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1 Introduction

Non-relativistic quantum mechanics and Schrödinger operators occupy a
central place in Barry Simon’s prodigious output. This article is a review
of Simon’s work on two-body and N -body Schrödinger operators, and on
resonances. A few early papers reviewed here do include results about the
general theory of Schrödinger operators (that is, without any decay assump-
tions on the potential), but I have excluded some more recent papers on
one dimensional Schrödinger operators that seemed more closely related to
work on inverse problems and random potentials. Also notable among the
excluded results are papers dealing with electric and magnetic fields, the
semi-classical limit and Thomas-Fermi theory. These will be covered in
other articles.

Imposing these severe restrictions on the subject matter still leaves a
formidable collection of papers. I have grouped them into three sections:
two-body and general Schrödinger operators ([4], [5], [13], [24], [35], [59], [70],
[71], [80], [99], [103], [106], [114], [115], [135], [137], [179], [181], [218], [226],
[227]), N -body Schrödinger operators ([9], [25], [43], [44], [45], [46], [51], [55],
[83], [84], [85], [95], [96], [97], [119], [122], [124], [125], [131], [132], [133], [134],
[160], [175], [199], [304]), and resonances ([19], [20], [105], [107], [121], [156],
[276]). Here and throughout this article, references are to Simon’s publi-
cation list at http://www.math.math.caltech.edu/people/biblio.html
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Barry Simon’s papers on two and N -body Schrödinger operators and resonances

and on page ?? of this volume. Note that upper case (resp. lower case)
roman numerals that appear below refer to books (resp. review articles and
conference proceedings.) The following graph displays the distribution of
these papers among all of Simon’s research articles. (The horizontal axis
is the publication date. The graph shows research articles only, not review
papers or books.) As the graph shows, this review mainly considers topics
that occupied Simon during the early and middle parts of his career.

I should emphasize that this article is about Barry Simon’s contributions,
and not a review of the field. Barry Simon himself is a masterly reviewer,
and in addition to his research articles, he has authored books as well as
several book-length reviews, dealing with the topics discussed here. These
books and reviews have been (and continue to be) profoundly influential in
my own education, and in shaping the entire field.

I was fortunate to participate in the writing of [X], together with Cy-
con, Kirsch and, of course, Simon. This book started out as a week long
lecture series by Simon, delivered at breathtaking pace in a small castle in
Thurnau, Germany. It aims to survey the field of Schrödinger operators
with an emphasis on results that were recent at the time of writing in the
early 1980’s. Other reviews that are relevant to this article are 1982 Bulletin
article Schrödinger semigroups [xxi] and the 2000 review Schrödinger oper-

ators in the twentieth century [xxxix]. For this article I have often had to
compress the contents of entire long research papers into a sentence or two.
So I am fortunate to be able to refer the reader to these articles for more
information, in particular, to references to works by other authors. Each of
Simon’s reviews contains a reference list of several hundred articles.

Finally, it is impossible to discuss Simon’s pedagogical work on Schrödinger
operators without mentioning the series Reed and Simon ([II [III], [V], [VII])
from which several generations of Mathematical Physicists have learned the

2



subject.

Almost all the papers under review here concern the theory of Schrödinger
operators of the form

H = −∆ + V

acting in L2(Rn). In the context of non-relativistic quantum mechanics the
most important questions about such an operator for a given potential V
are

(i) self-adjointness: To begin with, the expression for H is only a formal
sum. How can H be defined as a self-adjoint unbounded operator?

(ii) spectral theory: What is the nature of the spectrum and where is it
located? What are the smoothness and decay properties of the eigenfunc-
tions?

(iii) scattering theory: What is the long time behaviour of the Schrödinger
time evolution e−itH?

The definition of resonances requires some extra structure and is dis-
cussed below.

2 Two-body and general Schrödinger operators

This section deals with work on two-body potentials, that is, potentials
V (x) that tend to zero in some sense as |x| → ∞, as well as some results
(mostly about self-adjointness) that continue to hold under the addition
of an L∞ term to the potential. Note that two-body operators become
one-body operators after the removal of the center of mass. This is briefly
discussed in the N -body section below.

2.1 Quadratic forms, singular and positive potentials

[5] On positive eigenvalues of one-body Schrödinger operators, Commun.
Pure Appl. Math. 12 (1969), 531-538

[13] Hamiltonians defined as quadratic forms, Commun. Math. Phys. 21
(1971), 192-210

[24] Essential self-adjointness of Schrödinger operators with positive poten-

tials, Math. Ann. 201 (1973), 211-220
[35] Essential self-adjointness for Schrödinger operators with singular poten-

tials, Arch. Rat. Math. Anal. 52 (1973), 44-48
[41] Quadratic forms and Klauder’s phenomenon: A remark on very singular

perturbations, J. Funct. Anal. 14 (1973), 295-298
[59] (with W. Faris) Degenerate and non-degenerate ground states for Schrödinger

operators, Duke Math. J. 42 (1975), 559-567
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[71] (with P. Deift) On the decoupling of the finite singularities from the

question of asymptotic completeness in two body quantum systems, J.
Funct. Anal. 23 (1976), 218-238

[76] An abstract Kato’s inequality for generators of positivity preserving semi-

groups, Ind. Math. J. 26 (1977), 1067-1073
[86] Kato’s inequality and the comparison of semi-groups, J. Funct. Anal. 32

(1979), 97-101
[135] (with M. Aizenman) Brownian motion and Harnack’s inequality for

Schrödinger operators, Commun. Pure Appl. Math. 35 (1982)

In the early part of his career, Simon contributed much to the under-
standing of how to handle singularities of the potential in basic questions
about Schrödinger operators. Singularities are important because the most
important potentials in physics, like the Coulomb potentials C|x|−1, are
singular. Moreover, the kinetic energy (Laplacian) term in a Schrödinger
operator dominates a potential as singular as −α|x|−2 for small enough α so
one would like to be able to handle potentials up to this borderline. It is a
fact of life, though, that for most properties there is no simple best possible
class of potentials.

Simon’s thesis ([13] and the book [I]) is a systematic exploration of the
Rollnik class of potentials. A potential V defined on R

3 is in the Rollnik
class R if the norm given by

‖V ‖2
R =

∫

R6

|V (x)||V (y)|
|x− y|2 d3xd3y

is finite. Simon proposes the class R as a replacement for L2(R3) in a col-
lection of theorems about two-body Schrödinger operators. For example,
considering the question of self-adjointness, the basic Kato-Rellich theorem
allows H = −∆+V to be defined as a self-adjoint operator sum on the usual
domain D(∆) of the Laplacian provided V ∈ L2(R3)+L∞(R3). This defini-
tion allows singularities as bad as |x|−3/2. To allow for potentials as singular
as |x|−2 (the physically relevant borderline), Simon proposes the condition
V ∈ R + L∞(R3). With this condition, H can no longer be defined as an
operator sum, but must be defined as the operator associated to the sum of
quadratic forms, via the KLMN theorem. For these Hamiltonians defined
as quadratic forms, Simon then considers bound state problems, existence
and completeness of wave operators under an L1 condition, and existence of
eigenfunction expansions. The bound state results rely on the fact that for
Rollnik potentials |V |1/2(−∆ − E)−1|V |1/2 is Hilbert-Schmidt. This allows
Birman-Schwinger type arguments to bound the number of negative energy
bound states and restrict the number and position of positive energy bound
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states. In particular, for small enough Rollnik norm there are no positive
energy bound states.

The question of the existence of positive energy bound states is a subtle
one, since a tunneling argument predicts that they do not exist for a two-
body potential. Yet, there is a well known example due to Wigner and
von Neumann of a potential decreasing like |x|−1 that does have a positive
eigenvalue. Before his thesis, Simon already published a result on positive
eigenvalues in [5], generalizing work of Kato and Odeh. In this paper he
rules out eigenvalues in [E0,∞) for potentials V ∈ L2(R3) + L∞(R3) that
are smooth near infinity and can be written as V = V1+V2 where as |x| → ∞,
|x|V1(x) → 0, V2(x) → 0 and lim supx ·∇V2(x) = E0 <∞. The proof treats
the equation for an eigenfunction as an ODE in the radial variable for an
L2(S2) valued function, and proceeds via differential inequalities.

Simon returns to the question of self-adjointness in [24],[35], this time
essential self-adjointness on C∞

0 for Schrödinger operators in higher dimen-
sions. The natural condition given by the Kato-Rellich theorem for dimen-
sion n ≥ 4 is V ∈ Lp(Rn) + L∞(Rn) for p > n/2 (but p = n/2 for n ≥ 5 is
also known). For positive potentials one expects to be able to handle more
singular potentials. In [24] Simon proves essential self-adjointness on C∞

0

for positive V in L2(Rn)+L∞(Rn). Clearly, a local L2 condition is required
to define H on C∞

0 . In this paper Simon conjectures that V = V+−V− with
V+ ∈ L2

loc and V− as above should suffice for essential self-adjointness on
C∞

0 . This was proved by Kato, and again by Simon in [35]. A crucial ingre-
dient in Kato’s proof is the distributional inequality ∆|u| ≥ Re(sgnu∆u).
(For complex u, sgnu equals u/|u| at points where u 6= 0 and vanishes at
points where u does.) Simon explores the connection between this type of
inequality and positivity preserving semigroups in [76] and [86]. The pa-
per [35] also proves self-adjointness for positive potentials V ∈ L2(Rn\0)
provided V ≥ Cnr

−2 for and explicit constant Cn.
Singularities on a distinguished set also play a role in [59], where Simon

and Faris examine the question of degeneracy of the ground state. A theorem
of Faris insures the non-degeneracy of the ground state for H = −∆ + V
defined via quadratic forms if V = V1 + V2 with V1 ≥ 0, V1 ∈ L1

loc(R
n)

and V2 ∈ L∞(Rn) + Ln/2(Rn) (here n ≥ 3, there are similar conditions
for n = 1, 2). On the other hand, Klauder noted that the singularity in
H = −d2/dx2 + x2 + |x|−α for α ≥ 1 effectively decouples the positive
and negative axis leading to a doubly degenerate ground state. (The phe-
nomenon was analyzed by Simon in [41] in terms of form sums.) Looking
to higher dimensions, Simon and Faris consider potentials in L1

loc(R
n\K),

where K is a closed set of measure zero. They prove that if R
n\K is con-
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nected, then −∆ + V has a non-degenerate ground state, even though V
can clearly be very singular on K. Two proofs are given: one using path
integrals and one using differential operator methods. On the other hand
if R

n\K has more than one component, there exists V ∈ L1
loc(R

n\K) such
that the ground state of −∆ + V is degenerate.

In [71] Deift and Simon also consider potentials V that can be very
singular on closed sets of measure zero, this time in the context of scattering
theory. The main result asserts that if wave operators for H0 = −∆ and
H = −∆ + V are complete then so are the wave operators for H0 and
H ′ = −∆ + χV , where χ is the characteristic function of the exterior of a
ball. A mild regularity condition on the negative part of V is required.

By the beginning of the 1980’s, in the book [X] and review article [xxi]
Simon was advocating the class Kν as a natural class of potentials for self-
adjointness and other properties, based on his work with Aizenman in [135].
A potential on R

ν for ν ≥ 3 is in this class if

lim
α↓0

sup
x

∫

|x−y|≤α
|x− y|2−ν |V (y)|dνy = 0

(with similar definitions for ν = 1, 2.) These potentials were previously stud-
ied by Kato and Schechter. They are not quite optimal for self-adjointness
(clearly α|x|−p ∈ Kν for p < 2 but not p = 2). However Aizenman and
Simon show in [135] that they are very natural from the point of view of
Lp mapping properties for the Schrödinger semigroup e−tH and for Harnack
inequalities. They prove, for example, that V ∈ Kν is equivalent to

lim
E→∞

‖(−∆ +E)−1V ‖∞,∞ = 0

Here ‖ · ‖∞,∞ denotes the L∞ → L∞ operator norm.

2.2 Weak coupling and threshold behaviour

[70] The bound state of weakly coupled Schrödinger operators in one and two

dimensions, Ann. Phys. 97 (1976), 279-288
[80] (with R. Blankenbecler and M.L. Goldberger) The bound states of weakly

coupled long-range one-dimensional quantum Hamiltonians, Ann. Phys.
108 (1977), 69-78

[115] (with M. Klaus) Coupling constant thresholds in nonrelativistic quan-

tum mechanics, I. Short range two-body case, Ann. Phys. 130 (1980),
251-281

[226] (with F. Gesztesy and G.M. Graf) The ground state energy of Schrödinger

operators, Commun. Math. Phys. 150 (1992), 375-384
[227] (with G.M. Graf) Asymptotic series for the ground state energy of

Schrödinger operators, J. Funct. Anal. 112 (1993), 442-446
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The λ dependence of an eigenvalue of a Schrödinger operator −∆ + λV
will can be understood using regular perturbation theory, as long as the
eigenvalue stays isolated from the rest of the spectrum. However, as λ
tends to zero, the eigenvalue will eventually be absorbed in the continuous
spectrum, at the latest when λ becomes zero. Simon has written a number of
papers about what happens near the point where the eigenvalue is absorbed.

The papers [70] and [80] deal with values of λ close to zero. They address
the questions of whether there are eigenvalues for small but non-zero λ, and,
if so, how they behave as λ tends to zero. Simon’s paper [70] begins with the
observation that a negative square well potential in one or two dimensions,
no matter how shallow, always has a bound state. In three or higher dimen-
sions, shallow square well potentials have no eigenvalues. This observation
is generalized as follows. In one dimension, if

∫

(1 + |x|2)|V (x)|dx < ∞
then −d2/dx2 + λV has a bound state for all small positive λ if and only
if

∫

V (x)dx < 0. A similar result holds in two dimensions. This paper also
considers the analyticity of the lowest eigenvalue e(λ) at λ = 0 (true in one
dimension and false in two) and the threshold behaviour. For example, in
one dimension e(λ) ∼ cλ2 if

∫

V dx < 0 and e(λ) ∼ cλ4 if
∫

V dx = 0. In [80]
Blankenbecler, Goldberger and Simon revisit the one dimensional situation,
but for longer range potentials for which

∫

(1+ |x|2)|V (x)|dx = ∞. Roughly
speaking, this paper considers V (x) ∼ −a|x|−β for 1 < β < 3. New phe-
nomena appearing include the existence of infinitely many bound states for
small coupling (in the range 1 < β < 2).

For short range potentials V , if an eigenvalue e(λ) is absorbed in the
continuous spectrum, that is, e(λ) → 0, as λ ↓ λ0, what is the leading order
of e(λ)? For example, is e(λ) ∼ (λ − λ0)

α? This question is answered in
detail in Klaus and Simon [115]. The answer is highly dimension dependent,
with different results depending on whether the dimension is in {1}, {2},
{3}, {4}, {5, 7, 9, . . .} or {6, 8, 10, . . .}.

In the early 1990’s, Simon again considered Schrödinger operators with
weak coupling, that is, −∆+λV for λ small. But now V is a potential that
does not go to zero at infinity. Let e(λ) denote the infimum of the spectrum.
Of course, in this setting e(λ) need not be an eigenvalue. In [226] Gesztesy,
Graf and Simon are address the question of when e(λ) < 0 (notice the strict
inequality) for λ 6= 0. They prove for a large class of potentials that do not
decrease at infinity that −cλ2 ≤ e(λ) ≤ −dλ2 for positive constants c and
d. In a follow up, Graf and Simon [227] give a class of potentials, including
some almost periodic potentials, for which e(λ) has a complete asymptotic
series at λ = 0.
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2.3 Some scattering results

[99] (with E.B. Davies) Scattering theory for systems with different spatial

asymptotics on the left and right, Commun. Math. Phys. 63 (1978), 277-
301

[103] (with C. Radin) Invariant domains for the time-dependent Schrödinger

equation, J. Diff. Eqn. 29 (1978), 289-296
[106] Phase space analysis of simple scattering systems. Extensions of some

work of Enss, Duke Math. J. 46 (1979), 119-168
[218] Absence of ballistic motion, Commun. Math. Phys. 134 (1990), 209-212

Here I will briefly describe some papers on scattering that have not been
mentioned above, and are not discussed with N -body results below. In
[99] Davies and Simon study scattering theory for systems with different
spatial asymptotics on the left and the right. An example is a potential
in one dimension that approaches different limiting values as x → ±∞. A
physically important example is a half-solid, that is, a potential in R

n that
vanishes in a half space and is periodic in the other half space. This paper
contains results about existence and completeness of scattering, where the
comparison dynamics may be different on each side. In the case of a half
solid, there is a proof of the decomposition of the absolutely continuous
spectral subspace into scattering states and surface states.

Motivated by a result in classical mechanics, Radin and Simon in [103]
show that there is a dense set of vectors such that ‖xe−itHf‖ is bounded
by C(1 + |t|) for f in this set, provided V is Laplacian bounded with bound
less than one (in either the form or operator sense). Here x is the vector
valued position operator. This bound cannot be improved in general, since
it describes ballistic motion, that is, the time behaviour for a freely moving
particle. However, if H has only point spectrum one might expect there to
be no ballistic motion. This is proved by Simon in [218], where he shows
that for such Hamiltonians limt→∞ t−2‖xe−itHf‖2 = 0 for f with compact
support.

The paper [106] is a long exploration of the method introduced by Enss
in two-body, and later in three-body, scattering. Enss’s method created a
sensation when it appeared, since it was able to reproduce the strongest
known results at the time in a transparent manner, with beautiful connec-
tions to classical mechanics. Simon extends the method to a large number of
scattering systems, including pseudo-differential operators, Stark and Zee-
man effects, optical and acoustical scattering, complex potentials, magnons
and half solids (in some sense making obsolete the methods just introduced
in [99]).
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2.4 Multiple wells, continuum eigenfunctions and eigenvalue

splittings

[114] (with M. Klaus) Binding of Schrödinger particles through conspiracy

of potential wells, Ann. Inst. H. Poincaré A30 (1979), 83-87
[137] Spectrum and continuum eigenfunctions of Schrödinger operators, J.

Funct. Anal. 42 (1981), 347-355
[179] (with W. Kirsch) Universal lower bounds on eigenvalue splittings for

one dimensional Schrödinger operators, Commun. Math. Phys. 97 (1985),
453-460

[181] (with W. Kirsch) Comparison theorems for the gap of Schrödinger

operators, J. Funct. Anal. 75 (1987), 396-410

The paper [114] with Klaus was motivated in part by Sigal’s work on the
Effimov effect. The Effimov effect is the phenomenon occurring for certain
N -body Hamiltonians where short range (even compactly supported) pair
potentials can produce infinitely many bound states. The main result in
[114] concerns two compactly supported critical potentials V1 and V2. Here
critical means that −∆ + V ≥ 0 but −∆ + λV has a negative eigenvalue
for any λ > 1. In this situation Simon and Klaus prove that the potential
Wr = V1(x) + V2(x − r), where r is large enough so that the supports
are disjoint, produces a bound state with energy E(r) ∼ β|r|−2. In three
dimensions, β is a universal constant.

In [137] Simon shows that the spectrum of a fixed Schrödinger operator
on a class of polynomially weighted spaces is independent of the weight.
This holds for a large class of potentials V = V+ + V− with V± ≥ 0 and
V+ ∈ K loc

ν , V− ∈ Kν . A consequence of this theorem is the fact (first proved
by Sch’nol) that if Hφ = Eφ has a polynomially bounded solution, then E
is in the spectrum of H.

In [179] and [181] Kirsch and Simon consider the question of estimating
the splitting between two eigenvalues of a Schrödinger operator. The paper
[179] treats the one-dimensional case, where eigenvalues are simple. For
V ∈ C∞

0 supported in [a, b] a bound of the form En−En−1 ≥ πλ2 exp(−λ(b−
a)) is obtained, where λ = supE∈(En−1,En),x∈(a,b)

√

|E − V (x)|. In higher
dimensions, since eigenvalues other than the ground state can be degenerate,
it only will be possible to estimate E1 − E0 in general. The paper [181]
gives variational lower bounds on this number that follow from realizing a
Schrödinger operator as a Dirichlet form. These bounds lead to a quadratic
lower bound E0(k) − E0(0) ≥ Ck2 for the lowest band function E0(k) for a
periodic Schrödinger operator.
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3 N-body Schrödinger operators

A Schrödinger operator describing N particles with masses mi moving in
R

n and interacting via pair potentials Vij has the form

H̃ = −
N

∑

i=1

1

2mi
∆i +

∑

1≤i<j≤N

Vij(xi − xj).

This operator, acting in L2(RnN ), has purely absolutely continuous spec-
trum arising from the uniform motion of the centre of mass. To define the
N -body operator H, we must remove the centre of mass. I will give a brief
description of this, as well as some of the terminology used below.

To remove the centre of mass (according to the Sigal-Sigalov prescrip-
tion), consider the inner product on R

nN defined by the masses via the
formula

〈(x1, . . . , xN ), (y1, . . . , yN )〉 =

N
∑

i=1

mi〈xi, yi〉,

where the bracket on the right side denotes the usual inner product on R
n.

Decompose R
nN into an orthogonal direct sum X ⊕ Y , where

Y = {(x, . . . , x) : x ∈ R
n}

is the diagonal subspace and

X = Y ⊥ = {(x1, . . . , xN ) :
∑

i = 1Nmixi = 0}.

The subspace Y can be thought of as co-ordinates for the displacement of the
centre of mass, while the subspace X contains internal co-ordinates. From
the direct sum decomposition, we obtain L2(RnN ) = L2(X) ⊗ L2(Y ). The
first (kinetic energy) term in H̃, being −1/2 times the Laplace operator for
this metric defined by this inner product, can be written −∆X ⊗I−I⊗∆Y ,
where ∆X and ∆Y are the Laplace operators for the respective subspaces.
Since the potential is constant along the diagonal, it can be written V ⊗ I,
where V is given by the formula above, but thought of as the restriction of
the original potential to X. Thus

H̃ = H ⊕ I + I ⊕ (− 1

2
∆Y ).

This defines the N -body Hamiltonian H = − 1
2∆X + V acting in L2(X).

For any partition C = {c1, . . . , ck} of {1, . . . , N} into disjoint subsets, or
clusters, there is an associated cluster Hamiltonian H(C) obtained from H
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by dropping potentials Vi,j when i and j lie in different subsets. Thus H(C)
is the Hamiltonian describing the particles within each cluster interacting,
but clusters moving independently of the others.

There is an associated direct sum decomposition of X into Xc1 ⊕ · · · ⊕
Xck

⊕YC giving rise to the tensor product decomposition L2(X) = L2(Xc1)⊗
· · ·⊗L2(Xck

)⊗L2(YC). The subspaces Xci
contain the internal co-ordinates

for the cluster ci while YC contains co-ordinates for relative motion of the
clusters. The cluster Hamiltonian has the associated decomposition

H(C) = hc1 ⊗ · · · ⊗ I ⊗ I + · · ·
· · · + I ⊗ · · · ⊗ hck

⊗ I + I ⊗ · · · ⊗ I ⊗ (− 1

2
∆YC

),

where hck
is the Nk-body Hamiltonian for the particles in the cluster ck.

Here Nk is the number of particles in the cluster ck. This decomposition
therefore sets the stage for an inductive treatment of N -body Hamiltonians.

3.1 The Pointwise bounds series

[43] Pointwise bounds on eigenfunctions and wave packets in N-body quantum

systems, I, Proc. Amer. Math. Soc. 42 (1974), 395-401
[46] Pointwise bounds on eigenfunctions and wave packets in N-body quantum

systems, II, Proc. Amer. Math. Soc. 45 (1974), 454-456
[51] Pointwise bounds on eigenfunctions and wave packets in N-body quantum

systems, III, Trans. Amer. Math. Soc. 208 (1975), 317-329
[95] (with P. Deift, W. Hunziker and E. Vock) Pointwise bounds on eigen-

functions and wave packets in N-body quantum systems, IV, Commun.
Math. Phys. 64 (1978), 1-34

[133] (with R. Carmona) Pointwise bounds on eigenfunctions and wave pack-

ets in N-body quantum systems, V. Lower bounds and path integrals,

Commun. Math. Phys. 80 (1981), 59-98
[134] (with E. Lieb) Pointwise bounds on eigenfunctions and wave packets

in N-body quantum systems, VI. Asymptotics in the two cluster region,

Adv. Appl. Math. 1 (1980), 324-343

This series of papers considers the question of exponential decay of eigen-
functions. Let Ψ(x) be an eigenfunction of an N -body Hamiltonian with
eigenvalue E < Σ = inf σess(H). One way of measuring the decay of Ψ(x)
is by a so-called L2 bound, that is, a statement like ea|x|Ψ(x) ∈ L2 indicat-
ing that in some average sense, Ψ(x) decays faster than e−a|x|. A stronger
statement is a pointwise bound of the form

|Ψ(x)| ≤ Cae
−a|x|.
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which is required to hold for every x. This kind of bound (and the corre-
sponding lower bound) is the subject of these papers.

In [43], the first paper of this series, Simon proves that such a pointwise
estimate holds for all a <

√
Σ −E. In addition, Hölder continuity of Ψ

and ∇Ψ is proved. Prior to this paper, O’Connor had proved L2 bounds by
showing that Ψ̂ has an L2 analytic continuation to a tube around R

3N−3 and
applying a Payley-Wiener argument. Simon shows that this continuation
can be made in L1, which leads to the desired bound.

The papers [46] and [51] are actually not about N -body Hamiltonians,
but consider potentials V (x) that grow at infinity. In this case, one expects
faster than exponential decay, and this is what Simon proves.

The exponential bounds described so far are isotropic, that is, they de-
pend only on |x| and not on the direction of x. However, the behaviour
of an N -body potential at infinity depends very much on the direction.
Therefore, it is not unreasonable to expect that in the upper bound, e−a|x|

could be replaced by e−f(x) where f is homogeneous of degree one. Such
non-isotropic bounds are the subject of the milestone paper [95] with Deift,
Hunziker and Vock. In this paper, the Combes-Thomas technique is used
to prove non-isotropic bounds |Ψ(x)| ≤ Ce−f(x) for homogeneous functions
f whose gradient satisfies an inequality involving the spectrum of cluster
Hamiltonians, that is, Hamiltonians defined by keeping only potentials that
do not go to zero in a certain direction. Between this paper and the next
in the series, the optimal f satisfying the gradient inequality was found by
Agmon, and is now known as the Agmon metric.

The next paper [133] with Carmona, is another landmark paper. In
this paper, probabilistic methods are used to prove that the Agmon metric
provides an exponential lower bound for the ground state Ψ. Combining
this with the upper bound, we have

cεe
(1−ε)f(x) ≤ Ψ(x) ≤ Cεe

(1+ε)f(x).

This bound shows that, in some sense, the Agmon metric captures exactly
the behaviour of the ground state. Actually, the paper [133] considers
not only N -body Hamiltonians, but also potentials that grow at infinity.
For these potentials there is also a corresponding Agmon metric and upper
bound, and Carmona and Simon provide the corresponding optimal lower
bound for the ground state.

In final paper [134] of this series, Lieb and Simon go beyond upper and
lower bounds above, to compute the first term in an asymptotic expansion.
They consider the ground state Ψ in a region of configuration space where
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the particles form two widely separated clusters. They are able to prove
asymptotics of the form

Ψ(ζ1, ζ2, R) = cψ1(ζ1)ψ2(ζ2)e
−kRR−1(1 +O(e−γR))

where ζ1 and ζ2, the internal co-ordinates for the two clusters, stay bounded
while the intercluster distance R tends to infinity. Here ψ1 and ψ2 are the
ground states of the corresponding cluster Hamiltonians.

3.2 Geometric Methods

[83] (with P. Deift) A time-dependent approach to the completeness of multi-

particle quantum systems, Commun. Pure Appl. Math. 30 (1977), 573-583
[84] Geometric methods in multiparticle quantum systems, Commun. Math.

Phys. 55 (1977), 259-274
[85] N-body scattering in the two-cluster region, Commun. Math. Phys. 58

(1978), 205-210
[124] (with V. Enss) Bounds on total cross-sections in atom-atom and atom-

ion collisions by geometric methods, Phys. Rev. Lett. 44 (1980), 319-321
[125] (with V. Enss) Finite total cross-sections in non-relativistic quantum

mechanics, Commun. Math. Phys. 76 (1980), 177-210
[304] (with Y. Last) The essential spectrum of Schrdinger, Jacobi, and CMV

operators, preprint, 2005.

Geometric methods for N -body Hamiltonians aim to exploit the special
form of an N -body potential near infinity in configuration space by using
partitions of unity. In regions of configuration space where two particles are
widely separated so that the corresponding potential is small, we should be
able to ignore that potential. Such localizations are now pervasive in the
subject, so it is interesting to sense the excitement they caused in the late
1970’s. This is from the introduction to Simon’s paper [84]:

“. . . there is some point in seeing the sweep of results presented
here obtained by geometric methods without the pernicious in-
fluence of resolvent equations. Not that these equations do not
have their usefulness but it seems to me that they have overly
dominated our thinking. I will regard this paper as a success if it
helps strike a balance in the reader’s mind; even better, I would
hope to convey the excitement of the geometric ideas.”

The first paper [83] in this series, Deift and Simon take the first steps in
a geometric time-dependent proof of asymptotic completeness for multipar-
ticle systems. They consider wave operators for a three body system of the
form

W±
α = s − lim

t→∓∞
eitHαJαe

−itHPac.
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Here Hα is a cluster Hamiltonian obtained by dropping two of the three
potentials in the original H, and Jα is a cutoff function that localizes to the
region where the dropped potentials are small. For example, if the remaining
potential in Hα is V1,2, then Jα would localize to the region where |x1 − x2|
is small, but |x1 −x3| and |x2 −x3| are large. Deift and Simon prove that if
asymptotic completeness holds, then these wave operators exist. They also
show that if the wave operators exist, and scattering is complete for two
body subsystems, then asymptotic completeness holds.

In the paper [84], Simon uses geometric methods to provide simple proofs
of a number of basic results about N -body Schrödinger operators. The first
of these is the HVZ theorem, first proved separately by Hunziker, Van Winter
and Zhislin. Let Σ denote the bottom of the essential spectrum of H

Σ = inf σess(H)

and denote by Σ2 the infimum over the spectra of the cluster Hamiltonians
H(C) as C ranges over all 2 cluster partitions.

Σ2 = inf
C:#(C)=2

inf σess(H(C)).

The quantity Σ2 is the smallest energy the system of particles can have if
we divide them into two groups and move the groups far apart. The HVZ
theorem asserts that

Σ = Σ2.

The second result is a theorem first proved by Combes. It concerns the
situation where it always requires energy to break a two cluster partition
into three groups. In other words, Σ2 < Σ3, where if

Σ3 = inf
C:#(C)=3

inf σess(H(C)).

Given the HVZ theorem, we see that scattering is possible in the energy
range [Σ,Σ3]. Combes’ theorem asserts that scattering is complete in this
energy range. The final part of this paper deals with the question of when
there are finitely many and when there are infinitely many bound states.

When proving Combes’ scattering result Simon required the interparticle
potentials Vij(x) to decay like |x|−n−ε. In [85] Simon improves this to |x|−1−ε

in the case of central potentials, that is, potentials that only depend on |x|.
The papers [124] and [125] address the problem of estimating the total

scattering cross section. Actually, most of this paper is not about N -body
scattering, but the geometric time dependent approach makes it possible
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to consider the N body problem too, and there is a result about the cross
section for a two cluster channel in this paper. The total cross section in the
two body case is defined as follows. Fix an incident direction ê and suppose
that g(x) is a function of x · ê, that is, g(x) = G(x · ê). Define g̃(k) to be
the Fourier transform of G. Then σtot(k) is defined via

‖(S − 1)g‖2 =

∫

σtot(k)|g̃(k)|2dk.

Here S denotes the scattering operator. Since g is not square integrable,
the left hand side must be defined as a limit limR→∞ ‖(S − 1)ghR‖2 for a
sequence of cutoff functions hR. The paper contains both upper and lower
bounds on σtot. In particular, the leading behaviour of the cross section for
large coupling constant is obtained.

The recent preprint [304] with Yoram Last is proof that the geometric
method has not run out of steam. This paper presents a unified framework
for identifying the essential spectrum of a broad class of operators that in-
cludes the HVZ theorem as a special case. This method is able to handle
potentials that do not have a limit at infinity. The proof is based on lo-
calization formulæ. But in contrast to the earlier work, the support of the
cutoff function is on balls of a fixed size, and only single commutators are
used.

3.3 Absence of singular continuous spectrum

[131] (with P. Perry and I. Sigal) Absence of singular continuous spectrum

in N-body quantum systems, Bull. Amer. Math. Soc. 3 (1980), 1019-1024
[132] (with P. Perry and I. Sigal) Spectral analysis of N-body Schrödinger

operators, Ann. of Math. 114 (1981), 519-567

Perry, Sigal and Simon’s paper [132] was a landmark in the history of
the subject. It contained the first proof, for general N -body systems, of the
absence of singular continuous spectrum and the fact that eigenvalues can
accumulate only at thresholds. The immediate antecedent of this work was
a paper of Mourre who considered abstract positive commutator estimates,
now known as Mourre estimates, of the form

E∆i[H,A]E∆ ≥ αE2
∆ +K

where E∆ is the spectral projection of H for the interval ∆, A is a self-
adjoint operator which in applications to N body systems is the generator
of dilations, and K is compact. Mourre showed how this sort of estimate
could lead to the desired spectral information for H in the interval ∆. The
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hypotheses in Mourre’s work allowed him to apply his theorem to 2 and 3
body systems. Perry, Sigal and Simon’s major technical achievement was
the proof of the Mourre estimate for N -body systems for a large class of
potentials.

3.4 Coulomb Systems

[45] (with E. Lieb) On solutions of the Hartree-Fock problem for atoms and

molecules, J. Chem. Phys. 61 (1974), 735-736
[55] (with E. Lieb) The Hartree-Fock theory for Coulomb systems, Commun.

Math. Phys. 53 (1977), 185-193
[97] (with E. Lieb) Monotonicity of the electronic contribution of the Born-

Oppenheimer energy, J. Phys. B11 (1978), L537-542
[119] (with M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof) On the nodal

structure of atomic eigenfunctions, J. Phys. A13 (1980), 1131-1133
[160] (with M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof) A multipar-

ticle Coulomb system with bound state at threshold, J. Phys. A16 (1983),
1125-1131

[175] (with E. Lieb, I. Sigal and W. Thirring) Asymptotic neutrality of large

Z ions, Phys. Rev. Lett. 52 (1984), 994-996
[199] (with E. Lieb, I. Sigal and W. Thirring) Approximate neutrality of

large-Z ions, Commun. Math. Phys. 116 (1988), 635-644

The most important multiparticle Hamiltonians from the physical point
of view are Coulomb systems describing the interaction of N electrons with
k nuclei via Coulomb potentials. A common approximation is to consider
the limit of infinite nuclear mass. In this case the nuclei are static, fixed at
positions R1, . . . Rk. The corresponding Hamiltonian is

H = −
N

∑

i=1

∆i −
N

∑

i=1

k
∑

j=1

zj |xi −Rj|−1 +
∑

1≤i<j≤N

|xi − xj |−1

The zj are positive numbers giving the charges of the nuclei. In the case
of static nuclei, no removal of the centre of mass is needed and H acts
in L2(R3N ). However, to take account of the effect of spin, we must let
H act in L2

a(R
3N ; C2N ). A function in this space can be thought of as

Ψ(x1, σ1; . . . ;xN , σN ) with xi ∈ R
3 and σi ∈ {1/2,−1/2} with the require-

ment that Ψ is antisymmetric under exchanges of xi, σi and xj, σj .
The Hartree-Fock approximation to the ground state energy is obtained

by minimizing (Ψ,HΨ) over a restricted set of Ψ given by Slater determi-
nants

Ψ(x1, σ1, . . . , xN , σN ) = (N !)−1/2 det(ui(xj, σj))

where ui(x, σ) for i = 1, . . . , N is an orthonormal set of trial functions.
The Euler-Lagrange equations for this minimization problem are called the
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Hartree-Fock equations. They are a complicated set of non-linear equations,
and it is not clear that they have a solution.

In the paper [55] (and the announcement [45]), Lieb and Simon give a
positive solution to this fundamental problem. Their proof is variational,
that is, they prove the existence of a minimizer of the energy functional,
rather than directly proving the existence of a solution to the Hartree Fock
equations. In addition, they obtain properties of the minimizers, ui, such
as exponential decay. The proof is related to another approximation, the
Thomas-Fermi approximation, which however is not covered in this review.

Lieb and Simon in [97] study the true ground state energy of H as a
function of the centres Ri. They consider first the case when there are two
nuclei and one electron. In this case they prove that the ground state energy
is an increasing function of |R1−R2|. Secondly, they consider the case of one
electron and k nuclei whose positions are scaled to λR1, . . . , λRk. In this
case the ground state energy is non-decreasing as λ increases. The proof
uses correlation inequalities.

The paper [119] with M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof
is an early work about nodal properties of eigenfunctions. The result is that
near a zero of an eigenfunction the eigenfunction takes on both signs. Two
proofs are sketched. Actually, the Coulomb nature of the potentials is not
important in the proof.

In [160] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and Simon con-
sider H(A) = −∆1 − ∆2 − |x1|−1 − |x2|−1 + A|x1 − x2|−1 at the critical
value of the coupling constant A where the ground state is absorbed in the
continuum. They show that at the critical value the bound state persists.

The final paper in this group [199] (with an announcement in [175])
joint with Lieb, Sigal and Thirring concerns the maximum number N(Z) of
electrons that an atomic Hamiltonian with charge Z can bind. This number
is defined as follows. Consider the Hamiltonian H above with N electrons,
one nucleus, that is, k = 1 and charge z1 = Z. Call this Hamiltonian
H(N,Z). Let E(N,Z) be the ground state energy, that is, the infimum
of (Ψ,H(N,Z)Ψ) taken over antisymmetric Ψ. The Ruskai-Sigal theorem
states that there is an N such that E(N + 1, Z) = E(N,Z). The smallest
such N for a fixed Z is N(Z). Sigal had showed that lim supN(Z)/Z ≤ 2
and Lieb had improved this to N(Z) < 2Z +1. This paper contains a proof
of the fact that

N(Z)/Z → 1

as Z → ∞. The proof begins by proving a classical analog of this theorem.
This is then used in a proof modeled on Sigal’s.
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3.5 Dilation Analyticity

[25] Quadratic form techniques and the Balslev-Combes theorem, Commun.
Math. Phys. 27 (1972), 1-9

[44] Absence of positive eigenvalues in a class of multiparticle quantum sys-

tems, Math. Ann. 207 (1974), 133-138

These papers develop ideas introduced by Balslev, Combes and Thomas
for studying the spectrum of N -body Hamiltonians and the decay of eigen-
functions. In [25] the original dilation analyticity argument of Balslev and
Combes on the absence of singular continuous spectrum is extended to a
wider class of potentials using quadratic form techniques. Paper [44] proves
the absence of positive eigenvalues for a class of N -body Hamiltonians with
dilation analytic potentials. In addition to dilation analyticity, the proof
uses the Combes-Thomas method of proving exponential decay.

3.6 Other N-body papers

[9] On the infinitude or finiteness of the number of bound states of an N-body

quantum system, I, Helv. Phys. Acta 43 (1970), 607-630
[96] Scattering theory and quadratic forms: On a theorem of Schechter, Com-

mun. Math. Phys. 53 (1977), 151-153
[122] (with M. Klaus) Coupling constant threshold in non-relativistic quan-

tum mechanics, II. Two-cluster thresholds in N-body systems, Commun.
Math. Phys. 78 (1980), 153-168

The paper [9] is an early work on the question of whether an N -body
Hamiltonian has finitely many or infinitely many bound states. The mecha-
nism for infinitely many bound states discussed here is the presence of longer
range intercluster potentials (as opposed to the Effimov effect which may
occur for potentials of compact support) and the proof uses trial functions
and minimax.

In [96], Simon shows how Cook’s method can be adapted to prove exis-
tence of wave operators where the difference is only defined as a quadratic
form.

The paper [122] with Klaus is a continuation to the N -body setting of
the study in [115] of the behaviour of an eigenvalue e(λ) as a function of the
coupling constant λ at the point where the eigenvalue is absorbed into the
continuum. The results in in [115] are highly dimension dependent. So, in
the N -body case, it is important to determine the effective dimension of the
bottom of the continuum, since this will give the right asymptotic behaviour
of e(λ). For example, if the bottom of the continuous spectrum is determined
by a two-cluster breakup, the effective dimension is the dimension of the
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Laplacian giving the inter-cluster kinetic energy. This is the case treated in
this paper.

4 Resonances

[19] Convergence of time-dependent perturbation theory for autoionizing states

of atoms, Phys. Lett. A36 (1971), 23-25
[20] Resonances in n-body quantum systems with dilatation analytic poten-

tials and the foundations of time-dependent perturbation theory, Ann. of
Math. 97 (1973), 247-274

[105] (with E. Harrell) The mathematical theory of resonances whose widths

are exponentially small, Duke Math. J. 47 (1980), 845-902
[107] The definition of molecular resonance curves by the method of exterior

complex scaling, Phys. Lett. 71A (1979), 211-214
[121] (with J. Morgan) The calculation of molecular resonances by complex

scaling, J. Phys. B14 (1981), L167-L171
[156] (with N. Corngold and E. Harrell) The mathematical theory of res-

onances whose widths are exponentially small, II, J. Math. Appl. 99
(1984), 447-457

[276] Resonances in one dimension and Fredholm determinants, J. Funct.
Anal. 178 (2000), 396-420

A resonant state φ of a quantum system described by a Schrödinger
operator H is a state that behaves almost like a bound state, or eigenvector,
but is ultimately unstable. Heuristically, φ should be an eigenvector with
complex eigenvalue E − iΓ/2 so that

∣

∣〈φ, e−itHφ〉
∣

∣

2
decays like e−Γt. But,

of course, a self-adjoint operator H cannot have a complex eigenvector, and
giving a mathematical definition of resonances was a challenge from the first
days of quantum mechanics.

“No satisfactory definition of a resonance can depend only on the struc-
ture of a single operator in an abstract Hilbert space.” This remark of
Howland was dubbed Howland’s Razor, in reference to Ockham, by Simon
in his review article [xv] for quantum chemists. The reason is that it is pos-
sible to display two Hamiltonians that are unitarily equivalent, but where
one, on physical grounds, should have resonances and the other of which
should not. Simon goes on to say that the only “satisfactory” definition of a
resonance is as a scattering pole, that is, a pole in the analytic continuation
of the scattering amplitude. The extra structure involved is then a reference
operator H0 (for a time dependent definition of the scattering operator) or
the geometric structure of space.

However, other definitions of resonances are easier to work with, and
Simon’s papers on resonances deal mostly with the dilation analyticity def-
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inition. In this definition, one starts with the complex dilated Hamiltonian

H(θ) = −e−2θ∆ + V (eθx)

defined for θ in a strip in the complex plane for suitable V . Aguilar and
Combes (for two-body Hamiltonians) and Balslev and Combes (for N -body
Hamiltonians) proved that as θ moves from the real axis into the com-
plex plane the essential spectrum pivots into the complex plane around the
thresholds. Along the way complex eigenvalues are uncovered which, once
exposed, do not depend on θ. These complex eigenvalues are the (dilation
analytic) resonances.

Simon’s papers [19] and [20] use the dilation analytic definition of reso-
nance to give a mathematical meaning to perturbation theory for embedded
eigenvalues, and to the Fermi Golden rule. Important physical examples of
this phenomenon are the so-called autoionizing states for helium. Here one
starts with the N -body Hamiltonian describing a helium atom, but with the
electron-electron interaction turned off. Explicitly,

H0 = −∆1 − ∆2 − 2/|x1| − 2/|x2|.

Since this Hamiltonian has the form h ⊗ 1 + 1 ⊗ h it is easy to compute
the spectrum and one finds there are eigenvalues at −n−2 − m−2, n,m ∈
Z embedded in the continuous spectrum, which starts at −1. When the
electron-electron interaction, β/|x1−x2| is turned on (that is, β is increased
from zero to some small value) one expects that the embedded eigenvalues
dissolve. The basic idea of these papers is to first perform a complex dilation.
This turns the embedded eigenvalues into isolated discrete eigenvalues, albeit
of a non self-adjoint operator. Nevertheless, regular perturbation can be
applied to these, giving a series expansion for the perturbed eigenvalue.
The leading order for the imaginary part of this series yields Fermi’s Golden
rule for the lifetime of the resonance. It can be used to show that the
eigenvalue really does move into the complex plane to become a resonance.
For the autoionizing states there are additional issues stemming from the
high multiplicity of the eigenvalues, and Simon also addresses these.

Another physically important resonance problem is the hydrogen atom
in a constant electric field, with Hamiltonian given by

H(F ) = −∆ − 1/|x| + Fx3.

When F = 0 this is the Hamiltonian for the hydrogen atom with negative
eigenvalues accumulating at zero. However, for all non-zero real F the spec-
trum is purely absolutely continuous and covers the entire real line. Clearly,
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this is a very singular perturbation problem. Nevertheless, Herbst succeeded
in extending the Balslev-Combes framework to this problem and obtained
an expansion E(F ) ∼ E0 +

∑

A2nF
2n for the resonances. The coefficients

A2n in this expansion are all real, which implies that the imaginary part
=E(F ) of E(F ), which he shows are non-zero, must be very small as F
tends to zero. In fact there is a formula proposed by physicists, called the
Oppenheimer formula, for the width of the resonance associated with the
lowest eigenvalue of H(0). It is given by

=(E(F )) ∼ 1

2F
exp

(−1

6F

)

.

The papers [105] (with Harrell) and [156] (with N. Corngold and E. Harrell)
deal with this and related situations (including the anharmonic oscillator
and the Bender-Wu formula). One of their results is a proof of the Oppen-
heimer formula. The proofs proceed by reducing the problem to a problem
in ODE’s.

Simon’s most recent paper on resonances [276] deals with the one di-
mensional case. There are two main results in this paper. One is an ex-
pansion formula for a Fredholm determinant appearing in my own work on
the counting function for resonances. This formula allows Simon to connect
my approach with the original approach of Zworski. The second result is a
counting result for antibound states.
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