vector field given in local co-ordinates by

O0H/0x(z)
o) = | OIS
—0H/0r(z)
Then
Dox(0) = Xuny (22(1)) + Xossrg (22 (1)) + X, ((0) (6.12)

Since Ho is quadratic, the vector field X 27, is linear, given by
X)\zHo (Z) = )\QDZ

for a matrix D that is similar to a real antisymmetric matrix. It follows that (6.12) can be written in

integral form

Z)\(t) _ e)\Q(tfm)DzA(tl) + e)\QtD /t ei)\2-rD (XHB (Z)\(T)) + XE,\ (ZA(T)) )dT

t1
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We may write a similar equation for the co-ordinates of v* and obtain

aa(t) — 2 (8) = NP (o (t1) — 22 (1))

+e/\2tD //e_’\QTD (XHB (2a(7)) — Xmp (z/\(T)) + Xg, (2a(1)) )d’]‘

t1

The harmonic oscillator evolution e *” is similar to a rotation and therefore uniformly bounded.

Moreover we have the estimates
| X5 (2A(T)) = X (2M7) || < C ||2a(r) = 22 (7))

and

X, (2a(n))]| < CA7

These follow from (6.1) and (6.5) which imply that the co-ordinates for the orbits stay in compact sets.

Thus
l2a(t) = 22 (@)|| = C||2a(tr) — 2> (t1)]| + CJt — t4] [Sup ]HzA(T)—z*(T)H+C|t—t1|xl
TE[t1,t1+€

If we now also insist that

e<1/(2C)

then we find that
1
5 sup [|zx(7) — )| <o l|zx(t1) — At)|| + Cex?
TE[t1,t1+€]

Since we have only finitely many co-ordinate charts, there is a constant C' so that
CH|za(m) =22 ()| < llma(m) =) < Claalr) = 22 (7)]]
in any chart. Thus we conclude that
o (™) =MD < Clyaltr) =2 (E)|| + Cen™?

This implies that

lim sup  ||ya(r) — ’Y/\(T)H =0
A—00 TE[t1,t1+¢]

and completes the proof.

O

Proof of Theorem 3.2: We will show that there exists e > 0 such that if (3.5) holds for somet =t < T,
then (3.5) also holds for any ¢t < ¢; + €. So assume that (3.5) holds for some t =t; < T.

Define
2 2
Ua(t) = 2,110 0 gfIE A O (44)

26



Choosing our co-ordinate charts as in the proof of Theorem 3.1, we find that for small enough e,
¥ (t) will stay in a single chart for ¢ € [t1,t; + €]. This follows from the estimate (6.10) for v (t) =
Hs+X*Ho (40} and the fact that the harmonic oscillator motion ¢*7© keeps the base point o fixed.

Let wy (t) denote the local co-ordinates of ¥, (¢). In local co-ordinates, the evolution q&ithO is

given by multiplication by e=***P, and so
wa(t) = e NP (),

where D is the same matrix, similar to a real antisymmetric matrix, that appeared in the proof of

Theorem 3.1, and z*(¢) are the co-ordinates of 1 (¢). Differentiating, we obtain

dwy (t
wc?( ) _ e—t/\ZDXHB (et/\sz)\(t)),
t
so that for ¢ € [t1,t1 + €],
t
wi(t) = wy(t1) + / e_s’\zDXHB (es”\szA(s))ds (6.13)
ty

Now consider the family of R2("+™) valued functions on [t1, 1 +¢| givenby W = {wy(-) : A > 0}.
We will show for any sequence A; — oo, there is asubsequence A; ; suchthatwy, ; converges uniformly
to the same limit ws.. This will imply that w) — ws uniformly.

The estimates (6.1) and (6.5) of Theorem 3.1 and the fact that the matrices e~*” are bounded
uniformly in ¢ imply that WV is a bounded family. Moreover, from (6.13) and the boundedness of the
orbits, it follows that

lwa(t) —wA(E)] < CJt = ¥']

so that W is equicontinuous. Suppose we are given a sequence A\; — oo. Then, by Ascoli’s theorem,
there exists subsequence A1 ; so that wy, ; converges uniformly to w.. We wish to show that w, is
always the same, no matter which sequence we start with. Our assumption on ¢, implies that wy, ; (t1)
always converges to the same wg, namely to the co-ordinates of d)fB (70). We will show that we (¢) is
the orbit generated by the Hamiltonian H 5 with initial condition wq at t = ¢;.
Using the uniform boundedness of the matrices e ~*” in (6.13) we find that
t
Weo () = wp + / e_S)‘iJDXHB (eS)‘iﬂDwoo (s))ds + o(1)
t

as j — co. Now e* 1.5 is a symplectic map, being the Hamiltonian flow gbff\“z in local co-ordinates.
1.5

It follows that

e MNP X (€M Py () = Xt pog™o, (oo (5))
s)\LJ

If we use the Fourier expansion

S \2
Hpodl, = Y eI,
sJ

VEZ™O
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we find that
,.7 vEZ™O0
so that
) = w0+ 3 [ X () + o)
vEZ™O

Taking j to infinity and using the Riemann-Lebesgue lemma, we find that

t
Weo(t) =wo+ Y XF, (woo(s))ds
vEZ™0:(vw)=0" t1

t
=wo+ [ Xg7,(weo(s))ds
t1

This identifies w (¢) as the orbit generated by H 5 with initial condition wy at ¢1, as claimed.
Now we have

eft/\ZDZ)\(t)

sup
te[tl,t1+6]

- woo(t)H —0

as A — oo which implies

sup  |[2M(t) — e Py (t)H —0
t€ [t tr+e]
This implies
sup |61 X (30) = 620 0 6772 (30) | — 0
te[ty,t1+e]

and completes the proof. []

7. More co-ordinate expressions

In this section we give the co-ordinate expressions that will be needed in our proofs of the quantum
theorems.

We begin by defining the second fundamental form, the Weingarten maps and the mean and
scalar curvatures. Let X and Y be two vector fields tangent to ¥. Since the Lie bracket [X,Y] =

dY[X] — dX[Y] is tangent to ¥ we find that
I(X,Y)=PYdX[Y] = PNdY[X] + PN[X,Y] = PNdY[X]

is symmetric in X and Y. Here PV denotes the projection onto the normal space. By definition,
II(X,Y) is the second fundamental form. Given an orthonormal frame ni(c),...,n, (o) for the
normal bundle, we have

I(X,Y) =Y (X,SY)m
k
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for a collection of symmetric linear transformations Sy, on the tangent space. These are called the
Weingarten maps. Clearly (X, S,Y) = (nk,dX[Y]). But, by differentiating (ny, X) = 0, we obtain
(dni[Y], X) + (nk,dX[Y]) = 0, so that the Weingarten maps can also be written as S, = —PTdny.
Here PT denotes the orthogonal projection onto the tangent space.

The mean curvature vector is given by

h=23 (S (7.1)
et
while the scalar curvature is
_ 1 % 2 2
*= =) (S~ u(sD) (7.2)

Recall that the local expression G(z, y) for the pulled back metric on N'X has the block form (5.2).
Initially, G(xz,y) is only defined for |ly|| < 4. In our theorem, we wish to extend this metric to a
complete Riemannian metric on all of N3. One way to achieve this is to join the induced metric for

small |y| to the metric (-, -); given by (3.3) for large |y|. Since the matrix for the metric (-, ) is

I B][Gs 0][I B]"
0 I 0 I||0 I
the resulting metric on all of N¥ would have the matrix

T
_|I B||Gs+xC 0||I B

G(x’y)[o IH 0 I} [0 I}

where x = x(]y|) is a cutoff function that equals 1 for |y| < e and 0 for |y| > §. With this special form

of the extended metric the local co-ordinate expression below remain true on all of NX if C'is replaced

by xC. However, this special form of the extension is not required for our theorems.

Let g(x,y) = det(G(x,y)) = det(Gx + C). Define

Dml Dy1
Dy = : v Dy= :
D,, D,,.
The local co-ordinate expression for the operator Hy = —%A + V(o,n) + MW (o,n) in the region
ly| < dis
T _ 4
_ 1 4 |(Ds—BD, 12 [(Gs+C)~t 0] [D, —BD, AN

1
597 Y2((D. = BD,)"g"/*(Gs + C){(D, - BD,) + DIg"/*D,)
4

FV() + 5 A))
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Local expressions for the densities on N are

dvol = \/g(z, y)|d"z||d™y|
dvoly = /g(x,y/N)|d"x||d"™y|
dvolys = \/g(x,0)|d"a||d™y| = /g5 (x)|d"z||d"y|
where gs(z) = det(Gx(z)). Thus the multiplication operator M) appearing in (4.2) is multiplication

by f;1/4 where
9(@,y/\)
gs(z)
We may now compute the local expression for L. Conjugation by D results in every multipli-

f)\(xvy) =

cation by a (possibly matrix valued) function F'(z, y) being replaced by multiplication by F(z,y/)\),

and every D, being replaced by AD,. Conjugation by M) simply puts a multiplication by f, /4 ¢

the right of the operator, and a multiplication by f/\/ to the left. In a co-ordinate system for a domain

in NX oftheform {(o,n) :c €eU,n € NX,} letD = Dx and G (x,y) be the scaled and extended
Y
metric taking into account the scaling of D, as well as y. In other words
I 0 0
G =y |G [ ] (3)
Then
1 _ 22
Ly = =505 g, y/N) 72D g, y/ NG DIV (@ y/N) + (. Al)y) -
7.4
1 99, _ 22
= —g0x PR DT R PO B IDT Vg V) + Ty Ala)y)
Thus in the region where ||y|| < )\ we may use the explicit form of the metric to obtain
1.4 12| D, —BD, T 12,12 [ (Ges+C\)™1 0 Dy —BDy | ,—1/4
Ly=—5f" 95 gs I 2 5N
2 D, 0 AT D, (7.5)
A2 '

where Cy(z,y) = C(x,y/A). Note that formally putting f, = 1 above, and replacing C) by 0, we
obtain for the first line of (7.5)

1 ap D" [1 -B]" ap[Gst 0 1[I -B][D.
29%= Ip,| o 1] 9 | 0o xr|lo 1||D,
which is the Laplace-Beltrami operator for the metric which in local co-ordinates is
I B][gs o 1[r B]"
0 I 0 X2I||0 I
This is easily seen to be the matrix for the metric (3.3). This explains part of the origin of the Hg +\2Hop.

A more complete analysis (to which we now turn) is necessary to understand the origin of the term
K(o).
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Before beginning this, note that the local expressions for Hp and Hp are given by

1
Hp = 5(D: — Blz, y)Dy) G5! (D — B(x,y)D,y) + K(x) + V(z,0) (7.6)
and
1., 1
Ho = 5DyD, + 5 {y, A(x)y) (77)
Here D} and Dy denote the formal adjoints with respect to dvolyx given by D} = —ggl/Qngg/Q,

D = —g5'/*DTgi/* = —DT and B* = g, "> BTgy/* = B”.

We now wish to perform a large A\ expansion of Ly. To state the error estimates precisely, we
introduce the notation F; to denote a smooth function of x and y that vanishes to kth order at
y = 0, evaluated at (z,y/A). Roughly speaking, E} behaves like (y/\)* for small y/\. The effect of

differentiating such an error term is given by

OE),
81)1'
OE}, {AlEkl ifk>1

9yi  \AN1Ey  ifk=0

:Ek

In our theorems we will always assume that the eigenvalues wj? of A(c) are constant. If we choose
the orthonormal frame in the definition of our co-ordinates to consist of eigenvectors of A(o) then

(n, A(o)n) = 3= ; wiy7. We will make this substitution without further comment below.

Lemma 7.1 In the region where ||y|| < dA, the local expression for L can be written
Ly= Hp + XHy + (D, — BD,)*E1(D, — BD,) + E.

Proof: In a co-ordinate system for adomain in NX oftheform {(o,n) : 0 € U,n € NX,}letD = [g”]
Y

and G\ (z,y) be given by (7.3). Setting k) = (1/4) In f,, we may write (7.4) as

1 .y 22
Ly = 5(D — 0ky) G N (D — 0ky) + V(z,y/\) + 5 > Wiy (7.8)
J
where 0k = {gm?} , Oks = (0ky)T, and D* = —g;/QDng/Q. We further expand (7.8) to obtain
Yy

Lo Lo s 1 —1/2 1/2 (=1 A?

(7.9)
If |ly|l < Ad then

G)\l(a:,y)z[é —B(Ix,y)]T[(Gz(ff)-i—%(xay/)\))1 Agl] [é —ngvw] (7.10)

31



so that in this region we obtain

1 A2
Ly = §(D’” — BDy)*GZ(a:)—l(Dx — BD,) + 7D;Dy
. A2
+ (Dﬂc - BDy) Ey (Dx - BDy) + B+ 7 Z (aiik/\ + (8%]@\)2)

K3
\? 22
+ V(z,y/\) + 5 ijyj
J

= Hp + NHo + (D, — BD,)*E1(D, — BD,) + Fy
/\2

XS @+ b)) - K(e)

(3

Here we used (0, — BO,)E), = Ej, and 0k = [/\_EflE } so that (0, — BOy)kx = En.
0

The lemma will follow if we can show
/\2
5 D (92 kx + (9y,k0)?) = K(z) + By (7.11)

This requires a more careful expansion of fy. The first step is to uncover the geometrical meaning

of the term G (z) + C(z, y) occurring in the expression (5.2) for the metric. Note that

(dniloi],05) = —(Skoi,05) = —(04, Skoy) = (o4, dng[o;])
and that
My, = G5 [{o4, S10;)]
is the matrix for the Weingarten map S} in the basis o1,...,0,. Let S be the symmetric operator

defined by (n, II(X,Y)) = (X, SY). Then S = 3", yxSk, and the matrix for S in the basis o1, ..., 0,
is
M = M(z,y) =) ysMy(x)
A short calculation shows '
G+ C =Gx(I - M)? (7.12)
Given the block form (5.2) of G and (7.12), we obtain
fx=9gx/9s = det(G(z,y/N))/ det(Gx(x))
= det(Gx(2)(I = A" M(z,y))%)/ det(Gs(z))
=det(I — X' M(z,y))%

Thus 1 1
5 n( V2 = 5 Indet(7 —A~1M)

= %trln([ -2 'M)

kx

1 1
= —5/\_1tr(M) - ZA—%r(W) + B3

1

1
= —5/\71 zk:yktr(sk’) - Z)CQ ;yk’yltr(sksl) + B3
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This implies that
1
Dy, lox = —EA_ltr(Si) + A 2B + 2R,

and
(0% = — 5 A2tr(57) + A2y,
Thus
)\2 2 2 1 2 1 2
7 2 Okt @uh)?) = —30(S9) + g n(S)” + P
= 1 ((r(50)? = 1(2)) = 5(0r(5))2 + B
-1 2
_ 7”(”4 s P + By

Thus proves (7.11) and completes the proof []

We conclude this section by discussing the expression for H g in local co-ordinates. We may define
local annihilation and creation operators, using the co-ordinates y, ; defined in Section 5, as
1

Wa
1

i = i (it = D)

Aa,j = (Wa,jYa,j + Dy, ;)

[\

Then we find
D2 Wa o
yr:v N + Ty()( j)

1
= gl

We may also write Hp in terms of the annihilation and creation operators. We begin with

(B($7y)Dy)l = Z bia,j,ﬁ,kDya,jyﬁvk'
«a,j,0,k

Notice that the order of D, . and yg, is irrelevant here, since b is antisymmetric in (o, j) and (53, k).

Dyo,J = “ w_; (a’(’(vj - az,j)
1 *
Yok =/ Yo (ap.k +ajy)

and substitute the resulting expression in (7.6). The resulting formula expresses H g as a finite sum of

Then we can use

terms involving product of 0, 2 or 4 annihilation or creation operators. The identities

ethoa —itHo _ e—ztwa thoa

eTHtHO — gitwa g (7.13)

a,j€ Ao, j € a,j a,j

lead to a finite sum

etho HBe—tho — § ezt(u,w>Fy
vEZ™M0

that defines the differential operators F),.
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Lemma 7.2 For ¢ € C°(NY), e~ oy € D(Hp) and

etho HBefthoSO _ E ezt(u,w)wa
veZ™o0

where the operators F), are defined by the sum above.

Proof: It suffices to prove this for ¢ € C§° supported in a single co-ordinate patch, since a general
¢ € C§° can be written as a sum of such functions. Introducing our usual local co-ordinates x and y,
we find that e ~**#© is simply a harmonic oscillator time evolution in the y variables. Hence e~ o
is in Schwartz space. This implies that e=**#o ¢ € D(Hp), and that the expansion of Hp into a sum of
terms involving products of a, ; and ag, ; is valid when applied to e~ o To complete the proof, it
remains to show that the identities (7.13) hold when applied to a function ¢ in Schwartz space. This
follows from

—itHo

Il itHo 'eftho — Z-e’LtHo [HO7 a(y7j]e ©

itHo [0 —itHo

= jwye aa!jamj,aad]e ©

itHo[ *

. o~ itHo
Ay 5> Ao, j]@a,j€

= Wwae %)

= —iwe'Hoq, e HO .

8. Proofs of theorems in quantum mechanics

We begin with some analysis that allows us to transfer our considerations from R**™ to the
normal bundle NX. Let
d(z,¥) =inf{||z — o] : 0 € £}

denote the distance to ¥ in R*t" and let
Us ={z € R7+™ . d(z,X) < 6}

be the tubular neighbourhood of X that is diffeomorphic to NX 5. The first proposition shows that the
time evolution in L2(R"*+™) under H, is approximately the same for large \ as the time evolution in

L?(Us) under the same Hamiltonian, except with Dirichlet boundary conditions.

Proposition 8.1 Suppose that W,V € C°(R™™)with W > 0and V bounded below. Suppose W (2) = 0
if and only if z € ¥ and that W (x) > wo > 0 for large x.

Suppose A > 1,4 € L2(R"T™), [[4|| = 1and | Hxo|| < C1A%, where Hy = —3 A+ V + X*W. Then,
given e > 0 there exists C'y such that forall t € R

[ Flasee” “M2 || < Coa™. (8.1)
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Here F|.y denotes multiplication by the characteristic function supported on the region indicated in the paren-
theses.

Define Hﬁ be the operator in LQ(Z/{(;) given by H» with Dirichlet boundary conditions on 9Us. Then for
allt € [0,T]and0 < e < ¢

. . 5
|‘F(d§6)€_th>"Lp — 6_”H>‘F(d§6)w” S CgA_1/4 (82)

Here C5 depends only on C7 and € and C3 depends only on Cy, T" and e.
Remark: The power 1/4 in (8.2) is not optimal.

Proof: By the assumption on 1) and the Schwarz inequality
WJ, H)ﬂ/)> S C‘l)\2
Without loss we may assume that V' > 0, so that

1
5IIWII2 < O\

(8.3)
(Y, Wep) < CL A2
It follows that
C(€)<wa F(dZe)w> < <¢7 F(dZE)Ww> < C(l)\_2
which proves (8.1), since e x4 satisfies the same hypotheses as ).
For 0 < €1 < a we will need the estimate
1Fe, cazay VI < Cal?, (8.4)

where C; depends only on «, €; and C;. To prove this, choose a function x € C§°(R"T™), 0 < x < 1,

which is 1 in a neighbourhood of {z : ¢; < d(x,%) < «} and vanishes in a neighbourhood of ¥. Then

| Fle,<a<a) VI = [[Fle,<a<a) VXV | < IV (XY)]I-

The Schwarz inequality and integration by parts gives

IV o)l < IIAC) 1 F [Ixwl2

so that (8.4) follows from
[A(xY)|| < Cs5A? (8.5)

and (8.1). To prove (8.5) let p = —iV and calculate, as forms on Cg° x C§°

1
HY = Zlpl" + (V + XN W)+ D pi(V + N W)p; — S(AV + XTAW) (8.6)

J

1
2

35



It follows from (8.6) and the fact that C§° is a core for H) that xi) € D(H,) and
1
|I§p2xw|\2 < [HAG)[I” + OAY,

or
1 1
SIPPxell < VO + [ Hwll + (11577, X

The last term can be bounded by (8.3), yielding (8.5).
Let x be a smooth function which satisfies 0 < y < F(4<./2) and x = 1 in a neighbourhood of X.

Because of (8.1) (which holds at ¢ = 0) it is enough to show
HeitHj\S)zefitH,\w — x| < C\—1/4
fort € [0, 7). Let
. 8 - 71 -
Prx = e xe My — g,
Integrating the derivative, we obtain
t . S5 5 .
dux =i [ TR - RH)e s
0
t
= / e (VY- p = (i/2)AX)e ™ s,
0

and thus
t
lgeall® = / (M yn, (V- p— (i/2)AR)e*Hris)ds.
0

Let x = 1 on the support of Vx and x = 0 in a neighbourhood of . Then from (8.4)
t _ ) s )
[fell” < / Ixe X g AN (IVX - pe* M| 4 C)ds
0
t
<O [ R ds
0

Now
(Pen, Hie \) < 2(Xe™Mrqp, H e "Mnap) + 2(xep, HIXY)
= (e ", (HAX® + LPHx + (VX)D)e ) + (0, (HAX® + X*Ha + (VX))
< ON?,

by the Schwarz inequality. Thus, following the proof of (8.1),
IRe™ Mgy pl| < AT

so that
lgeal® < CAZAT!
which gives (8.2). [
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Since the subset Us C R"™ is diffeomorphic to NX5 C N, we may think of H} = —1A +
V + MW as acting in L?(N X5, dvol) with Dirichlet boundary conditions on 9N X5, where the volume
form dvol and the Laplace operator A are computed using the pulled back metric, and V and W are
now the pull backs of the corresponding functions on Us. We may now extend the metric, and the
potentials V and W, from NX; to all of N, as explained in Section 4 above. Recall that the extended
metric is assumed to be complete, that the extended V' is bounded and that W = (n, A(o)n) on all of
NY. We thus obtain an operator H) acting in L?2(NY, dvol). Since the extended metric is complete,
H, is essentially self-adjoint on C5°. Then it makes sense to talk about e =%,

A proposition analogous to Proposition 8.1 holds in this situation, allowing us to approximate
the evolution under H§ with an evolution under H). For the purposes of this proposition, it does
not matter how the extensions are made, as long as the conditions on the potentials hold, and the
state 1 that we use for the comparison satisfies || H || < CA2. Since the statement and proof of this
proposition are nearly identical to Proposition 8.1 we omit them.

Having justified the transfer of our considerations to L?( N, dvolys:), we now turn to the proof
of Theorem 4.1.

Before beginning, we need some quantum energy bounds.

Lemma 8.2 Let Ly beasin Theorem4.1and Loy = Hp + M Hp. Let Ly denote either of these operators
and Ry = (A" 2Lgx + 1)_1. Let F = F{jn|/x<c) be a smooth cutoff to the indicated region. When e < 4,
this cutoff function is supported in the region of N3 where the metric is explicitly defined. Let x (o) be a cutoff

with support in a single co-ordinate patch. Then, for small enough € and large A,
1/2 1/2 — 1/2
[ R+ I Fo Dy R + A 3 Fe D Ry < © 8.7)

If L is a non-negative integer and «, /3 are multi-indices with I + |«| + | 8] < 2, then

IxF2(n)! (A1 D2)* Dy Rua| < C. (8.8)
In addition, if [ is a positive integer and |a| + | 8] < 2, then

IxFa(n)! (A" Da)* DY R{M| < C. (8.9)
Here (n) = /1 + |n|2.

Proof: Without loss of generality we can assume that V' > 1. Set f = xF,. Then f € C§° with
0 < f < 1. Using (7.8) we see that

Ly >

N =

* g r— X
(D — Oky) fG/\lf(D—ﬁk;A)+?ZwJ2-y?.
J
In the region where f > 0 we can use (7.9) to obtain
T
I -B I 0 I -B 1
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Using A=2R}/?(Ly + A?)R)/* = 1 we obtain

IfD,RY?| < C (8.10)
AU f(Ds — BD, — 0,kx + Boyky)RY?| < C (8.11)
() RY?|| < C. (8.12)

On the support of f, d,kx — BOyky is bounded. Thus, using (8.10) and ||B|| < C|n| we obtain
AL fD.RY?| < C. This proves (8.7) for Ry. The proof for R y is similar.
Define U by L = D*G ' D + U. Then, using (7.10) we calculate

1
Laf?Ly = Z(fD*G;lD)*(fD*G;lp) +D*G' f2°UD + (Uf)?
1 1

+ 5 DG D, fPUL + S [UF2, DG D
The last two terms above combine to give a multiplication operator given by a function which is easily
shown to be bounded below by

—CE (14 M[yf?)
where y and F} are like x and F5, with slightly expanded support. It follows that
A4 _ _ _ B -
D G DR+ A£G U DR + AT SURA® < 1+ AR Fa () AR |
The right side is bounded by (8.7). From A~2|| fUR,|| < C we obtain || f(n)2Rx|| < C, which proves
(8.8) when ! = 2. From
A fG AU DR < ©

we obtain

AT f(n) (D = BDy)RA|| < C

and
||f<n>DyRyH <C

which then gives
[f(m)A™' DL Ry|| < C.

This proves (8.8) when [ = 1. Finally we consider the consequences of /\‘2||fD*G;1DRAH < C. This
is equivalent to

A 3| D*GY'DfR,| < C

since the commutator term can be bounded using (8.7). We thus must examine the operator D*G;lD

acting on functions of compact support in R**™ contained in a domain of the form 0, = {(z,v) :
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lz| < 7, |y| < e\} When we rescale y — Ay and D, — A~'D,, the operator D*G;lD goes over
to an elliptic operator F independent of A operating on functions of compact support in a domain
O = {(z,y) : |z| < r,|y| < €}. The smooth coefficients of the operator E are bounded in ©. It follows
that if || + |5] < 2

1D DS < C|| Byl

for ¢ with support in ©. When we scale back again this implies
A2 Dg(ADy) fRA|l < ©
or
1A D2)* Dy fRA|| < C.

Again, the commutator term which arises from moving f to the left can be bounded using (8.7). This
takes care of the case [ = 0 in (8.8). We have thus proved (8.8) for Ry. The proof for Ry » is similar.

We now turn to (8.9). We give the proof for R. The proof for Iy , is similar. We first show that
1F{n)' Rl < C. (8.13)
We write f = ff} where f; has slightly larger support than f and is of the form hy(z)hz2(|y|/)).
Writing f1(n) = g, we have
g'R\ = gRag' 'R + gl RAJRY
= gRag' 'R+ gRAN Ly, o' R,
= gRxg" 'Ry 4+ gRA(D; Ji(n)' " + AN (Dy — BDy)* Jan)! T + J3(n)' 1) RY

where J1, J> and J3 are bounded functions with support contained in supp f1. Thus, from (8.7)
lg'BAll < Cllg" "B + Cl fa(n)' RYY|

where f5 has slightly larger support than f;. Thus (8.13) follows inductively.
We now let A, g denote (A~*D,)*D/ and take A = A, 3 with |a| + 3| < 2. Then

9" ARSH| < II[A, g'|RY | + | Afog' RSP

where f5 has slightly larger support than f;. We have
1Af29' R < [ Af2Rag' RAI| + [ Afalg', RAJRS|
< |[Af2RAll - llg'RAN + [ Af2RAll - [Ilg, A2 LA RS

and

A, qi] = Z gw,u,lq()leI)vDZ
[y +]pl<1
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so that

l l
||[Aa9l]RA+1H < Z 197.m1-1 A5 u B -
[v|+|pl<1

where | g, .1—1] < C(f3(n))!~! and where f3 has slightly larger support than f>. Similarly
[, A2 La] = i (n)! T Dy + Ja(n)' TN (AT D) 4 Js(n)'
where .J;, J and J5 are bounded functions with support contained in supp f1. Thus

g  ATPLARS < Y Gyt Ay u RSl
[vI+Ipl<1

where |§.,..1-1] < C(f3(n))!~1. Thus again using induction, the result (8.9) follows. [

Proof of Theorem 4.1: Since
lle™ Forp — e A2 = 2(3h, ) — 2Re(th, ¢ Fore )

it suffices to show.

lim sup ‘<’¢,€itL0>‘6_itL>‘w> — <w,w)| =0 (8.14)

A—=00 0<t<T
for a dense set of ¢ in L2(NY, dvolyy). Let ) € C§°. Our goal is to show (8.14).

As a first step, we insert an energy cutoff. Since || Ly || < CA? we have

IF L2zl = 1 Lo /22 Lan |- 1 Laxdd|
<Cp!

Set

Fy = Fp,, a2<p)

Then it suffices to show that for each fixed ;1 > 0

lim sup [(Fore, e e ™ A Fio) — (Fony, Fiy)| = 0. (8.15)
A—00 0<t<T

We now need to show the quantum analogue of the fact in classical mechanics that the orbits stay
in a bounded region of phase space if we watch the system for a time T" < oo which is independent of
A. Using energy considerations it follows from Lemma 8.2 that (n) and D,, are bounded but only that
D, cannot grow faster than A. We now seek a A independent bound, showing that up to a fixed time
T, not too much energy can be transferred from normal to tangential modes. In the quantum setting
the statement

| FoDyxe Ea By || < C, (8.16)
where F5 is as in Lemma 8.2, will suffice.

40



We will prove this estimate when Ly, = L, since the other case when Ly, = Loyis similar. Let
{X3 (o)} be a partition of unity subordinate to a finite cover of co-ordinate charts. In other words, each
X3 is supported in a single co-ordinate chart, and >k X2 = 1. We may assume that each x, is a smooth

function only of . Define
Q= xiD;G5' (x) Daxr,
k

where, in each term, D, and x are defined in terms of the co-ordinates for the chart in which y; is
supported. We now want to cut () off to the region where we have explicit expressions for the metric,

and then add a constant to regain positivity. So let
Q =FQF+1

Notice that Q and Q commute with I, since in local co-ordinates F is a function of y alone. It is not

difficult to show that both @ and @ are essentially self-adjoint on C$°(NY). Define
q(t) = (Fu, e Qe " Fyep).
Then (8.7) follows from
sup{q(t): t € [0,T]} <C.

We will prove a differential inequality as in the classical case. We will need further estimates to

bound the terms which arise when we compute ¢(¢) and to prove an upper bound for ¢(0).

Lemma 8.3 Suppose F} is a smooth cutoff in the energy A=2L . Then
H((n)l()\_le)aDg)D;XngFlQ_l/QH <C

if | + || + 8] < 2and |y| = 1.

Proof: We use the Helffer-Sjostrand formula (see [D])
F = /g(z)(RA —2)" Yz Ndz

where we may take g € C§°(R?) with |g(2)||Im z|~" < Cy for any N. (We are using the fact that
Fi(A2Ly) = Fi(Ry) for Fy € C°(0,2). Let Ay = (n)*(A"'D,)’D]x with x € C*°(Z), supported
in the jth co-ordinate patch, xx1 = x1, and let F; ; be a smooth function of |n|/A with F; 1 F5 = F5.
Then

A1 DYx;FaFiQ Y2 = Ay Fo n Fy DY x; FoaQ 7Y% + Ay Fy 1 [DY X Fa, F1]1Q™1/2

Using (8.8), the first term is bounded by a constant times

|A1Fe Ryl - |1 D)X, F2Q 2| < ©
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and it is thus sufficient to show

IRy [DYx; Fa, Fr]ll < C.

We compute from the Helffer-Sjostrand formula
IRY [DIx; Fe, Fu]|l < Cll[DIx; Fo, A2 La] Ra| (8.17)
For our present purposes we can write
/\2
Ly = (D, — BD,)*Ey(D, — BD,) + ?(D;Dy + Zwa?) + E,
J
and we thus obtain

[DIx;jFo, \"2L)\] = A\"'D)x;(VFy - D, + D, - VF)

+A"2[D)x;,(Dy — BD,)*Eo(D, — BD,)|Fa + A2 Ey
The first term gives a bounded contribution to (8.17) by Lemma 8.2. The second term can be written

()ﬁl(Dz — BDy)*EgA™"(Dy — BDy) + D; EgA\™ (D, — BD,)
+A"Y(D, — BD,)*EoD, + A\"2Eq(Dy — BDy))XjF2

+ A7 D7((00x3) " EoA ™ (D = BD,) + ™M (D, = BD,) Eodax; ) P
and again this gives a bounded contribution to (8.17) by Lemma 8.2.[]

We now return to the proof of Theorem 4.1 and calculate
q(t) = i(e” "y, Fi[Ly, QI Fre™ ")),

Let £ ; be a C§° function of A~2L, with slightly larger support than F}, so that i Fy = Fyr We will

show that

Fi1[ily,Q)Fi1 < CQ (8.18)

so that

q(t) < e“q(0).

First consider any term which arises when the cut-off 5, = F,/n<¢) is differentiated. The
derivative I has support in a region of the form {(o,n) : Ae; < |n| < Ae2} so that Fi(\/|n|)! is
bounded for any . Thus F} = (F3(\/|n|)")A~!|n|' so that according to Lemma 8.2, (8.9), such a term
is bounded (and even decays faster that any inverse power of A\. Note that such a term occurring in the
commutator [L, Q] appears alongside Dng with |a| 4 |8] < 3 but because we have an F ; on the

left and another on the right, (8.9) even allows |«| + | 3] < 4 and we still obtain faster than any inverse
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power of X decay.) Since Q contains the constant 1 such terms are harmless and we will ignore them.
Thus we are left with showing
Fi 1 FliLy, QIF2Fry < CQ. (8.19)

We write
hy = D:G3' (z)D,

when the x refers to the kth co-ordinate patch. Then

1 _
Xehixr = 3 (Xihw + hixi) + (Oaxr) " G5 Ouxi

so that

01 = 3 (gl nte + ghulia

1 1
+ai] 4 3 ] + 5l balid

where my = (8xXk)TG§18xXk. We must make use of some cancellation which occurs above so we

write
1 1 1
> L, Xalhe = 5L, Xl (he = hy)xG + S[Lx, Xalhix;
P oy kg

and note that the second term on the right vanishes because >, x7 = 1. Thus we obtain

1 1
[L0,Q1 =) §[LA, Xil(hie — hy)x; + EX?(hk — hj)[Lx, X7]
ko
L M)+ 3 23 (L, i) + S (L, a2
’ 2 k ’ 2 ’ k

k
where M = ", my.

In the term [L, x3](hx — hj))@ we refer all operators to the jth co-ordinate patch. Thus
hi —hj = D:G5'D, — D:G5' D,

where ~ refers to the kth co-ordinate system. We obtain (schematically) D, = MT D, + AE D, where
MGZ'MT = G3'. Hence

hi — hj = (\E1Dy + Eg) D, + N*EyDy Dy + AE1 D,y + Ej.

After some calculation we find

1 1
> UL Xil (ke = hy)XG + 536G (e = hy) (L X
k,j

- Z X;DE(\E1 Dy, + Eo)Dyx; + x;Di(\?E2 D, Dy + \E1 D, + Ep)
J

+X; (DEA*E3sDy Dy, + N E2 Dy Dy + AE1 Dy, + Ey)
(8.20)
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where y; € C*(X) with suppy; contained in the jth co-ordinate patch. Noticing the presence of F5
in (8.19) and using Lemma 8.3 with o = 0 along with (8.9) of Lemma 8.2, we see that the terms in (8.20)
give a contribution to the left side of (8.19) which is bounded by CQ.

We can re-expand M = M (o) writing M = >, M3 and then we find

[Lx, M] = xx(D3Eo + AE1 Dy, + Ey)
2
which is readily handled by Lemma 8.3 and (8.9) of Lemma 8.2. We now expand the terms involving

[L, hi]. After some calculation we obtain

1 1
Zaxi[L— Ashi] + 5

k

= X&D} (E\D; + AE\ Dy + \E1 + Eo) Dax
k
+ Y xwDj (NEy + AE1)Dy D, + AE1 Dy, + AE; + Eo)
k
+ ) xk (WEy + AE1)Dy Dy + (AEy + Eo)Dy + AE1 + Eo + A~ ' Ey)
k

+ 3 (kDiE Dy + Xk EyDy)
k

where xi, € C°°(X) has support in the kth co-ordinate patch with xxxr = xx. These terms are also
easily handled with a combination of Lemma 8.2, (8.9) and Lemma 8.3. This completes the proof of

(8.19) and shows
q(t) < e“'q(0).
Finally
q(0) = (F19, QF11))

has )\ dependence and must be bounded uniformly in A. But this follows from Lemma 8.3 (with
I = a = = 0)and the fact that [|Q"/?¢[|> = (1, Q) < oo, independently of \.

We now return to (8.15). We introduce a stronger cutoff in the n variable by restricting |n|/\* < 1
where s € (0,1). Thus let F5 = F(|n|/xs<1) be a smooth cutoff the the indicated region. We note that

[(1=Fs)Fu[| < A7°[|(1 = FO)X/[nl] - [[(n) Fr[| < CA™2

by (8.7) of Lemma 8.2. Thus it is sufficient to prove

lim sup [(Fo1v,e""orFye "M Fiop) — (Fo 11, FsFig)| =0
A—=00 te(0,T]
By the fundamental theorem of calculus we obtain
(Fov, e'lor Fye ™ Frop) — (Fy 19, F3Fivp)
t
= Z/ (Fo,100, €70 ([Lo x, F3] + F3(Lox — La)) e” " Fyap)ds
0

(8.21)
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The term [Lg,, F3] contains derivatives of F3 and thus by Lemma 8.2, (8.9) its contribution to (8.21)
decays faster than any inverse power of A uniformly for ¢ € [0,7]. According to Lemma 7.1, on the

support of F3 we have
Ly = Loa = 3 x((Ds = BD,) Ev(D, = BD,) + B ).
k

Thus, aside from terms involving derivatives of F3, which again can be handled by Lemma 8.2, (8.9)

we need only show that

lim sup |(Fae™ory, (FQXk(Dx — BD,)"F3Ey(D, — BD,)Fax + XiFgEl)Fle—iS%)‘ 0
> 5€[0,T)

Now

IFsE | < CAT[(n) Pl < OAT

so we need only bound the product
[(Dy — BDy)xrFaFope” 2| - (| F3Eq | - (D — BDy)xuFaFre™ |

By Lemma 8.2, (8.8)
| BDyxpFaFyal| < C

and by (8.16)

> |[DaxuFaFyae || < C.
s€[0,7T

Finally
|F5EL|| < CAS /X =CN\1,

which proves (8.15) and thus completes the proof of the theorem. [

Proof of Theorem 4.2: To prove the theorem, it suffices to show that for any ¢ € C§°(NX),

— 2
. . 2 . 2 .
Km sup H(e it(Hp+\*Ho) _ ,~it\’Ho , thB)wH -0
)\HOOOStST

This can be rewritten as

lim sup WM — e itHBy, e*“ﬁsw‘ =0 (8.22)
A—00 0<t<T '

where
. 2 . 2
’l/}t,)\ — eztk H()e—zt(HB-‘,-)\ HO)'[Z)

We will show that for any ¢ € L?(NY, dvolys)

lm  sup |(Wn — e B4 )| =0, (8.23)
A—00 0<t<T
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which will imply (8.22).

This implication follows from the general fact that if ¢, » converges to some ¥, o, with

sup ||[Y¢,00l] < C
0<t<T

in the sense that

lim sup [(¥ex — Y0, )| =0
)\~>ooo<f<

then, for any continuous function ¢; from [0, 7] into L?(N'Y, dvolys),
Hm  sup (¢ — 1,00, 01)| = 0.
A—00 0<t<T

To see this, pick an orthonormal basis {,,}. Then

sup (e, — Yt,00, 1)

0<t<T
N e}
< sup D (Wix = Yroos @a)(Ens )|+ sUD | Y (e — Proo, Pn)(Pn, 1)
0<t<T |7} 0<t<T |, ‘N1
N
<0 smp ZI (Vr = rooron) [ +C sup |1 = Pr)ell
where Py denotes the orthogonal projection onto the span of ¢, ..., @n. The first term on the right

tends to zero as A — oo, by assumption. Hence

limsup sup [{¢1,x — Pt,00, 1) < C sup [[(1 — Pn)eel|
A—oo 0<t<T 0<t<T

But {¢, : t € [0,T]} is compact and 1 — Py goes to zero uniformly on compact sets. Therefore the
right side tends to zeroas N — oo.

Thus it suffices to prove (8.23), which we will do in two steps. First, we will show that for every
sequence \; — oo, there exists a subsequence y; and a bounded, weakly continuous L?(NY, dvolys)

valued function v, o, such that

sup_ |(Wt.p; — Ptooor )| — 0O (8.24)
0<t<

for every ¢ € L?(NY, dvolys). Then, to complete the proof, we will show that v, . is always the
same, and equal to e~ 5 5y,
To take the first step, we begin with a sequence A\; — oco. Let {¢,,} be an orthonormal basis of

vectors in C°(NX). Define
wa (1) = (Prx, n)

Then for fixed n, wy, A(t) are a family of functions of ¢ € [0, T}, uniformly bounded as A — oo. Still for

fixed n, this family is equicontinuous, since the derivative is bounded independently of A. This follows
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from

d . , .
E@/}t’)\’ Son> _ ‘—Z'<€Zt)‘2HOHBeilt(HBJr)‘zHo)’L/), ¢n>‘

. 2 _ 2
_ ‘<wt,)\;elt)\ Ho [ o ith Ho<pn>‘

.y 2
<l 1D e ) Fyp|

The sum over v is finite. Here we used (7.14), and that ¢,, is in C§°(INX), and therefore in the domain
of F,.

Using Ascoli’s theorem, we may now choose a subsequence \;, of A; so that w y;, (t) converges
to some continuous function w1 « (t), uniformly in ¢ for ¢ € [0, T']. Then we may choose a subsequence
Aj, of \j, with ws y, (t) converging uniformly to some continuous function wz (t). Continuing in

this way, and then taking a diagonal subsequence, we end up with a subsequence p; such that

sup ‘wn,,” (t) — wn,oo(t)‘ —0

0<t<T
for every n. Notice that
N N
Z |wn,00(t)|2 = Enolo Z |<7/’t,u1790n>|2
n=1 J n=1
< [t 112
= |[yII?

This implies that >~ | |w;,  (¢)|* < |[¢]|?, so that
wt,oo = an,oo(t)SOn
n

is well defined with ||¢; o || < [|0]|. Clearly, for any n, (¢¢ ., — ¥t,00, Pn) — 0 as j — oo. This implies
(8.24)
Now take the second step of identifying ¢ «. Let ¢ € C§°(NX). Then

t
. isp> —isp?
<wt7uj,sp> = <¢,<,0> +Z/ <wsvﬂj)e /'L]HOHBe MJHO<p>dS
0
t
= , —+ 1 SOO’@“ 3 Be_l‘ 3 S .
0 . 7 isp HOH isp HOQD d (8 25)

0

t

+Z/ <ws,p,] _ws,ooveiSMfHOHBeiiSM?HO§0>dS
0

Since ¢ € C§°(NX) the formula (7.14) implies that

isp> —isp?
(o = s ,00s €570 Hpe #5710 0)| <N (1 1, = Ws,00, Fup)|

v
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Thus the second term of (8.25) tends to zero as j — oco. On the other hand

t
. . 2 _ 2
lim / (o, 145770 Hpe 4570 s = Jim 5 / €130 (1 oo, Frip)ds
0

J—00 ]HOO

t
= / <ws,oo; FB<)0>CZS
0

by the Riemann Lebesgue lemma. Thus, taking j — oo in (8.25) we obtain

(oo 0} = (0,0} +i / (oo, Hp)ds. (8.26)

Now let ¢ be in the domain of H g. Since C§° is a core for H 5, we may use an approximation argument

to replace ¢ with e~*H= & and H ¢ with H ge~**H# 3 in the equation above. We find, using (8.26),

d d

d T
—<?/JS 00y € tHB<»0>

el 7isﬁ3 _ 7ZSHB

ds Vnoor @ TP = G Wioe, TERN ¥ e, TR
= Z<ws,ooaﬁ —isHp > <ws oov —isHp ¢>
=0

Thus (s, o0, e~isHe @) is constant. But when s = 0, equation (8.26) implies (¢5 o, € —isHp o) = (¢, ).
Thus(e*H 51, o — b, @) = 0 for every & in the domain of H . This implies e*75¢, ., = v, or

Vs 00 = e~Hz ) and completes the proof. (]
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