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Eigenvalues and eigenvectors

Let A be an n × n matrix. A number λ and a vector x are called an eigenvalue eigenvector pair if

(1) x 6= 0

(2) Ax = λx

In other words, the action of A on the vector x is to stretch or shrink it by an amount λ without changing
its direction.

We say λ is an eigenvalues of A if there exists a vector x so that λ and x are an eigenvalue eigenvector pair.

Notice that we do not allow x = 0. If we did, any number λ would be an eigenvalue. However we do allow
λ = 0. Saying that 0 is and eigenvalue of A means that there is a non-zero solution x (the eigenvector) of
Ax = 0x = 0. So we see that 0 is an eigenvalue of A precisely when A is not invertible.

Lets look at some examples.

Consider the matrix of reflection about a line making an angle of θ with the x axis.

θ
x

y

= Rx

Ry = - y

Let x be any vector that lies along the line. Then the reflection doesn’t affect x. This means that Rx = x.
In other words, x is an eigenvector with eigenvalue 1

On the other hand, suppose that y is a vector at right angles to the line. Then the reflection flips y into
minus itself. So Ry = −y. In other words, y is an eigenvector with eigenvalue −1

If we take any other vector and reflect it, we don’t end up with a vector that lies on the same line as the
original vector. Thus there are no further eigenvectors or eigenvalues.

An important point to notice is that the eigenvector is not uniquely determined. The vector x could be any
vector along the line, and y could be any vector orthogonal to the line. In fact, if we go back to the original
definition of eigenvalue and eigenvector we can see that if λ and x are an eigenvalue eigenvector pair, then
so are λ and sx for any non-zero number s, since (1) sx 6= 0 and (2) Asx = sAx = sλx = λsx. So the
important thing about an eigenvector is its direction, not its length.

However, there is no such ambiguity in the definition of the eigenvalue. The reflection matrix has exactly
two eigenvalues 1 and −1.

In some sense, the reflection matrix R illustrates the most satisfactory situation. R is a 2 × 2 matrix with
two distinct eigenvalues. The corresponding eigenvectors x and y are linearly independent (in fact they are
orthogonal) and form a basis for two dimensional space.

It will be important in applications to determine whether or not there exists a basis of eigenvectors of a
given matrix. In this example, x and y are a basis of eigenvectors of R.

As our next example, consider the identity matrix I . Since the identity matrix doesn’t change a vector, we
have Ix = x for any vector x. Thus any vector x is an eigenvector of I with eigenvalue 1.

This example shows that a given eigenvalue may have many eigenvectors associated with it. However, in
this example, there still exists a basis of eigenvectors: any basis at all is a basis of eigenvectors.
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Next we will consider the rotation matrix . . . and run into trouble. Suppose R is the matrix of rotation by
π/4 (ie 45◦). Then Rx is never in the same direction as x, since R changes the direction of x by π/4. So R
has no eigenvalues and no eigenvectors.

This unfortunate state of affairs will cause us to make a considerable detour into the theory of complex
numbers. It turns out that if we work with complex numbers rather than real numbers, then the rotation
matrix has eigenvalues too.

Problem 4.1: Show that

[

1
1

]

and

[

1
−1

]

are eigenvectors for the matrix

[

1 1
1 1

]

. What are the corresponding

eigenvalues?

Problem 4.2: Suppose P is a projection matrix. What are the eigenvalues and eigenvectors of P ?

Computing the eigenvalues and eigenvectors

We now consider the problem of finding all eigenvalue eigenvector pairs for a given n × n matrix A.

To start, suppose someone tells you that a particular value λ is an eigenvalue of A. How can you find the
corresponding eigenvector x? This amounts to solving the equation Ax = λx for x. This can be rewritten

(A − λI)x = 0,

where I denotes the identity matrix. In other words x is a non-zero solution to a homogeneous equation. It
can be found by Gaussian elimination.

For example, suppose you know that 4 is an eigenvalue of





3 −6 −7
1 8 5
−1 −2 1



 .

To find the corresponding eigenvector, we must solve









3 −6 −7
1 8 5
−1 −2 1



 − 4





1 0 0
0 1 0
0 0 1













x1

x2

x3



 =





0
0
0



 .

This can be written




−1 −6 −7
1 4 5
−1 −2 −3









x1

x2

x3



 =





0
0
0



 .

To solve this we reduce the matrix. This yields





−1 −6 −7
0 −2 −2
0 0 0





The fact that the rank of this matrix is less than 3 confirms that 4 is indeed an eigenvalue. If the rank of
the matrix were 3 then the only solution to the equation would be 0 which is not a valid eigenvector.
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Taking x3 = s as a parameter, we find that x2 = −s and x1 = −s. Thus

x = s





−1
−1
1





is an eigenvector (for any non-zero choice of s). In particular, we could take s = −1. Then

x =





1
1
−1





Now that we have a method for finding the eigenvectors once we know the eigenvalues, the natural question
is: Is there a way to determine the eigenvalues without knowing the eigenvectors? This is where determinants
come in. The number λ is an eigenvector if there is some non-zero solution x to the equation (A−λI)x = 0.
In other words, λ is an eigenvector if the matrix (A − λI) is not invertible. This happens precisely when
det(A − λI) = 0.

This gives us a method for finding the eigenvalues. Compute det(A − λI). This will be a polynomial in
λ. The eigenvalues will be exactly the values of λ that make this polynomial zero, i.e., the roots of the
polynomial.

So here is the algorithm for finding the eigenvalues and eigenvectors.

(1) Compute det(A − λI) and find the values of λ for which it is zero. These are the eigenvalues.

(2) For each eigenvalue, find the non-zero solutions to (A − λI)x = 0. These are the eigenvectors.

I should mention that this is actually only a practical way to find eigenvalues when the matrix is small. Find-
ing eigenvalues of large matrices is an important problem and many efficient methods have been developed
for use on computers.

Example 1

A =

[

2 1
1 2

]

.

First we compute
det(A − λI) = (2 − λ)(2 − λ) − 1

= λ2 − 4λ + 3

We can find the roots of this polynomial using the quadratic formula or by factoring it by inspection. We
get

λ2 − 4λ + 3 = (λ − 1)(λ − 3)

So the eigenvalues are 1 and 3.

Now we find the eigenvector for λ = 1. We must solve (A − I)x = 0. The matrix for this homogeneous
system of equations is

[

1 1
1 1

]

Reducing this matrix yields
[

1 1
0 0

]

so an eigenvector is
[

1
−1

]
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Next we find the eigenvector for λ = 3. We must solve (A − 3I)x = 0. The matrix for this homogeneous
system of equations is

[

−1 1
1 −1

]

Reducing this matrix yields
[

−1 1
0 0

]

so an eigenvector is
[

1
1

]

Example 2 Let us find the eigenvalues and eigenvectors of

A =





3 −6 −7
1 8 5
−1 −2 1



 .

First we compute

det(A − λI) = det





3 − λ −6 −7
1 8 − λ 5
−1 −2 1 − λ





= (3 − λ)((8 − λ)(1 − λ) + 10) + 6((1 − λ) + 10)− 7(−2 + (8 − λ))

= −λ3 + 12λ2 − 44λ + 48

Its not always easy to find the zeros of a polynomial of degree 3. However, if we already know one solution,
we can find the other two. Sometimes, one can find one solution by guessing. In this case we already know
that 4 is a solution (since this is the same matrix that appeared in the example in the last section). We can
check this:

−64 + 12× 16 − 44× 4 − 48 = 0

This means that λ3 + 12λ2 − 44λ + 48 can be factored as −λ3 + 12λ2 − 44λ + 48 = (λ − 4)q(λ), where q(λ)
is a second degree polynomial. To find q(λ) we can use long division of polynomials.

−λ2 +8λ −12

λ − 4
)

−λ3 +12λ2 −44λ +48

−λ3 +4λ2

8λ2 −44λ
8λ2 −32λ

−12λ +48
−12λ +48

This yields q(λ) = −λ2 + 8λ − 12 This can be factored using the quadratic formula (or by inspection) as
q(λ) = −(λ − 2)(λ − 6) So we conclude

−λ3 + 12λ2 − 44λ + 48 = −(λ − 4)(λ − 2)(λ − 6)

and the eigenvalues are 2, 4 and 6.

Now we find the eigenvector for λ = 2. We must solve (A − 2I)x = 0. The matrix for this homogeneous
system of equations is





1 −6 −7
1 6 5
−1 −2 −1




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Reducing this matrix yields




1 −6 −7
0 −8 −8
0 0 0





so an eigenvector is




1
−1
1





Next we find the eigenvector for λ = 4. We must solve (A − 4I)x = 0. The matrix for this homogeneous
system of equations is





−1 −6 −7
1 4 5
−1 −2 −3





Reducing this matrix yields




−1 −6 −7
0 −2 −2
0 0 0





so an eigenvector is




−1
−1
1





Finally we find the eigenvector for λ = 6. We must solve (A − 4I)x = 0. The matrix for this homogeneous
system of equations is





−3 −6 −7
1 2 5
−1 −2 −5





Reducing this matrix yields




−3 −6 −7
0 0 8
0 0 0





so an eigenvector is




−2
1
0





Example 3

A =





1 1 0
0 2 0
0 −1 1



 .

det(A − λI) = det





1 − λ 1 0
0 2 − λ 0
0 −1 1 − λ



 .

In this case it makes sense to expand along the last column. This yields

det(A − λI) = 0 − 0 + (1 − λ)(1 − λ)(2 − λ) = (1 − λ)2(2 − λ)

This is already factored, so the zeros are λ = 1 and λ = 2. Notice that the factor (1 − λ) occurs occurs to
the second power. In this situation there are fewer distinct eigenvalues than we expect.
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Lets compute the eigenvectors.

To find the eigenvectors for λ = 1 we must solve the homogeneous equation with matrix A − I , i.e.,





0 1 0
0 1 0
0 −1 0





This reduces to




0 1 0
0 0 0
0 0 0





and we find that there are two parameters in the solution. The set of solutions in parametric form is

s





1
0
0



 + t





0
0
1





We can find two linearly independent solutions by setting s = 1, t = 0 and s = 0, t = 1. This gives





1
0
0



 ,





0
0
1





To find the eigenvectors for λ = 2 we must solve the homogeneous equation with matrix A − 2I , i.e.,





−1 1 0
0 0 0
0 −1 −1





This reduces to




−1 1 0
0 −1 −1
0 0 0





and we find that the set of solutions in parametric form is

s





1
1
−1





Setting s = 1 gives the eigenvector




1
1
−1





In this 3 × 3 example, even though there are only two distinct eigenvalues, 1 and 2, there are still three
independent eigenvectors (i.e., a basis), because the eigenvalue 1 has two independent eigenvectors associated
to it.

Example 4

A =

[

2 1
0 2

]

.

Here
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det(A − λI) = (λ − 2)2

so there is only one eigenvalues λ = 2.

To find the eigenvectors, we must solve the homogeneous system with matrix

[

0 1
0 0

]

.

The solutions are

s

[

1
0

]

so there is only one independent eigenvector.

So here is a matrix that does not have a basis of eigenvectors. Fortunately, matrices like this, that have too
few eigenvectors, are rare. But they do occur!

Problem 4.3: Find the eigenvalues and eigenvectors for

a)

[

0 3
3 0

]

b)

[

−2 −8
4 10

]

c)

[

29 −10
105 −36

]

d)

[

−9 −14
7 12

]

Problem 4.4: Find the eigenvalues and eigenvectors for

a)





0 −1 1
1 0 2
2 0 2



 b)





1 1 1
1 0 −2
1 −1 1



 c)





7 −9 −15
0 4 0
3 −9 −11



 d)





31 −100 70
18 −59 42
12 −40 29




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Complex numbers

Complex numbers can be thought of as points on the xy plane. The point [x, y], thought of as a complex
number, is written x + iy (or x + jy if you are an electrical engineer).

If z = x + iy then x is called the real part of z and y is called the imaginary part of z.

Complex numbers are added just as if they were vectors in two dimensions. If z = x + iy and w = s + it,
then

z + w = (x + iy) + (s + it) = (x + s) + i(y + t)

To multiply two complex numbers, just remember that i2 = −1. So if z = x + iy and w = s + it, then

zw = (x + iy)(s + it) = xs + i2ytr + iys + ixt = (xs − yt) + i(xt + ys)

The modulus of a complex number, denoted |z| is simply the length of the corresponding vector in two
dimensions. If z = x + iy

|z| = |x + iy| =
√

x2 + y2

An important property is

|zw| = |z||w|

The complex conjugate of a complex number z, denoted z̄, is the reflection of z across the x axis. Thus
x + iy = x − iy. Thus complex conjugate is obtained by changing all the i’s to −i’s. We have

zw = z̄w̄

and

zz̄ = |z|2

This last equality is useful for simplifying fractions of complex numbers by turnint the denominator into a
real number, since

z

w
=

zw̄

|w|2

For example, to simplify (1 + i)/(1 − i) we can write

1 + i

1 − i
=

(1 + i)2

(1 − i)(1 + i)
=

1 − 1 + 2i

(2
= i

A complex number z is real (i.e. the y part in x + iy is zero) whenever z̄ = z. We also have the following
formulas for the real and imaginary part. If z = x + iy then x = (z + z̄)/2 and y = (z − z̄)/(2i)

Complex numbers are indispensible in many practical calculations. We will discuss complex exponentials
when we talk about differential equations. The reason why we are interested in them now is the following
fact:

If we use complex numbers, every polynomial can be completely factored.

In other words given a polynomial λn + an−1λ
n−1 + · · · + a1λ + a0, there exist (possibly complex) numbers

r1, r2, . . . , rn such that

λn + an−1λ
n−1 + · · · + a1λ + a0 = (λ − r1)(λ − r2) · · · (λ − rn)

The numbers r1 are the values of λ for which the polynomial is zero.
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So for example the polynomial λ2 + 1 has no real roots, since there is no real number λ for which it is zero.
However there are two complex roots, ±i and

λ2 + 1 = (λ + i)(λ − i)

Of course, actually finding the roots of a high degree polynomial is difficult. Here are some points to keep
in mind.

You can always find the roots of a quadratic polynomial using the quadratic formula. In other words the
roots of aλ2 + bλ + c are

−b±
√

b2 − 4ac

2a

If the quantity inside the square root is negative, then the roots are complex. So, for example the roots of
λ2 + λ + 1 are

−1 ±
√

12 − 4

2
=

−1 ±
√
−3

2
=

−1±
√
−1

√
3

2
=

−1

2
± i

√
3

2

Problem 4.5: Show that |zw| = |z||w| for complex numbers z and w.

Problem 4.6: Show that zw = z̄w̄ for complex numbers z and w.

Problem 4.7: Show that zz̄ = |z|2 for every complex numbers z.

Example 5

Lets consider the matrix of rotation by π/2. This is the matrix

A =

[

0 1
−1 0

]

.

We compute

det(A − λI) = det

[

−λ 1
−1 −λ

]

= λ2 + 1

The roots are ±i so the eigenvalues are i and −i.

Now we compute the eigenvector corresponding to the eigenvalue i. We must solve the homogeneous equation
with matrix

[

−i 1
−1 −i

]

Notice that we will have to do complex arithmetic to achieve this, since the matrix now has complex entries.
To reduce this matrix we have to add i times the first row to the second row. This gives

[

−i 1
−1 + −i2 −i + i

]

=

[

−i 1
0 0

]

So if we let the x2 = s, then −ix1 + s = 0, or x1 = −is. So the solution is

s

[

−i
1

]
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and we may choose s = 1. Lets check that this is really an eigenvector:

[

0 1
−1 0

] [

−i
1

]

=

[

1
i

]

= i

[

−i
1

]

.

To find the other eigenvector we can use a trick. Suppose that the original matrix A has only real entries.
This will always be the case in our examples. Suppose that A has a complex eigenvalue eigenvector pair
λ and x. Then Ax = λx. Taking the complex conjugate of this equation, we obtain Āx̄ = λ̄x̄. (Here
conjugating a matrix or a vector just means conjugating each entry). Now, since A has real entries, Ā = A.
Hence Ax̄ = λ̄x̄. In other words λ̄ is an eigenvalue with eigenvector x̄.

In the present example, we already know that ī = −i is an eigenvalue. But now we don’t have to compute
the eigenvector that goes along with it. It is simply the conjugate of the one we already computed. So the
eigenvector corresponding to −i is

[

i
1

]

Eigenvalues and eigenvectors: summary

The eigenvalues of A are the zeros or roots of the polynomial det(A− λI). If we use complex numbers then
det(A − λI) can be completely factored, i.e.,

det(A − λI) = ±(λ − λ1)(λ − λ2) · · · (λ − λn)

Finding the roots may be difficult. However for 2 × 2 matrices we may use the quadratic formula.

If all the roots are distinct (i.e., λi 6= λj for i 6= j) then the corresponding eigenvectors x1,x2, . . . ,xn are
linearly independent (I didn’t show you why this is true, so I’m just asking you to believe it!) and therefore
form a basis.

If there are repeated roots, then there are fewer than n distinct eigenvalues. In this situation, it might
happen that there are not enough eigenvectors to form a basis. However it also might happen that more
than one eigenvector associated to a given eigenvalue, so that in the end there are enough eigenvectors to
form a basis. Unfortunately the only way we have to find out is to try to compute them all.

Complex exponential

We begin by considering the differential equation

y′(t) = y(t)

In other words we are looking for a function whose derivative is equal to the function. The exponential
is such a function, so y(t) = et is a solution to this differential equation. So is y(t) = Cet, where C is a
constant.

Now consider the equation

y′(t) = ay(t)

where i a is real number. Then, using the chain rule, we see that y(t) = Ceat is a solution for any choice of
constant C.
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Notice that the constant C is x(0), the value of the solution at time zero. If we insist that the solution at
time t = 0 take on a particular value

x(0) = y0

Then this forces the constant C to be y0

Now consider the equation
y′(t) = iy(t)

A solution to this equation is given by

y(t) = cos(t) + i sin(t)

To check this, just differentiate.
y′(t) = cos′(t) + i sin′(t)

= − sin(t) + i cos(t)

= i(cos(t) + i sin(t))

= iy(t)

So it is natural to define the exponential, eit, of a purely imaginary number it to be

eit = cos(t) + i sin(t)

The complex exponential satisfies the familiar rule ei(s+t) = eiseit since by the addition formulas for sine
and cosine

ei(s+t) = cos(s + t) + i sin(s + t)

= cos(s) cos(t) − sin(s) sin(t) + i(sin(s) cos(t) + cos(s) sin(t))

= (cos(s) + i sin(s))(cos(t) + i sin(t))

= eiseit

Now it easy to check that solutions to
y′(t) = iby(t)

are given by y(t) = Ceibt, where C is an arbitrary constant. Since we are dealing with complex numbers, we
allow C to be complex too.

The exponential of a number that has both a real and imaginary part is defined in the natural way.

ea+ib = eaeib = ea(cos(b) + i sin(b))

and it is easy to check that the solution to the differential equation

y′(t) = λy(t) = (a + ib)y(t)

is given by y(t) = Ceλt = Ce(a+ib)t. As before, if we insist that the solution at time t = 0 take on a particular
value

x(0) = y0,

then this forces the constant C to be y0.
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Polar representation of a complex number

Notice that the number eiθ = cos(θ) + i sin(θ) lies on the unit circle on the complex plane, at the point
making an angle of θ (radians) with the x axis. If we multiply eiθ by a real number r, then we obtain the
complex number whose polar co-ordinates are r and θ.

eiθ

eiθ

θ

r

r

Notice that r is exactly the modulus of the complex number reiθ . The angle θ is called the argument. This
representation of complex numbers makes the definition of complex multiplication more transparent. We
have

r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2)

In other words, when we multiply two complex numbers, the moduli get multiplied and the arguments get
added.

Systems of linear differential equations

Consider the system of differential equations

y′
1(t) = a1,1y1(t) +a1,2y2(t)

y′
2(t) = a2,1y1(t) +a2,2y2(t)

This system of equations describes a situation where we have two quantities y1 and y2, where the rate of
change of each one of the quantities depends on the values of both.

We can rewrite this as a matrix equation. Let y(t) be the vector

y(t) =

[

y1(t)
y2(t)

]

.

and define the derivative of a vector to be the vector of derivatives, i.e.,

y′(t) =

[

y′
1(t)

y′
2(t)

]

.

Define A to be the matrix

A =

[

a1,1 a1,2

a2,1 a2,2

]

.

Then this system of equations can be rewritten

y′(t) = Ay

A general system of linear equations has this form, except y(t) is an n-dimensional vector and A is an n×n
matrix.



96 Math 152 – Winter 2003 – Section 4: Eigenvalues and Eigenvectors

How can we find solutions to such a system of equations? Taking a hint from the scalar case, we can try to
find solutions of the form

y(t) = eλtx

where x is a fixed vector (not depending on t). With this definition

y′(t) = λeλtx

so that y′ = Ay whenever
λeλtx = Aeλtx = eλtAx

Dividing by eλt, this condition becomes
λx = Ax.

In other words, y(t) = eλtx is a solution exactly whenever λ and x are an eigenvalue eigenvector pair for A.

So we can find as many solutions as we have eigenvalue eigenvector pairs.

To proceed we first notice that if y1(t) and y2(t) are two solutions to the equation y′ = Ay, then a linear
combination c1y1(t) + c2y2(t) is also a solution, since

d

dt

(

c1y1(t) + c2y2(t)
)

= c1y
′
1(t) + c2y′

2(t)

= c1Ay1(t) + c2Ay2(t)

= A
(

c1y1(t) + c2y2(t)
)

Notice that we are assuming that the constants c1 and c2 do not depend on t.

Similarly, if y1(t), y2(t), . . ., yn(t) are n solutions then c1y1(t) + c2y2(t) + · · ·+ cnyn(t) is a solution for any
choice of constants c1, c2, . . . , cn.

Now suppose that A is an n × n matrix. Suppose that λ1, λ2, . . . , λk are its eigenvalues with eigenvectors
x1,x2, . . . ,xk. Then we have that for any choice of constants c1, c2, . . . , ck,

y(t) = c1e
λ1tx1 + c2e

λ2tx2 + · · · + ckeλktxk (4.1)

is a solution.

Have we found all solutions? In other words, could there be a solution of the equation that is not this form,
or is every solution of the form (4.1) for some choice of c1, c2, . . . , ck?

There is a theorem in differential equations that says that given an initial condition x0 then there is one and
only one solution of y′ = Ay satisfying y(0) = x0.

So our theoretical question above is equivalent to the following quite practical question. Given an initial
vector x0, does there exist a solution y(t) of the form (4.1) whose value at zero is the given initial condition,
i.e., y(0) = x0.

This will be true if, given any vector x0, one can find c1, c2, . . . , ck so that

y(0) = c1x1 + c2x2 + · · · + ckxk = x0

This is exactly the condition that the eigenvectors form a basis.

It turns out that in the “bad” cases where there are not enough eigenvectors of A to form a basis, there are
solutions that don’t have the form (4.1).

Now suppose that there are n eigenvectors that do form a basis. How can we actually find the numbers
c1, c2, . . . , cn such that

c1x1 + c2x2 + · · · + ckxn = x0?
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Just notice that this is a system linear equations

[

x1

∣

∣

∣

∣

∣

x2

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

xn

]









c1

c2
...

cn









= x0

so you know what to do.

Example 1

Lets find the general solution to the system of equations

x′
1(t) = 2x1(t) +x2(t)

x′
2(t) = x1(t) +2x2(t)

This is equivalent to the matrix equation

y′(t) =

[

2 1
1 2

]

y(t)

The matrix

[

2 1
1 2

]

has eigenvector and eigenvalues λ1 = 1, x1 =

[

1
−1

]

and λ2 = 3, x2 =

[

1
1

]

. The

eigenvectors x1 and x2 form a basis, so the general solution is

y(t) = c1e
λ1tx1 + c2e

λ2tx2 = c1e
t

[

1
−1

]

+ c2e
3t

[

1
1

]

Now lets find the solution satisfying the initial condition

y(0) =

[

2
1

]

We have to find constants c1 and c2 so that

c1

[

1
−1

]

+ c2

[

1
1

]

=

[

2
1

]

This is the same as solving
[

1 1
−1 1

] [

c1

c2

]

=

[

2
1

]

The solution is
[

c1

c2

]

=

[

1/2
3/2

]

Example 2

Now lets do an example where the eigenvalues are complex. Consider the equation

y′(t) =

[

0 1
−1 0

]

y(t)

The matrix

[

0 1
−1 0

]

has eigenvector and eigenvalues λ1 = i, x1 =

[

−i
1

]

and complex conjugate λ2 = −i,

x2 =

[

i
1

]

. The eigenvectors x1 and x2 form a basis, so the general solution is

y(t) = c1e
λ1tx1 + c2e

λ2tx2 = c1e
it

[

−i
1

]

+ c2e
−it

[

i
1

]
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In most applications, the solutions that we are interested in are real. The solution above looks decidedly
complex! Remember, however, that the constants c1 and c2 can be complex too. Perhaps for special choices
of c1 and c2 the solution will turn out to be real.

This is always true when the original matrix is real. In this case the complex eigenvalues and eigenvectors
occur in conjugate pairs. So if

y1(t) = eλtx

is a solution, then so is

ȳ1(t) = eλ̄tx̄

So if we choose c1 = a/2 and c2 = a/2 for a real number a, then

c1e
λtx + c2e

λ̄tx̄ = a/2(eλtx + eλ̄tx̄)

= a Re(eλtx)

(here Re stands for the real part. We used that for a complex number z, z + z̄ = 2 Re z). Similarly, if we
choose c1 = a/2i and c2 = −a/2i, then

c1e
λtx + c2e

λ̄tx̄ = a/2i(eλtx− eλ̄tx̄)

= a Im(eλtx)

The upshot is that the real and imaginary parts of a solution are also solutions. Its sometimes easier to
just start with one the complex solutions and find its real and imaginary parts. This gives us two reals
solutions to work with. Notice that it doesn’t matter which one of the complex solutions we pick. Because
they are conjugate, their real parts are the same, and their imaginary parts differ by only a minus sign. In
the example we have

y1(t) = eit

[

−i
1

]

=

[

−ieit

eit

]

=

[

−i(cos(t) + i sin(t))
cos(t) + i sin(t)

]

=

[

−i cos(t) + sin(t)
cos(t) + i sin(t)

]

=

[

sin(t)
cos(t)

]

+ i

[

− cos(t)
+ sin(t)

]

The real part and imaginary part are
[

sin(t)
cos(t)

]

and
[

− cos(t)
sin(t)

]

One can check directly that these are solutions to the original equation. The general solution can also be
written

a1

[

sin(t)
cos(t)

]

+ a2

[

− cos(t)
sin(t)

]

The advantage of this way of writing the solution is that if we choose a1 and a2 to be real the solution is
real too.
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Now suppose we want to satisfy an initial condition. Lets find the solution y(t) of the equation that satisfies

y(0) =

[

2
−2

]

There are two ways to proceed. Either we use the complex form of the general solution. Then we must find
c1 and c2 such that

c1

[

−i
1

]

+ c2

[

i
1

]

=

[

2
−2

]

This amounts to solving
[

−i i
1 1

] [

c1

c2

]

=

[

2
−2

]

The solution is
[

c1

c2

]

=

[

−i i
1 1

]−1 [

2
−2

]

=
1

−2i

[

1 −i
−1 −i

] [

2
−2

]

=

[

i + 1/2
i − 1/2

]

So c1 = i + 1/2 and c2 = i − 1/2. If we plug these into the expression for the general solution we get the
right answer. However there is still a fair amount of complex arithmetic needed to show explicitly that the
solution is real.

Its easier to start with the real solutions. In this approach we must find a1 and a2 so that

a1

[

sin(0)
cos(0)

]

+ a2

[

− cos(0)
sin(0)

]

= a1

[

0
1

]

+ a2

[

−1
0

]

=

[

2
−2

]

Thus a1 = a2 = −2 so the solution is

−2

[

sin(t)
cos(t)

]

+ −2

[

− cos(t)
sin(t)

]

=

[

−2 sin(t) + 2 cos(t)
−2 cos(t) − 2 sin(t)

]

Example 3 Now lets do an example where the eigenvalues are complex, and have both a real and
imaginary part. Lets solve

y′(t) =

[

−1 1
−1 −1

]

y(t)

with initial condition

y(0) =

[

1
1

]

The first step is to find the eigenvalues and eigenvectors. I’ll omit the computations. The result is λ1 = −1+i

with eigenvector x1 =

[

1
i

]

and the complex conjugates λ2 = −1 − i with eigenvector x2 =

[

1
−i

]

. Thus a

solution is

y1(t) = e(−1+i)t

[

1
i

]

To find real solutions we calculate the real and imaginary parts of this.

y1(t) =

[

e(−1+i)t

ie(−1+i)t

]

=

[

e−teit

ie−teit

]

=

[

e−t(cos(t) + i sin(t))
ie−t(cos(t) + i sin(t))

]

=

[

e−t cos(t)
−e−t sin(t)

]

+ i

[

e−t sin(t)
e−t cos(t)

]
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So the general solution can be written

a1

[

e−t cos(t)
−e−t sin(t)

]

+ a2

[

e−t sin(t)
e−t cos(t)

]

To satisfy the initial condition, we need

a1

[

1
0

]

+ a2

[

0
1

]

=

[

1
1

]

so that a1 = 1 and a2 = 1. Thus the solution is

y(t) = e−t

[

cos(t) + sin(t)
− sin(t) + cos(t)

]

Problem 4.8: Find the general solution to y′ = Ay when A =

[

−2 −8
4 10

]

. (Hint: This matrix appeared in

the problems of last chapter). Find the solution satisfying the initial condition y(0) =

[

1
1

]

.

Problem 4.9: Find the general solution to y′ = Ay when A =

[

1 −2
2 1

]

. Find both the complex form and

the real form. Find the solution satisfying the initial condition y(0) =

[

1
1

]

.

Problem 4.10: Find the general solution to y′ = Ay when A =





6 0 13
5 1 13
−2 0 −4



. Find both the complex

form and the real form. Find the solution satisfying the initial condition y(0) =





1
1
1



.

Problem 4.11: Is it true that every 3 × 3 matrix with real entries always has at least one real eigenvalue?

Why?

Diagonalization

Diagonal matrices (that is, matrices that have zero entries except on the diagonal) are extremely easy to
work with. For a start, the eigenvalues of a diagonal matrix are exactly the diagonal entries. If

D =









λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn









then det(D − λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) which is zero precisely when λ equals one of λ1, λ2, . . .,
λn. The corresponding eigenvectors are just the standard basis vectors e1, e2, . . ., en.
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It is also easy to compute powers of a diagonal matrix. We simply obtain

Dk =









λk
1 0 · · · 0
0 λk

2 · · · 0
...

...
...

0 0 · · · λk
n









This formula makes it easy to compute the matrix exponential of D. Recall that the matrix etD is defined
to be the matrix power series

etD = I + tD +
t2

2
D2 +

t3

3!
D3 + · · ·

Using the formula above we find that

etD =









1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1









+









tλ1 0 · · · 0
0 tλ2 · · · 0
...

...
...

0 0 · · · tλn









+













t2λ2

1

2 0 · · · 0

0
t2λ2

2

2 · · · 0
...

...
...

0 0 · · · t2λ2

n

2













+ · · ·

=













1 + tλ1 +
t2λ2

1

2 + · · · 0 · · · 0

0 1 + tλ2 +
t2λ2

2

2 · · · 0
...

...
...

0 0 · · · 1 + tλn +
t2λ2

n

2 + · · ·













=









etλ1 0 · · · 0
0 etλ2 · · · 0
...

...
...

0 0 etλn









Things are not quite so simple for an arbitrary n × n matrix A. However, if A has a basis of eigenvectors

then it turns out that there exists an invertible matrix B such that AB = DB, where D is the diagonal
matrix whose diagonal elements are the eigenvalues of A. Multiplying by B−1 from either the left or right
gives

A = BDB−1, D = B−1AB

In fact, B is simply the matrix whose columns are the eigenvectors of A. In other words, if x1, x2, . . ., xn

are the eigenvectors for A then B =
[

x1

∣

∣

∣x2

∣

∣

∣ · · ·
∣

∣

∣xn

]

. To see this notice that

AB = A
[

x1

∣

∣

∣x2

∣

∣

∣ · · ·
∣

∣

∣xn

]

=
[

Ax1

∣

∣

∣
Ax2

∣

∣

∣
· · ·

∣

∣

∣
Axn

]

=
[

λ1x1

∣

∣

∣λ2x2

∣

∣

∣ · · ·
∣

∣

∣λnxn

]

=
[

x1

∣

∣

∣x2

∣

∣

∣ · · ·
∣

∣

∣xn

]









λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn









= BD

The assumption that A has a basis of eigenvectors implies that the matrix B is invertible.
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Using the representation A = BDB−1 it is easy to calculate powers of A. We have

A2 = BDB−1BDB−1 = BDIDB−1 = BD2B−1

and similarly
Ak = BDkB−1

Therefore we can now also sum the power series for the exponential and obtain

etA = BetDB−1

Computing high powers of a matrix

Recall that when we were discussing the random walk problem, we ended up with the problem of computing
the limit for large n of P nx0 where P is the matrix of transition probabilities.

We can now solve this problem using diagonalization. Lets do an example. Suppose that

P =

[

1
2

1
4

2
3

3
4

]

We wish to compute P n for large n.

We begin by diagonalizing P . This involves finding the eigenvalues and eigenvectors. I won’t give the details

of this computation. The results are λ1 = 1, x1 =

[

1
8/3

]

and λ2 = 1/12, x1 =

[

−1
1

]

. So

P =

[

1 −1
8
3 1

][

1 0
0 1

12

] [

1 −1
8
3 1

]−1

and

P n =

[

1 −1
8
3 1

] [

1n 0
0

(

1
12

)n

] [

1 −1
8
3 1

]−1

But 1n = 1 for all n and
(

1
12

)n → 0 as n → ∞, since 1
12 < 1. So

lim
n→∞

P n =

[

1 −1
8
3 1

] [

1 0
0 0

] [

1 −1
8
3 1

]−1

=

[

1 −1
8
3 1

] [

1 0
0 0

] [

3
11

3
11

−8
11

3
11

]

=

[

3
11

3
11

8
11

8
11

]

Another formula for the determinant

If A has a basis of eigenvectors, then we can get another formula for the determinant. Using the multiplicative
property of the determinant, we have

det(A) = det(BDB−1) = det(B) det(D) det(B)−1 = det(D).

But det(D) is just the product of the diagonal elements, i.e., the eigenvalues. Thus the determinant of A is
the product of its eigenvalues:

det(A) = λ1λ2 · · ·λn.

Actually, this is true even if A doesn’t have a basis of eigenvectors and isn’t diagonalizable.
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The matrix exponential and differential equations

The matrix exponential etA can be used to solve the differential equation

y′(t) = Ay(t)

with initial condition

y(0) = x0

To see this notice that etA satisfies the differential equation d
dte

tA = AetA. This follows from the power
series representation

etA = I + tA +
t2

2
A2 +

t3

3!
A3 + · · ·

since
d

dt
etA = A +

2t

2
A2 +

3t2

3!
A3 + · · ·

= A + tA2 +
t2

2!
A3 + · · ·

= A(I + tA +
t2

2
A2 + · · ·)

= AetA

Also

e0A = I

These two facts imply that y(t) = etAx0 is the solution to our differential equation and initial condition,
since y′(t) = d

dte
tAx0 = AetAx0 = Ay(t) and y(0) = e0Ax0 = Ix0 = x0.

The matrix exponential is a nice theoretical construction. However, to actually compute the matrix expo-
nential using diagonalization involves just the same ingredients—computing the eigenvalues and vectors—as
our original solution. In fact it is more work.

However, there is one situation where the matrix exponential gives us something new. This is the situation
where A does not have a basis of eigenvectors. The power series definition of the matrix exponential still

makes sense, and can compute it in certain special cases. Consider the matrix A =

[

1 1
0 1

]

. This matrix

does not have a basis of eigenvectors. So it cannot be diagonalized. However, in a homework problem, you

showed that etA =

[

et tet

0 et

]

. Thus the solution to

y′(t) =

[

1 1
0 1

]

y(t)

with initial condition

y(0) =

[

2
1

]

is

y(t) = etA

[

2
1

]

=

[

et tet

0 et

][

2
1

]

=

[

2et + tet

et

]

Notice that this solution involves a power of t in addition to exponentials.
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LCR circuits

We now return to the circuit that we discussed previously.

L

R1

R2C

I V1 1

I V3 3

I V2 2I V44

Recall that we chose as basic variables I3 and V4 and solved for all the other variables in terms of these. The
result was

I1 = I3

I2 =
1

R2
V4

I4 = I3 −
1

R2
V4

V1 = R1I3

V2 = V4

V3 = −R1I3 − V4

Now we can complete the job and determine I3 and V4. We have to take into account now that the currents
and voltages are functions of time. The relations between currents and voltages across capacitors and
inductors involves the time derivatives.

If I and V are the current flowing through and the voltage across a capacitor with capacitance C, then

dV

dt
=

1

C
I

If I and V are the current flowing through and the voltage across an inductor with inductance L, then

dI

dt
=

1

L
V

Notice that we have chosen as basic the variables that get differentiated.

Using these relations for I3 and V4 yields
dI3

dt
=

1

L
V3

dV4

dt
=

1

C
I4

Now we reexpress everything in terms of I3 and V4 using the equations we derived previously.

dI3

dt
=

1

L
(−R1I3 − V4) =

−R1

L
I3 −

1

L
V4

dV4

dt
=

1

C
(I3 −

1

R2
V4) =

1

C
I3 −

1

R2C
V4



Math 152 – Winter 2003 – Section 4: Eigenvalues and Eigenvectors 105

This can be written as
[

I3

V4

]′

=

[

−R1

L − 1
L

1
C − 1

R2C

][

I3

V4

]

Lets try to determine for what values of R1, L, C and R2 the circuit exhibits oscillations. Recall that the
solution will involve sines and cosines whenever the matrix has complex eigenvalues.

The polynomial det(A − λI) = λ2 + bλ + c, where

b =
R1

L
+

1

R2C

and

c =
R1

R2LC
+

1

LC
.

The eigenvalues are the roots of this polynomial, given by (−b ±
√

b2 − 4c)/2. These will be complex if
b2 < 4c, i.e., if

(

R1

L
+

1

R2C

)2

< 4

(

R1

R2LC
+

1

LC

)

Notice that this can be achieved by decreasing R1 and increasing R2

Problem 4.12: In the circuit above, suppose that R1 = R2 = 1 ohm, C = 1 farad and L = 1 henry. If the

intial current across the inductor is I3(0) = 1 ampere and initial voltage across the capacitor is V4(0) = 1
volt, find I3(t) and V4(t) for all later times. What is V1(t)?

Problem 4.13: Consider the circuit with diagram

L

R

CV I

Write down the system of equations satisfied by I and V . For what values of L, C and R does the circuit

exhibit oscillations? Suppose that R = 1 ohm, C = 1 farad and L = 1 henry. If the intial current across the

inductor is I(0) = 1 ampere and initial voltage across the capacitor is V (0) = 1 volt, find I(t) and V (t) for

all later times.
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Converting higher order equations into first order systems

So far we have only considered first order differential equations. In other words, the equations have only
involved first derivatives y′(t) and not higher derivatives like y′′(t). However higher order equations, especially
second order equations, occur often in practical problems. In this section we will show that a higher order
linear differential equation can be converted into an equivalent first order system.

Suppose we want to solve the equation

y′′(t) + ay′(t) + by(t) = 0

with initial conditions
y(0) = y0

y′(0) = y′
0

Define the new functions z1(t) and z2(t) by

z1(t) = y(t)

z2(t) = y′(t)

Then
z′1(t) = y′(t) = z2(t)
z′2(t) = y′′(t) = −ay′(t) − by(t) = −az2(t) − bz1(t)

and
z1(0) = y0

z2(0) = y′
0

In other words the vector

[

z1(t)
z2(t)

]

satisfies the equation

d

dt

[

z1(t)
z2(t)

]

=

[

0 1
−b −a

][

z1(t)
z2(t)

]

with initial condition
[

z1(0)
z2(0)

]

=

[

y0

y′
0

]

.

Here is an example. Suppose we want to solve the second order equation

y′′ + 4y′ + y = 0

with initial conditons

y(0) = 1, y′(0) = 0

If we let z1(t) = y(t) and z2(t) = y′(t) then

d

dt

[

z1(t)
z2(t)

]

=

[

0 1
−1 −4

] [

z1(t)
z2(t)

]

with initial condition
[

z1(0)
z2(0)

]

=

[

1
0

]

.
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To solve this we first find the eigenvalues and eigenvectors. They are λ1 = −2 +
√

3, x1 =

[

1
−2 +

√
3

]

and

λ1 = −2 −
√

3, x1 =

[

1
−2 −

√
3

]

So the general solution is

c1e
(−2+

√
3)t

[

1
−2 +

√
3

]

+ c2e
(−2−

√
3)t

[

1
−2 −

√
3

]

To satisfy the initial condition, we need

c1

[

1
−2 +

√
3

]

+ c2

[

1
−2−

√
3

]

=

[

1
0

]

The solution is
[

c1

c2

]

=

[ √
3/3 + 1/2

−
√

3/3 + 1/2

]

Thus
[

z1(t)
z2(t)

]

= (
√

3/3 + 1/2)e(−2+
√

3)t

[

1
−2 +

√
3

]

+ (−
√

3/3 + 1/2)e(−2−
√

3)t

[

1
−2−

√
3

]

and so
y(t) = z1(t) = (

√
3/3 + 1/2)e(−2+

√
3)t + (−

√
3/3 + 1/2)e(−2−

√
3)t

Actually, to solve the equation
y′′(t) + ay′(t) + by(t) = 0

its not really neccesary to turn it into a first order system. We can simply try to find solutions of the form
y(t) = eλt. If we plug this into the equation we get (λ2 +aλ+ b)eλt which is zero if λ is a root of λ2 +aλ+ b.
This polynomial has two roots, which yields two solutions.

Still, the procedure of turning a higher order equation into a first order system is important. This is because
on a computer it is much easier to solve a first order system than a high order equation. If the coefficients
a and b are functions of t, then exact solutions (like exponentials) usually can’t be found. However, one can
still turn the equation into a first order system y′(t) = A(t)y(t) where the matrix now depends on t and
solve this on a computer.

Problem 4.14: Consider the second order equation

y′′ − 5y′ + 6y = 0

with initial conditions y(0) = 1, y′(0) = 0. Solve this by turning it into a 2 × 2 system. Then solve it

directly by using trial solutions eλt.

Problem 4.15: Consider the second order equation

y′′ + y′ + y = 0

with initial conditions y(0) = 1, y′(0) = 0. Solve this by turning it into a 2 × 2 system. Then solve it

directly by using trial solutions eλt.

Problem 4.16: How can you turn a third order equation

y′′′ + ay′′ + by′ + cy = 0

into an equivalent 3 × 3 system of equations?
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Springs and weights

To begin, lets consider the situation where we have a single weight hanging on a spring.

k l

m

,
x(t)

We want to determine how the weight moves in time. To do this we calculate the forces acting on the weight
and use Newton’s law of motion F = ma.

One force acting on the weight are the force of gravity. This acts in the positive x direction (i.e., downward)
and has magnitude mg. The other force is due to the spring. It’s magnitude is k(x − l) in the negative x
direction. The acceleration is the second derivative x′′(t). Thus the total force is F = mg − k(x(t) − l) and
ma = mx′′(t) Newton’s law reads

mx′′(t) = mg − k(x − l) = −kx + mg + lk

This is not quite in the form we can handle, due to the term mg + lk on the right. What we must do is
first find the equilibrium solution. In a previous lecture we found the equilibrium position by minimizing
the potential energy. There is another, equivalent, way. That is to find the value of x for which the total
force is zero. In other words

−kxeq + mg + lk = 0

or
xeq = (mg + lk)/k

Notice that the total force can be written

−kx + mg + lk = −k(x − xeq)

Now let y(t) = x(t) − xeq be the displacement from the equilibrium point. Notice that y′(t) = x′(t) and
y′′(t) = x′′(t), since xeq is a constant. So the equation for y(t) is

my′′(t) = −ky(t)

or

y′′(t) +
k

m
y(t) = 0

We could turn this into a first order system. However, it is easier to try solutions of the form eλt. Substituting
this into the equation yields

(λ2 + k/m)eλt = 0

so we require that λ2+k/m = 0, or λ = ±i
√

k/m. Thus, solutions are ei
√

k/mt and e−i
√

k/mt. To obtain real

solutions, we can take the real and imaginary parts. This gives as solutions sin(
√

k/mt) and cos(
√

k/mt) ,
and the general solution is

c1 sin(
√

k/mt) + c2 cos(
√

k/mt)
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We can make the equation a little more interesting by adding friction. A frictional force is proportional to
the velocity and acts in the direction opposite to the motion. Thus the equation with friction reads

y′′(t) + βy′(t) +
k

m
y(t) = 0

This can be solved by turning it into a first order system, or directly, using trial solution of the form eλt as
above.

Now we turn the problem with several weights and springs. In this problem matrices play an essential role.

x1

x2

x3

k l

k l

k l

1 1

2 2

3 3

m1

m2

m3

,

,

,

We begin by computing the forces acting on each weight. Let us start with the first weight. Gravity is
pulling down, and the springs above and below are pushing or pulling with a force proportional to their
extensions. Thus the total force on the first weight is m1g − k1(x1 − l1) + k2(x2 − x1 − l2). To get the signs
right on the spring forces, think of what happens when one of the xi’s gets large. For example, when x1

gets large, the first spring streches and pulls up, so the sign of the force should be negative for large x1. So
Newton’s equation for the first weight is

m1x
′′
1(t) = m1g − k1(x1 − l1) + k2(x2 − x1 − l2) = −(k1 + k2)x1 + k2x2 + m1g + k1l1 − k2l2

or

x′′
1(t) = −k1 + k2

m1
x1 +

k2

m1
x2 + g +

k1l1 − k2l2
m1

Similary the equations for the second and third weights are

x′′
2 (t) =

k2

m2
x1 −

k2 + k3

m2
x2 +

k3

m2
x3 + g +

k2l2 − k3l3
m2

x′′
3 (t) =

k3

m3
x2 −

k3

m3
x3 + g +

k3l3
m3

Thus can be written as a second order matrix equation

x′′(t) = Kx(t) + b
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where

x(t) =





x1(t)
x2(t)
x3(t)



 ,

K =





−k1+k2

m1

k2

m1

0
k2

m2

−k2+k3

m2

k3

m2

0 k3

m3

− k3

m3





and

b =





g + k1l1−k2l2
m1

g + k2l2−k3l3
m2

g + k3l3
m3



 .

With this notation, the equilibrium solution is the value of x that makes all the forces zero. That is,

Kxeq + b = 0

or,
xeq = −K−1b

As in the case of one weight the force side of the equation can now be written as

Kx + b = K(x + K−1b) = K(x− xeq)

so if we define
y(t) = x(t) − xeq,

the equation for y(t) is
y′′(t) = Ky(t)

To solve this second order 3× 3 system, we could turn it in to a first order 6× 6 system. However, just as in
the case of a single higher order equation we can proceed directly. We try trial solutions of the form eκty.
Substituting this into the equation, we see that the equation is satisfied if

κ2y = Ky

in other words, κ2 is an eigenvalue of K with eigenvector y, or κ is one of the two square roots of and
eigenvalue.

So, if K has eigenvalues λ1, λ2 and λ3 with eigenvectors y1, y2 and y3, then six solutions of the equation
are given by e

√
λ1ty1, e−

√
λ1ty1, e

√
λ2ty2, e−

√
λ2ty2, e

√
λ3ty3 and e−

√
λ3ty3. If some of the λi’s are negative,

then these solutions are complex exponentials, and we may take their real and imaginary parts to get real
solutions. The general solution is a linear combination of these, and the coefficients in the linear combination
may be chosen to satisfy an initial condtion.

To make this clear we will do an example. Suppose that all the masses mi, lengths li and spring constants
ki are equal to 1. Then

K =





−2 1 0
1 −2 1
0 1 −1





Suppose that the intial postion of the weights is x1 = 30, x2 = 60 and x3 = 70, and that the initial velocities
are x′

1 = 1 and x′
2 = x′

3 = 0. We will determine the positions of the weights for all subsequent times.

The numbers in this problem don’t turn out particularly nicely, so I’ll just give them to 3 significant figures.

The first step is to find the eigenvalues and eigenvectors of K. They are given by

λ1 = −0.198 λ2 = −1.55 λ3 = −3.25
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x1 =





0.445
0.802
1.00



 x2 =





−1.25
−0.555
1.00



 x3 =





1.80
−2.25
1.00





Let µ1 =
√

0.198 = 0.445, µ2 =
√

1.55 = 1.25 and µ3 =
√

3.25 = 1.80 Then if y(t) = x(t)−xeq, then general
solution for y(t) is

y(t) = (c1e
iµ1t + d1e

−iµ1t)x1 + (c2e
iµ2t + d2e

−iµ2t)x2 + (c3e
iµ3t + d3e

−iµ3t)x3

where c1, d1, c2, d2, c3, d3 are arbitrary constants. Taking real and imaginary parts, we can also write the
general solution as

y(t) = (a1 cos(µ1t) + b1 sin(µ1t))x1 + (a2 cos(µ2t) + b2 sin(µ2t))x2 + (a3 cos(µ3t) + b3 sin(µ3t))x3

where a1, b1, a2, b2, a3, b3 are arbitrary constants. Notice that we can find the general solution for y(t) =
x(t) − xeq without knowing xeq. However, since the initial conditions were given in terms of x and not y,
we now have to find xeq to be able to convert intital conditions for x to initial conditions for y. If we work
in units where g = 10 then

b =





10
10
11





and

xeq = −K−1b =





31
52
63





so

y(0) = x(0) − xeq =





30
60
70



 −





31
52
63



 =





−1
8
7





Also

y′(0) = x′(0) =





1
0
0





So to satisfy the first initial condition, since cos(0) = 1 and sin(0) = 0, we need that

y(0) = a1x1 + a2x2 + a3x3 =





−1
8
7



 .

Explicitly, we need to solve

[x1|x2|x3]





a1

a2

a3



 =





−1
8
7



 ,

or




0.445 −1.25 1.80
0.802 −0.555 −2.25
1.00 1.00 1.00









a1

a2

a3



 =





−1
8
7





This is not a pretty sight, but I can punch the numbers into my computer and find that





a1

a2

a3



 =





7.04
1.33
−1.37




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To satisfy the second initial conditon, we differentiate the expression for the general solution of y(t) and set
t = 0. This gives

µ1b1x1 + µ2b2x2 + µ3b3x3 =





1
0
0





Solving this numerically gives




µ1b1

µ2b2

µ3b3



 =





0.242
−0.435
0.194





Finally, we divide by the µ′
is to give





b1

b2

b3



 =





0.543
−0.348
1.80





Now we have completely determined all the constants, so the solution is complete.

Problem 4.17: Suppose K is a 3 × 3 matrix with eigenvalues and eigenvectors given by

λ1 = −1 λ2 = −4 λ3 = −9

x1 =





1
0
1



 x2 =





1
0
−1



 x3 =





0
1
0





Find the solution of

y′′(t) = Ky(t)

satisfying

y(0) =





1
2
1





y′(0) =





0
1
1





Problem 4.18: Consider a system of two hanging weights and springs. Suppose that all the masses, spring

constants and spring lengths are equal to one, and that g = 10. Find the positions x1(t) and x2(t) for all

times if x1(0) = 20, x2(0) = 30, x′
1(0) = 1, x′

2(0) = 1.


