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Matrix operations

A matrix is a rectangular array of numbers. Here is an example of an m × n matrix.

A =









a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...
am,1 am,2 · · · am,n









This is sometimes abbreviated A = [ai,j ]. An m × 1 matrix is called a column vector and a 1 × n matrix is
called a row vector. (The convention is that m × n means m rows and n columns.

Addition and scalar multiplication are defined for matrices exactly as for vectors. If s is a number

s









a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...
am,1 am,2 · · · am,n









=









sa1,1 sa1,2 · · · sa1,n

sa2,1 sa2,2 · · · sa2,n

...
...

...
sam,1 sam,2 · · · sam,n









,

and








a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...
am,1 am,2 · · · am,n









+









b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n

...
...

...
bm,1 bm,2 · · · bm,n









=









a1,1 + b1,1 a1,2 + b1,2 · · · a1,n + b1,n

a2,1 + b2,1 a2,2 + b2,2 · · · a2,n + b2,n

...
...

...
am,1 + bm,1 am,2 + bm,2 · · · am,n + bm,n









The product of an m× n matrix A = [ai,j ] with a n× p matrix B = [bi,j ] is a m× p matrix C = [ci.j ] whose
entries are defined by

ci,j =

n
∑

k=1

ai,kbk,j .

An easy way to remember this is to chop the matrix A into m row vectors of length n and to chop B into p
column vectors also of length n, as in the following diagram. The i, jth entry of the product is then the dot
product Ai · Bj .

B
1

B
2

B3

2A

A3

A4

A1 A1 A1

B
1

B
1

A1

2A 2A 2A

A3 A3 A3

A4 A4 A4

B
1

B
1

B
2

B
2

B
2

B
2

B3

B3

B3

A1

B3

=

Notice that the matrix product AB only makes sense if the the number of columns of A equals the number
of rows of B. So A2 = AA only makes sense for a square matrix.

Here is an example





1 0 1 2
1 1 1 4
0 0 1 1











1 2
3 4
5 6
7 8






=





1 × 1 + 0 × 3 + 1 × 5 + 2 × 7 1 × 2 + 0 × 4 + 1 × 6 + 2 × 8
1 × 1 + 1 × 3 + 1 × 5 + 4 × 7 1 × 2 + 1 × 4 + 1 × 6 + 4 × 8
0 × 1 + 0 × 3 + 1 × 5 + 1 × 7 0 × 2 + 0 × 4 + 1 × 6 + 1 × 8



 =





20 24
37 44
12 14
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Notice that if A is an m × n matrix, and

x =













x1

x2

x3
...

xn













and

b =













b1

b2

b3
...

bm













Then the equation
Ax = b

is a short way of writing the system of linear equations corresponding to the augmented matrix [A|b].

We will see shortly why matrix multiplication is defined the way it is. For now, you should be aware of some
important properties that don’t hold for matrix multiplication, even though they are true for multiplication
of numbers. First of all, in general, AB is not equal to BA, even when both products are defined and have
the same size. For example, if

A =

[

0 1
0 0

]

and

B =

[

1 0
0 0

]

then

AB =

[

0 0
0 0

]

but

BA =

[

0 1
0 0

]

.

This example also shows that two non-zero matrices can be multiplied together to give the zero matrix.

Here is a list of properties that do hold for matrix multiplication.

1. A + B = B + A

2. A + (B + C) = (A + B) + C

3. s(A + B) = sA + sB

4. (s + t)A = sA + tA

5. (st)A = s(tA)

6. 1A = A

7. A + 0 = A (here 0 is the matrix with all entries zero)

8. A − A = A + (−1)A = 0

9. A(B + C) = AB + AC

10. (A + B)C = AC + BC

11. A(BC) = (AB)C

12. s(AB) = (sA)B = A(sB)
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Problem 3.1: Define

A =

[

1 2 3
1 2 1

]

B =





−1 2
−3 1
−2 1



C = [ 2 −2 0 ] D =





2
−11
2





Compute all products of two of these (i.e., AB, AC , etc.) that are defined.

Problem 3.2: Compute A2 = AA and A3 = AAA for

A =





0 a b
0 0 c
0 0 0





and

A =





1 0 a
0 1 0
0 0 1





Problem 3.3: Let

A =

[

1 1
0 1

]

a) Find A2, A3 and A4.

b) Find Ak for all positive integers k.

c) Find etA (part of the problem is to invent a reasonable definition!)

d) Find a square root of A (i.e., a matrix B with B2 = A).

e) Find all square roots of A.

Problem 3.4: Compute Ak for k = 2, 3, 4 when

A =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
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Linear Transformations and Matrices

Recall that a function f is a rule that takes an input value x and produces an output value y = f(x).
Functions are sometimes called transformations or maps (since they transform, or map, the input value to
the output value). In calculus, you have mostly dealt with functions whose input values and output values
are real numbers. However, it is also useful to consider functions whose input values and output values are
vectors.

We have already encountered this idea when we discussed quadratic functions. A quadratic function such
as f(x1, x2, x3) = x2

1 + x2
2 + x2

3 can be considered as a transformation (or map) whose input is the vector
x = [x1, x2, x3] and whose output is the number y = x2

1 + x2
2 + x2

3. In this case we could write f(x1, x2, x3)
as f(x).

An example of a transformation whose inputs and outputs are both vectors in two dimensions is rotation by
some angle, say 45◦. If x is the input vector, then the output vector R(x) is the vector you get by rotating
x by 45◦ in the counter-clockwise direction.

x

y=R( )x

Rotation by 45 degrees

A transformation T is called linear if for any two input vectors x and y and any two numbers s and t,

T (sx + ty) = sT (x) + tT (y) (3.1)

This condition is saying that when we scalar multiply and add two vectors, it doesn’t matter whether we
(i) do scalar multiplication and addition first and then apply a linear transformation, or (ii) do a linear
transformation first and then do scalar multiplication and addition. In both cases we get the same answer.
The linearity condition (3.1) is equivalent to the following two conditions:

(i) For any two vectors x and y,
T (x + y) = T (x) + T (y).

(ii) For any vector x and any scalar s,
T (sx) = sT (x)

Notice that the quadratic function f above is not a linear transformation, since

f(2x) = (2x1)
2 + (2x2)

2 + (2x3)
2 = 4(x2

1 + x2
2 + x2

3) = 4f(x).

So f(2x) is not equal to 2f(x) as would need to be true if f were linear.

However, rotation by 45◦ is a linear transformation. The following picture demonstrates that condition (i)
holds.

Rotation by 45 degrees

y x+y

x
R( )

R( )
R(  +  )=R(  )+R(  )

x
x x

y

y y
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Problem 3.5: Let a be a fixed vector. Show that the transformation T (x) = x + a is not a linear transfor-

mation.

Problem 3.6: Let a be a fixed vector. Show that the transformation T (x) = a · x is a linear transformation

(whose output values are numbers).

The most important example of a linear transformation is multiplication by a matrix. If we regard vectors
as column vectors, then multiplying an n dimensional vector x with an m × n matrix A results in an m
dimensional vector y = Ax. The linearity property (3.1) is a consequence of properties (9) and (12) of
matrix multiplication. We will see that in fact every linear transformation is of this form.

Rotations in two dimensions

Let us obtain a formula for the transformation that rotates a vector in two dimensions counterclockwise by θ
degrees. Let x be an arbitrary vector. Denote by Rotθx the vector obtained by rotating x counterclockwise
by θ degrees. If the angle between x and the x axis is φ, then the components of x can be written x = [x1, x2]
with x1 = ‖x‖ cos(φ) and x2 = ‖x‖ sin(φ).

To obtain the vector that has been rotated by θ degrees, we simply need to add θ to φ in this representation.
Thus y = Rotθx = [y1, y2], where y1 = ‖x‖ cos(φ + θ) and y2 = ‖x‖ sin(φ + θ).

φ
θ

x = ||    || cos(  )1 x φ

x

y = ||   || cos(     )x
1 θφ+

y= Rotθx

To simplify this we can use the addition formulas for sin and cos. Recall that

cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(a + b) = cos(a) sin(b) + sin(a) cos(b)

Thus
y1 = ‖x‖ cos(φ + θ)

= ‖x‖(cos(φ) cos(θ) − sin(φ) sin(θ))

= cos(θ)x1 − sin(θ)x2

y2 = ‖x‖ sin(φ + θ)

= ‖x‖(sin(φ) cos(θ) + cos(φ) sin(θ))

= sin(θ)x1 + cos(θ)x2

Notice that this can be written as a matrix product.
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[

y1

y2

]

=

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

x1

x2

]

The matrix

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

, also denoted Rotθ, is called a rotation matrix. What this formula is saying

is that the linear transformation of rotation by θ degrees in the same as the linear transformation of mul-
tiplication by the matrix. In other words, if we want to know the co-ordinates of the vector obtained by
rotating x by θ degrees, we simply calculate Rotθx.

Projections in two dimensions

Now we consider the transformation which projects a vector x in the direction of another vector a. We
already have a formula for this transformation. In the special case that a has unit length, the formula is

Proj
a
x = (x · a)a.

It follows from the properties of the dot product that

Proj
a
(sx + ty) = ((sx + ty) · a)a

= ((sx · a + ty · a)a

= s((x · a)a) + t((y · a)a)

= sProj
a
x + tProj

a
y

Thus Proj
a

is a linear transformation. Let us now see that Proj
a

is also given by multiplication by a matrix.
If a = [a1, a2], then

Proj
a
x =

[

(x1a1 + x2a2)a1

(x1a1 + x2a2)a2

]

=

[

a2
1x1 + a1a2x2

a2a1x1 + a2
2x2

]

=

[

a2
1 a1a2

a2a1 a2
2

] [

x1

x2

]

If a is the unit vector making an angle of θ with the x axis, then a1 = cos(θ) and a2 = sin(θ). Using half
angle formulas, we have

a2
1 = cos2(θ) =

1 + cos(2θ)

2

a2
2 = sin2(θ) =

1 − cos(2θ)

2

a1a2 = cos(θ) sin(θ) =
sin(2θ)

2

Thus the matrix which when multiplied by x produces the projection of x onto the line making an angle of
θ with the x axis is given by

Projθ =
1

2

[

1 + cos(2θ) sin(2θ)
sin(2θ) 1− cos(2θ)

]
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a

b

proj ab

Reflections in two dimensions

A third example of a geometric linear transformation is reflection across a line. The following figure illustrates
reflection across a line making an angle θ with the x axis. Let Refθx denote the reflected vector.

θ

Proj  (  )θ x

Ref  (  )θ x

x

We can obtain the matrix for reflection from the following observation.

The vector with tail at x and head at Projθx is Projθx − x. If we add twice this vector to x, we arrive at
Refθx. Therefore

Refθx = x + 2(Projθx − x)

= 2Projθx − x

Now if I =

[

1 0
0 1

]

, then Ix = x for any vector x, since

[

1 0
0 1

][

x1

x2

]

=

[

1x1 + 0x2

0x1 + 1x2

]

=

[

x1

x2

]

I is called the identity matrix.

Now we can write
Refθx = 2Projθx − Ix = (2Projθ − I)x.

This means that the matrix for reflections is 2Projθ − I . Explicitly

Refθ =

[

1 + cos(2θ) sin(2θ)
sin(2θ) 1 − cos(2θ)

]

−

[

1 0
0 1

]

=

[

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
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Problem 3.7: Find the matrices which project on the lines

(a) x1 = x2 (b) 3x1 + 4x2 = 0.

Problem 3.8: Find the matrices that reflect about the lines (a) x1 = x2 (b) 3x1 + 4x2 = 0.

Problem 3.9: Find the matrices which rotate about the origin in two dimensions by (a) π/4, (b) π/2 (c) π

Problem 3.10: Find the matrix which first reflects about the line making an angle of φ with the x axis, and

then reflects about the line making an angle of θ with the x axis.

Every linear transformation is multiplication by a matrix

We have just seen three examples of linear transformations whose action on a vector is given by multiplication
by a matrix. Now we will see that for any linear transformation T (x) there is a matrix T such that T (x) is
the matrix product Tx.

To illustrate this suppose that T is a linear transformation that takes three dimensional vectors as input.

Let e1, e2 and e3 be the standard basis vectors in three dimensions, that is

e1 =





1
0
0



 e2 =





0
1
0



 e3 =





0
0
1





Then any vector can be written

x =





x1

x2

x3



 = x1





1
0
0



+ x2





0
1
0



+ x3





0
0
1



 = x1e1 + x2e2 + x3e3

Now, using the linearity property of the linear transformation T , we obtain

T (x) = T (x1e1 + x2e2 + x3e3) = x1T (e1) + x2T (e2) + x3T (e3)

Now take the three vectors T (e1), T (e2) and T (e3) and put them in the columns of a matrix which we’ll
also call T . Then

Tx =

[

T (e1)

∣

∣

∣

∣

∣

T (e2)

∣

∣

∣

∣

∣

T (e3)

]





x1

x2

x3



 = T (e1)x1 + T (e2)x2 + T (e3)x3 = T (x)

In other words, the action of the transformation T on a vector x is the same as multiplying x by the matrix

T =

[

T (e1)

∣

∣

∣

∣

∣

T (e2)

∣

∣

∣

∣

∣

T (e3)

]

The same idea works in any dimension. To find the matrix of a linear transformation T (x) we take the
standard basis vectors e1, e2, . . . , en (where ek has zeros everywhere except for a 1 in the kth spot) and
calculate the action of the linear transformation on each one. We then take the transformed vectors
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T (e1), T (e2), . . . , T(en) and put them into the columns of a matrix T =

[

T (e1)

∣

∣

∣

∣

∣

T (e2)

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

T (en)

]

. This

matrix T then reproduces the action of the linear transformation, that is, T (x) = Tx.

To see how this works in practice, lets recalculate the matrix for rotations in two dimensions. Under a

rotation angle of θ, the vector e1 =

[

1
0

]

gets transformed to T (e1) =

[

cos(θ)
sin(θ)

]

while the vector e2 =

[

0
1

]

gets transformed to T (e2) =

[

− sin(θ)
cos(θ)

]

T(    )e2

θ

e

e1

2

T(    )

=[cos(  ),sin(  )]

e1
=[-sin(  ),cos(  )]

θ θ

θθ

According to our prescription, we must now put these two vectors into the columns of a matrix. This gives
the matrix

T =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

which is exactly the same as Rotθ.

Composition of linear transformations and matrix product

Suppose we apply one linear transformation T and then follow it by another linear transformation S. For
example, think of first rotating a vector and then reflecting it across a line. Then S(T (x)) is again a linear
transformation, since

S(T (sx + ty)) = S(sT (x) + tT (y)) = sS(T (x)) + tS(T (y)).

What is the matrix for the composition S(T (x))? We know that there are matrices S and T that reproduce
the action of S(x) and T (x). So T (x) is the matrix product Tx and S(Tx)) is the matrix product S(Tx)
(here the parenthesis just indicate in which order we are doing the matrix product) But matrix multiplication
is associative. So S(Tx) = (ST )x. In other words the matrix for the composition of S(x) and T (x) is simply
the matrix product of the corresponding matrices S and T .

For example, to compute the matrix for the transformation of rotation by 45◦ followed by reflection about
the line making an angle of 30◦ with the x axis we simply compute the product

Ref30◦Rot45◦ =

[

cos(60◦) sin(60◦)
sin(60◦) − cos(60◦)

][

cos(45◦) − sin(45◦)
sin(45◦) cos(45◦)

]

=

[

1
2

√
3

2√
3

2 − 1
2

][ √
2

2 −
√

2
2√

2
2

√
2

2

]

=

[ √
2+

√
6

4
−
√

2+
√

6
4√

6−
√

2
4

−
√

6−
√

2
4

]

Problem 3.11: Find the matrix which first reflects about the line making an angle of φ with the x axis and

then reflects about the line making an angle of θ with the x axis. Give another geometric interpretation of this

matrix.
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Problem 3.12: Find the matrix that rotates about the z axis by and angle of θ in three dimensions.

Application of matrix product: random walk

Consider a system with three states, labeled 1, 2 and 3 in the diagram below.

2

3

1

p
12

21
p

p
23p

32
p
13p

31

p

p
11

22

p
33

To make the problem more vivid, one can imagine these as being actual locations. A random walker starts
off at some location, say location 1 at time 0. Then at a sequence of times, 1, 2, . . . , n . . ., the walker either
stays where he is, or moves to one of the other locations. The next location is chosen randomly, but according
to the transition probabilities pi,j . These are numbers between 0 and 1 that measure how likely it is that,
starting from location j, the walker will move to location i. If pi,j = 0, then there is no chance that the
walker will move from j to i, and if pi,j = 1, then the walker will move for sure from j to i.

Since the walker must either move from j to another site or stay put, the sum of these probabilities must
equal one:

p1,j + p2,j + p3,j =

3
∑

i=1

pi,j = 1

At each time n there is a vector xn =





xn,1

xn,2

xn,3



 that gives the probabilities that the walker is in location 1, 2

or 3 at time n. Let us compute the vector xn+1, given xn. To start, we must compute xn+1,1, the probability
that the walker is at location 1 at time n+1. There are three ways the walker can end up at location 1. The
walker might have been at location 1 at time n and have stayed there. The probability of this is p1,1xn,1. Or
he might have been at location 2 and have moved to 1. The probability of this is p1,2xn,2. Finally, he might
have been at location 3 and have moved to 1. The probability of this is p1,3xn,3. Thus the total probability
that the walker is at location 1 at time n + 1 is the sum

xn+1,1 = p1,1xn,1 + p1,2xn,2 + p1,3xn,3

Similarly, for all i

xn+1,i = pi,1xn,1 + pi,2xn,2 + pi,3xn,3
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But this is exactly the formula for matrix multiplication. So

xn+1 = Pxn

where P is the matrix with entries [pij ].

Now suppose the initial probabilities are given by some vector x0. For example, if the walker starts off at
location 1, then

x0 =





1
0
0





Then after one time step, we have

x1 = Px0

Then,

x2 = Px1 = P 2x0

and so on, so after n time steps

xn = P nx0

Notice that the sum xn,1 + xn,2 + xn,3 =
∑3

i=1 xn,i should equal one, since the total probability of being in
one of the three locations must add up to one.

If the initial vector has this property, then it is preserved for all later times. To see this, suppose that
∑3

j=1 xj = 1 Then, since
∑3

i=1 pij = 1

3
∑

i=1

(Px)i =

3
∑

i=1

3
∑

j=1

pijxj

=

3
∑

j=1

(

3
∑

i=1

pij

)

xj

=
3
∑

j=1

xj

= 1

In other words, the vector for the next time step also has components summing to one.

Of course, one can generalize this to a system with an arbitrary number of states or locations.

Later in the course we will see how to use eigenvalues and eigenvectors to compute the limit as n tends to
infinity of this expression.

Problem 3.13: Consider a random walk with 3 states, where the probability of staying in the same location is

zero. Suppose

the probability of moving from location 1 to location 2 is 1/2

the probability of moving from location 2 to location 1 is 1/3

the probability of moving from location 3 to location 1 is 1/4

Write down the matrix P . What is the probability that a walker starting in location 1 is in location 2 after

two time steps?
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Problem 3.14: Consider a random walk with 3 states, where all the probabilities pi,j are all equal to 1/3.

What is P , P n. Compute the probabilities P nx0 when x0 =





1
0
0



 (ie the walker starts in location 1),

x0 =





0
1
0



 (ie the walker starts in location 2), and x0 =





0
0
1



 (ie the walker starts in location 3)

The transpose

If A is an m × n matrix, then its transpose AT is the matrix obtained by flipping A about its diagonal. So
the columns of AT are the rows of A (in the same order) and vice versa. For example, if

A =

[

1 2 3
4 5 6

]

then

AT =





1 4
2 5
3 6





Another way of saying this is that the i, jth entry of AT is the same as the j, ith entry of A, that is,

aT
i,j = aj,i.

There are two important formulas to remember for the transpose of a matrix. The first gives a relation
between the transpose and the dot product. If A is an n×m matrix, then for every x ∈ R

n and y ∈ R
m we

have
y · (Ax) = (AT y) · x (3.2)

Problem 3.15: Verify formula (3.2) for x =





x1

x2

x3



 y =

[

y1

y2

]

and A =

[

1 2 3
4 5 6

]

.

The proof of this formula is a simple calculation.

y · (Ax) =
m
∑

i=1

yi





n
∑

j=1

ai,jxj





=
m
∑

i=1

n
∑

j=1

yiai,jxj

=
n
∑

j=1

m
∑

i=1

aT
j,iyixj

=
n
∑

j=1

(

m
∑

i=1

aT
j,iyi

)

xj

= (AT y) · x
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In fact, the formula (3.2) could be used to define the transpose. Given A, there is exactly one matrix AT for
which (3.2) is true for every x and y, and this matrix is the transpose.

The second important formula relates the transpose of a product of matrices to the transposes of each one.
For two matrices A and B such that AB is defined the formula reads

(AB)T = BT AT (3.3)

Notice that the order of the factors is reversed on the right side. To see why (3.3) is true, notice that on the
one hand

y · (ABx) = ((AB)T y) · x

while on the other hand

y · (ABx) = y · (A(Bx)) = (AT y) · (Bx) = (BT AT y) · x

Thus ((AB)T y) · x = (BT AT y) · x for every x and y. This can only be true if (3.3) holds.

Problem 3.16: What is (AT )T ?

Problem 3.17: Verify (3.3) for A =

[

1 2
3 1

]

and B =

[

1 2 3
4 5 6

]

Problem 3.18: Show that if A and B are both m × n matrices such that y · (Ax) = y · (Bx) for every

y ∈ R
m and every x ∈ R

n, then A = B.

Problem 3.19: Show that if you think of (column) vectors in R
n as n × 1 matrices then

xẏ = xT y

Now use this formula and (3.3) to derive (3.2).

Quadratic functions revisited

Let us restate our results on minimization of quadratic functions using matrix notation. A quadratic function

of x =





x1
...

xn



 ∈ R
n can be written in matrix form as

f(x) = x · Ax + b · x + c

where A is an n × n matrix and b ∈ R
n and c is a number. The vector containing the partial derivatives

can be computed to be






∂f/∂x1

...
∂f/∂xn






= (A + AT )x + b

Recall that we made the assumption that aij = aji when we considered this problem before. This property
can be stated in compact form as

A = AT .
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If this is true then (A + AT ) = 2A so






∂f/∂x1

...
∂f/∂xn






= 2Ax + b

To find the minimum value of f (if it exists) we need to find the value of x for which the vector above is
zero. In other words, x solves the equation

2Ax = −b.

This is the same equation that we derived before.

Least squares solutions

Lets take another look the situation where a system of linear equations, which we now can write

Bx = c,

has no solution. Typically this will be the case if there are more equations than variables, that is, B is an
matrix with more rows than columns. In this case there is no value of x that makes the left side equal the
right side. However, we may try to find the value of x for which the right side Bx is closest to the left side c.

One way to go about this is to try to minimize distance between the left and right sides. It is more convenient
to minimize the square of the distance. This quantity can be written

‖Bx− c‖2 = (Bx − c) · (Bx − c)

= (Bx) · (Bx) − (Bx) · c − c · (Bx) + c · c

= x · (BT Bx) − 2(BT c) · x + c · c

This is a quadratic function, written in matrix form. We want to use the formula of the previous section
with A = BT B and b = BT c. Before we can do so, we must verify that A = BT B satisfies AT = A. This is
true because

(AT A)T = AT (AT )T = AT A

Thus the formula of the previous section implies that the minimum occurs at the value of x that solves the
linear equation

BT Bx = BT c

Here we have canceled a factor of 2 on each side.

Now lets derive the same result in another way. Think of all the values of Bx, as x ranges through all
possible values in R

n as forming a (high dimensional) plane in R
m. Our goal is to find the value of x so that

the corresponding value of Bx on the plane is closest to c. Using the analogy to the geometric picture in
three dimensions, we see that the minimum will occur when Bx− c is orthogonal to the plane. This means
that the dot product of Bx − c with every vector in the plane, that is, every vector of the form By, should
be zero. Thus we have

(By) · (Bx − c) = 0

for every y ∈ R
n. This is the same as

y · (BT (Bx − c)) = y · (BT Bx − BT c) = 0

for every y ∈ R
n. This can happen only if

BT Bx = BT c
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which is the same result we obtained before.

Problem 3.20: Find the least squares solution to

x1 +x2 = 1
x1 = 1
x1 +x2 = 0

Compare Bx and b.

Problem 3.21: Refer back to the least squares fit example, where we tried to find the best straight line going

through a collection of points (xi, yi). Another way of formulating this problem is this. The line y = ax + b
passes through the point (xi, yi) if

axi + b = yi (3.4)

So, saying that the straight line passes through all n points is the same as saying that a and b solve the system

of n linear equations given by (3.4) for i = 1, . . . , n. Of course, unless the points all actually lie on the same

line, this system of equations has no solutions. Show that the least squares solution to this problem is the

same as we obtained before. (You may simplify the problem by assuming there are only three points (x1, y1),
(x2, y2) and (x3, y3).)

Matrix Inverses

To solve the numerical equation
ax = b

for x we simply multiply both sides by a−1 = 1
a
. Then, since a−1a = 1, we find

x = a−1b.

Of course, if a = 0 this doesn’t work, since we cannot divide by zero. In fact, if a = 0 the equation ax = b
either has no solutions, if b 6= 0, or infinitely many solutions (every value of x), if b = 0.

We have seen that a system of linear equations can be rewritten

Ax = b

where is A is a known matrix x is the unknown vector to be solved for, and b is a known vector. Suppose
we could find an inverse matrix B (analogous to a−1) with the property that BA = I (recall that I denotes
the identity matrix). Then we could matrix multiply both sides of the equation by B yielding

BAx = Bb

But BAx = Ix = x, so x = Bb. Thus there is a unique solution and we have a formula for it.

Just as in the numerical case, where a could be zero, we can’t expect to find an inverse matrix in all cases.
After all, we know that there are linear systems of equations with no solutions and with infinitely many
solutions. In these situations there can be no inverse matrix.

When considering matrix inverses, we will always assume that we are dealing with square (i.e., n × n)
matrices.

We now make a definition.
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Definition: If A is an n × n matrix, then B is called the inverse of A, and denoted B = A−1, if

BA = I,

where I is the n × n identity matrix (with each diagonal entry equal to 1 and all other entries 0).

Here is an example. Suppose A =

[

2 1
5 3

]

then the inverse matrix is B = A−1 =

[

3 −1
−5 2

]

, since

[

2 1
5 3

] [

3 −1
−5 2

]

=

[

6 − 5 3 − 3
10 − 10 −5 + 6

]

=

[

1 0
0 1

]

This means that to solve the linear equation

2x1 +x2 = 2
5x1 +3x2 = 4

we write it as a matrix equation
[

2 1
5 3

][

x1

x2

] [

2
4

]

and then multiply both sides by the inverse to obtain

[

x1

x2

]

=

[

3 −1
−5 2

] [

2
4

]

=

[

2
−2

]

Here is an example of a matrix that doesn’t have an inverse. Let A =

[

1 0
0 0

]

. To see that A doesn’t have

an inverse, notice that the homogeneous equations Ax = 0 has a non-zero solution x =

[

0
1

]

. If A had an

inverse B, then we could multiply both sides of the equation Ax = 0 by B to obtain x = B0 = 0. But this
is false. Therefore there cannot be an inverse for A.

Clearly, having an inverse is somehow connected to whether or not there are any non-zero solutions of the
homogeneous equation Ax = 0. Recall that Ax = 0 has only the zero solution precisely when Ax = b has a
unique solution for any b.

Let A be an n × n matrix. The following conditions are equivalent:

(1) A is invertible.

(2) The equation Ax = b always has a unique solution.

(3) The equation Ax = 0 has as the only solution x = 0.

(4) The rank of A is n.

(5) The reduced form of A looks like

** *

* * *

* * *

*

* *

** *

*

*

*

*

*

*
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We already know that the conditions (2), (3), (4) and (5) are all equivalent.

We also just have seen that if A is invertible with inverse B, then the solution of Ax = b is x = Bb so it
exists and since we have a formula for it, it is unique.

So we just have to show that if Ax = b always has a unique solution, then A has an inverse. Consider the
transformation that takes a vector b to the unique solution x of Ax = b, ie, Tb = x. It is easy to check
that this is a linear transformation, since if Tb1 == x1, i.e., Ax1 = b1 and Tb2 = x2, i.e., Ax2 = b2, then
A(t1x1 + t2x2) = t1Ax1 + t2Ax2 = t1b1 + t2b2, so that T (t1b1 + t2b2) = t1x1 + t2x2 = t1Tb1 + t2Tb1

Since T is a linear transformation, it is given by some matrix B, and since T (Ax) = x, we must have
BAx = x which implies that BA is the identity matrix.

Going back to our first example, notice that not only is BA = I , but AB = I too, since
[

3 −1
−5 2

] [

2 1
5 3

]

=

[

6 − 5 −2 + 2
15 − 15 −5 + 6

]

=

[

1 0
0 1

]

For a general choice of A and B, BA need not be equal to AB. But if B is the inverse of A, then it is always
true that AB = BA = I .

To see this, suppose that A is invertible with BA = I but we don’t know yet whether AB = I . So what we
need to show is that for every vector x, ABx = x. First notice that if A is invertible, then any vector x can
be written in the form Ay for some y, since this is just the same as saying that the equation Ay = x has a
solution y. Thus ABx = ABAy = AIy = Ay = x.

Problem 3.22: Which of the following matrices are invertible?

(a)

[

1 2
3 4

]

(b)





1 2 3
0 3 4
0 1 1





(c)





1 2 3
0 3 4
0 1 2





Problem 3.23: Find the inverse for

[

1 2
3 5

]

Computing the inverse

How can we compute the inverse of an n × n matrix A? Suppose that A is invertible and B is the inverse.
Then AB = I . We can rewrite this equation as follows. Think of the columns of B as being column vectors
so that

B =

[

b1

∣

∣

∣

∣

∣

b2

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

bn

]

Then the rules of matrix multiplication imply that

AB =

[

Ab1

∣

∣

∣

∣

∣

Ab2

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

Abn

]
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Now the identity matrix can also be written as a matrix of column vectors. In this case the kth column is
simply the matrix with zeros everywhere except for a 1 in the kth place, in other words the vector ek. Thus

I =

[

e1

∣

∣

∣

∣

∣

e2

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

en

]

So if AB = I then the n equations
Ab1 = e1

Ab2 = e2

...

Abn = en

hold. If we solve each of these equations for b1, b2, . . ., bn, then we have found the inverse B.

Here is a simple example. Suppose we want to find the inverse for A =

[

2 1
5 3

]

. According to our discussion,

we must solve Ab1 = e1 and Ab2 = e2. The augmented matrix for Ab1 = e1 is

[

2 1
5 3

∣

∣

∣

∣

1
0

]

We now perform a sequence of row operations. First divide the first row by 2. This gives

[

1 1/2
5 3

∣

∣

∣

∣

1/2
0

]

.

Now subtract 5 times the first row from the second row. This gives

[

1 1/2
0 1/2

∣

∣

∣

∣

1/2
−5/2

]

.

Now subtract the second row from the first row. This gives

[

1 0
0 1/2

∣

∣

∣

∣

3
−5/2

]

.

Finally, multiply the second row by 2. This gives

[

1 0
0 1

∣

∣

∣

∣

3
−5

]

.

Therefore b1 =

[

3
−5

]

The augmented matrix for Ab2 = e2 is

[

2 1
5 3

∣

∣

∣

∣

0
1

]

We now perform a sequence of row operations. First divide the first row by 2. This gives

[

1 1/2
5 3

∣

∣

∣

∣

0
1

]

.

Now subtract 5 times the first row from the second row. This gives

[

1 1/2
0 1/2

∣

∣

∣

∣

0
1

]

.
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Now subtract the second row from the first row. This gives

[

1 0
0 1/2

∣

∣

∣

∣

−1
1

]

.

Finally, multiply the second row by 2. This gives

[

1 0
0 1

∣

∣

∣

∣

−1
2

]

.

Therefore b2 =

[

−1
2

]

. So

B =
[

b1

∣

∣

∣b2

]

=

[

3 −1
−5 2

]

Notice that we performed exactly the same sequence of row operations in finding b1 and b2. This is because the
row operations only depend on the left side of the augmented matrix, in other words, the matrix A. If we
used this procedure to find the inverse of an n × n matrix, we would end up doing exactly the same row
operations n times. Clearly this is a big waste of effort! We can save a lot of work by solving all the equations
at the same time. To do this we make a super-augmented matrix with both right sides.

[

2 1
5 3

∣

∣

∣

∣

1 0
0 1

]

Now we only have to go through the sequence of row operations once, keeping track of both right sides
simultaneously. Going through the same sequence, we obtain

[

1 1/2
5 3

∣

∣

∣

∣

1/2 0
0 1

]

.

[

1 1/2
0 1/2

∣

∣

∣

∣

1/2 0
−5/2 1

]

.

[

1 0
0 1/2

∣

∣

∣

∣

3 −1
−5/2 1

]

.

[

1 0
0 1

∣

∣

∣

∣

3 −1
−5 2

]

.

Notice that the vectors b1 and b2 are automatically arranged as columns on the right side, so the matrix on
the right is the inverse B.

The same procedure works for any size of square matrix. To find the inverse of A form the super-augmented
matrix [A|I ]. Then do a sequence of row operations to reduce A to the identity. If the resulting matrix is
[I |B] then B is the inverse matrix.

What happens if A doesn’t have an inverse? In this case it will be impossible to reduce A to the identity
matrix, since the rank of A is less than n. So the procedure will fail, as it must.

As another example, let us now compute the inverse of an arbitrary invertible 2 × 2 matrix A =

[

a b
c d

]

.

We will see that A is invertible precisely when its determinant ∆ = ad − bc is non-zero. So lets assume this
is the case, and do the computation. To start with, lets assume that ac 6= 0. Then neither a or c are zero.
Here is the sequence of row transformations.

[

a b
c d

∣

∣

∣

∣

1 0
0 1

]
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[

ac bc
ac ad

∣

∣

∣

∣

c 0
0 a

]

c(1)
a(2)

Notice that multiplication by a and by c would not be legal row transformations if either a or c were zero.

[

ac bc
0 ad − bc

∣

∣

∣

∣

c 0
−c a

]

(2) − (1)

[

1 b/a
0 1

∣

∣

∣

∣

1/a 0
−c/∆ a/∆

]

(1/ac)(1)
(1/∆)(2)

[

1 0
0 1

∣

∣

∣

∣

d/∆ −b/∆
−c/∆ a/∆

]

(1) − (b/a)(2)
(1/∆)(2)

Thus the inverse matrix is

A−1 =
1

ad − bc

[

d −b
−c a

]

.

This was derived under the additional assumption that ac 6= 0. However one can check directly that the
same formula works, so long as ∆ = ad − bc 6= 0.

Problem 3.24: Determine which of these matrices are invertible, and find the inverse for the invertible ones.

(a)





2 3 −1
1 2 3
−1 −1 4





(b)





1 −1 1
−1 2 −1
2 −1 1





(c)





1 1 1
1 2 3
1 4 9





(d)





2 1 4
3 2 5
0 −1 1





(e)





1 0 a
0 1 0
0 0 1





(f)





1 a b
0 1 c
0 0 1
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Row operations and elementary matrices

Recall that there are three row operation that are used in Gaussian elimination: (1) multiplication of a row
by a non-zero number, (2) add a multiple of one row to another row and (3) exchanging two rows.

It turns out that each elementary row operation can be implemented by left multiplication by a matrix. In
other words, for each elementary row operation there is a matrix Q such that QA is what you get by doing
that row operation to the matrix A.

Here is an example. Suppose

A =





1 0 2 1
2 0 0 1
1 2 3 4





and suppose that the row operation is multiplying the first row by 2. Then the matrix you get by doing that
row operation to the matrix A is

A′ =





2 0 4 2
2 0 0 1
1 2 3 4





In this case the matrix Q turns out to be

Q =





2 0 0
0 1 0
0 0 1





Since




2 0 0
0 1 0
0 0 1









1 0 2 1
2 0 0 1
1 2 3 4



 =





2 0 4 2
2 0 0 1
1 2 3 4





i.e., QA = A′.

Now suppose that the elementary row operation is subtracting twice the first row from the second row. Then
the matrix you get by doing that row operation to the matrix A is

A′ =





1 0 2 1
0 0 −4 −1
1 2 3 4





In this case the matrix Q turns out to be

Q =





1 0 0
−2 1 0
0 0 1





Since




1 0 0
−2 1 0
0 0 1









1 0 2 1
2 0 0 1
1 2 3 4



 =





1 0 2 1
0 0 −4 −1
1 2 3 4





i.e., again, QA = A′.

Finally, suppose that the elementary row operation is exchanging the second and the third rows. Then the
matrix you get by doing that row operation to the matrix A is

A′ =





1 0 2 1
1 2 3 4
2 0 0 1
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In this case the matrix Q turns out to be

Q =





1 0 0
0 0 1
0 1 0





Since




1 0 0
0 0 1
0 1 0









1 0 2 1
2 0 0 1
1 2 3 4



 =





1 0 2 1
1 2 3 4
2 0 0 1





i.e., again, QA = A′.

How can we find the matrices Q (called elementary matrices)? Here is the procedure. Start with the identity
matrix I and do the row transformation to it. The resulting matrix Q is the matrix that implements that
row transformation by multiplication from the left. Notice that this is true in the examples above. In the
first example, the row transformation was multiplying the first row by 2. If you multiply the first row of

I =





1 0 0
0 1 0
0 0 1



 by two you get Q =





2 0 0
0 1 0
0 0 1



.

In the second example, the row transformation was subtracting twice the first row from the second row. If

you subtract twice the second row from the first row of I by two you get Q =





1 0 0
−2 1 0
0 0 1



.

In the third example, the row transformation was exchanging the second and third rows. If you exchange

the second and third rows of I , you get





1 0 0
0 0 1
0 1 0



.

Problem 3.25: Each elementary matrix is invertible, and the inverse is also an elementary matrix. Find the

inverses of the three examples of elementary matrices above. Notice that the inverse elementary matrix is the

matrix for the row transformation that undoes the original row transformation.

Elementary matrices are useful in theoretical studies of the Gaussian elimination process. We will use them
briefly when studying determinants.

Suppose A is a matrix, and R is its reduced form. Then we can obtain R from A via a sequence of elementary
row operations. Suppose that the corresponding elementary matrices are Q1, Q2, . . ., Qk. Then, starting
with A, the matrix after the first elementary row operation is Q1A, then after the second elementary row
operation is Q2Q1A, and so on, until we have

QkQk−1 · · ·Q2Q1A = R.

Now let us apply the inverse matrices, starting with Q−1
k . This gives

Q−1
k QkQk−1 · · ·Q2Q1A = Qk−1 · · ·Q2Q1A = Q−1

k R.

Continuing in this way we see that
A = Q−1

1 Q−1
2 · · ·Q−1

k R

In the special case that A is an n × n invertible matrix, A can be reduced to the identity matrix. In other
words, we can take R = I . In this case A can be written as a product of elementary matrices.
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A = Q−1
1 Q−1

2 · · ·Q−1
k I = Q−1

1 Q−1
2 · · ·Q−1

k

Notice that in this case

A−1 = QkQk−1 · · ·Q2Q1.

As an example, let us write the matrix A =

[

2 1
5 3

]

as a product of elementary matrices. The sequence of

row transformations that reduce A to the identity are:

1) (1/2)(R1)

2) (R2)-5(R1)

3) (R1)-(R2)

4) 2(R2)

The corresponding elementary matrices and their inverses are

Q1 =

[

1/2 0
0 1

]

Q−1
1 =

[

2 0
0 1

]

Q2 =

[

1 0
−5 1

]

Q−1
2 =

[

1 0
5 1

]

Q3 =

[

1 −1
0 1

]

Q−1
3 =

[

1 1
0 1

]

Q4 =

[

1 0
0 2

]

Q−1
4 =

[

1 0
0 1/2

]

Therefore

A = Q−1
1 Q−1

2 Q−1
3 Q−1

4

or
[

2 1
5 3

]

=

[

2 0
0 1

][

1 0
5 1

][

1 1
0 1

] [

1 0
0 1/2

]

Problem 3.26: Write the matrix





2 3 −1
1 2 3
−1 −1 1



 as a product of elementary matrices.
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Determinants: definition

We have already encountered determinants for 2 × 2 and 3 × 3 matrices. For 2 × 2 matrices

det

[

a1,1 a1,2

a2,1 a2,2

]

= a1,1a2,2 − a1,2a2,1.

For 3 × 3 matrices we can define the determinant by expanding along the top row:

det





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



 = a1,1 det

[

a2,2 a2,3

a3,2 a3,3

]

− a1,2 det

[

a2,1 a2,3

a3,1 a3,3

]

+ a1,3 det

[

a2,1 a2,2

a3,1 a3,2

]

If we multiply out the 2 × 2 determinants in this definition we arrive at the expression

det





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



 = a1,1a2,2a3,3 − a1,1a2,3a3,2 + a1,2a2,3a3,1 − a1,2a2,1a3,3 + a1,3a2,1a1,2 − a1,3a2,2a3,1

We now make a similar definition for an n × n matrix. Let A be an n × n matrix. Define Mi,j to be the
(n − 1) × (n − 1) matrix obtained by crossing out the ith row and the jth column. So, for example, if

A =







1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6







then

M1,2 =







× × × ×
5 × 7 8
9 × 1 2
3 × 5 6






=





5 7 8
9 1 2
3 5 6





We now define the determinant of an n × n matrix A to be

det(A) = a1,1 det(M1,1) − a1,2 det(M1,2) + · · · ± a1,n det(M1,n) =

n
∑

j=1

(−1)j+1a1,j det(M1,j).

Of course, this formula still contains determinants on the right hand side. However, they are determinants
of (n − 1) × (n − 1) matrices. If we apply this definition to those determinants we get a more complicated
formula involving (n−2)× (n−2) matrices, and so on, until we arrive at an extremely long expression (with
n! terms) involving only numbers.

Calculating an expression with n! is completely impossible, even with the fastest computers, when n gets rea-
sonable large. For example 100! = 9332621544 3944152681 6992388562 6670049071 5968264381 6214685929
6389521759 9993229915 6089414639 7615651828 6253697920 8272237582 5118521091 6864000000 0000000000
00000000 Yet, your computer at home can probably compute the determinant of a 100×100 matrix in a few
seconds. The secret, of course, is to compute the determinant in a different way. We start by computing the
determinant of triangular matrices.
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Triangular matrices

Recall that triangular matrices are matrices whose entries above or below the diagonal are all zero. For 2×2
matrices

det

[

a1,1 a1,2

0 a2,2

]

= a1,1a2,2 − a1,20 = a1,1a2,2

and

det

[

a1,1 0
a2,1 a2,2

]

= a1,1a2,2 − 0a2,1 = a1,1a2,2

so the determinant is the product of the diagonal elements. For 3 × 3 matrices

det





a1,1 0 0
a2,1 a2,2 0
a3,1 a3,2 a3,3



 = a1,1 det

[

a2,2 0
a3,2 a3,3

]

− 0 + 0

= a1,1a2,2a3,3

A similar expansion shows that the determinant of an n × n lower triangular matrix is the product of the
diagonal elements. For upper triangular matrices we have

det





a1,1 a1,2 a1,3

0 a2,2 a2,3

0 0 a3,3



 = a1,1 det

[

a2,2 a2,3

0 a3,3

]

− a1,2 det

[

0 a2,3

0 a3,3

]

+ a1,3 det

[

0 a2,2

0 0

]

Since we already know that the determinant of a 2× 2 triangular matrix is the product of the diagonals, we
can see easily that the last two terms in this expression are zero. Thus we get

det





a1,1 a1,2 a1,3

0 a2,2 a2,3

0 0 a3,3



 = a1,1 det

[

a2,2 a2,3

0 a3,3

]

= a1,1a2,2a3,3

Once we know that the determinant of a 3×3 upper triangular matrix is the product of the diagonal elements,
we can do a similar calculation to the one above to conclude that determinant of a 4 × 4 upper triangular
matrix is the product of the diagonal elements, and so on.

Thus, the determinant of any (upper or lower) triangular n×n matrix is the product of the diagonal elements.

We know that an arbitrary n × n matrix can be reduced to an upper (or lower) triangular matrix by a
sequence of row operations. This is the key to computing the determinant efficiently. We need to determine
how the determinant of a matrix changes when we do an elementary row operation on it.

Exchanging two rows changes the sign of the determinant

We start with the elementary row operation of exchanging two rows. For 2 × 2 determinants,

det

[

a b
c d

]

= ad − bc,

while

det

[

c d
a b

]

= cb − da = −(ad − bc),
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so exchanging two rows changes the sign of the determinant.

We can do a similar calculation for 3 × 3 matrices. Its a a bit messier, but still manageable. Again, we find
that exchanging two rows changes the sign of the determinant.

How about the n× n case? We will assume that we have already proved the result for the (n− 1)× (n− 1)
case, and show how we can use this to show the result for an n × n matrix. Thus knowing the result for
2× 2 matrices, implies it for 3× 3, which in turn implies it for 4× 4 matrices, and so on. We consider three
cases, depending on which rows we are exchanging. Suppose A is the original matrix and A′ is the matrix
with two rows exchanged.

(1) Exchanging two row other than the first row: In this case we cross out the first row and any column
from A′ we obtain M ′

1,j which is the same as the matrix M1,j (corresponding to A) except with two of its
rows exchanged. Since the size of M1,j is n − 1 we know that det(M ′

1,j) = − det(M1,j) so

det(A′) =

n
∑

j=1

(−1)j+1a1,j det(M ′
1,j)

= −

n
∑

j=1

(−1)j+1a1,j det(M1,j)

= − det(A)

(2) Exchanging the first and second row. Do see that this changes the sign of the determinant we have to
expand the expansion. The following is a bit sketchy. I’ll probably skip it in class, but give the argument
here for completeness. If we expand M1,j we get

det(M1,j) =

j−1
∑

k=1

(−1)k+1a2,k det(M1,2,j,k) +

n
∑

k=j+1

(−1)ka2,k det(M1,2,j,k)

where M1,2,j,k is the matrix obtained from A by deleting the first and second rows, and the jth and kth
columns. Inserting this into the expansion for A gives

det(A) =
n
∑

j=1

j−1
∑

k=1

(−1)j+ka1,ja2,k det(M1,2,j,k) −
n
∑

j=1

n
∑

k=j+1

(−1)j+ka1,ja2,k det(M1,2,j,k)

The sum splits into two parts. Flipping the first two rows of A just exchanges the two sums. In other words
S − R becomes R − S which is −(S − R). So exchanging the first two rows also changes the sign of the
determinant.

(3) Exchanging the first row with the kth row. We can effect this exchange by first exchanging the kth and
the second row, then exchanging the first and the second row, then exchanging the kth and the second row
again. Each flip changes the determinant by a minus sign, and since there are three flips, the overall change
is by a minus sign.

Thus we can say that for any n × n matrix, exchanging two rows changes the sign of the determinant.

One immediate consequence of this fact is that a matrix with two rows the same has determinant zero. This
is because if exchange the two rows the determinant changes by a minus sign, but the matrix doesn’t change.
Thus det(A) = − det(A) which is only possible if det(A) = 0.
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The determinant is linear in each row separately

To say that the determinant is linear in the jth row means that if we write a matrix as a matrix of row
vectors,

A =



















a1

a2
...
aj

...
an



















then

det(



















a1

a2
...

sb + tc
...

an



















) = s det(



















a1

a2
...
b
...

an



















) + t det(



















a1

a2
...
c
...

an



















)

It is easy to from the expansion formula that the determinant is linear in the first row. For a 3× 3 example
we have

det(





sb1 + tc1 sb2 + tc2 sb3 + tc3

a2,1 a2,2 a2, 3
a3,1 a3,2 a3, 3



)

= (sb1 + tc1) det(M1,1) − (sb2 + tc2) det(M1,2) + (sb3 + tc3) det(M1.3)

= s(b1 det(M1,1) − b2 det(M1,2) + b3 det(M1.3))

+ t(c1 det(M1,1) − c2 det(M1,2) + c3 det(M1.3))

= s det(





b1 b2 b3

a2,1 a2,2 a2, 3
a3,1 a3,2 a3, 3



) + t det(





c1 c2 c3

a2,1 a2,2 a2, 3
a3,1 a3,2 a3, 3



)

A similiar calculation can be done for any n× n matrix to show linearity in the first row. To show linearity
in some other row, we first swap that row and the first row, then use linearity in the first row, and then swap
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back again. So

det(



















a1

a2
...

sb + tc
...

an



















) = − det(



















sb + tc
a2
...
a1
...

an



















)

= −s det(



















b

a2
...
a1
...

an



















) − t det(



















c

a2
...
a1
...

an



















)

= s det(



















a1

a2
...
b
...

an



















) + t det(



















a1

a2
...
c
...

an



















)

Notice that linearity in each row separately does not mean that det(A + B) = det(A) + det(B).

Multiplying a row by a constant mulitplies the determinant by the constant

This is a special case of linearity.

Adding a multiple of one row to another doesn’t change the determinant

Now we will see that the most often used row operation—adding a multiple of one row to another—doesn’t
change the determinant at all. Let A be an n × n matrix. Write A as a matrix of rows.

A =

























a1
...
ai

...
aj

...
an
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Adding s times the ith row to the jth row yields

A′ =

























a1
...
ai

...
aj + sai

...
an

























So

det(A′) = det(

























a1
...
ai

...
aj + sai

...
an

























) = det(

























a1
...
ai

...
aj

...
an

























) + s det(

























a1
...
ai

...
ai

...
an

























) = det(A) + 0

Here we used linearity in a row and the fact that the determinant of a matrix with two rows the same is
zero.

Calculation of determinant using row operations

We can now use elementary row operations to compute the determinant of




1 2 3
1 2 1
2 3 0





The sequence of row operations that transforms this matrix into an upper triangular one is (R2)-(R1), (R3)-
2(R1), exchange (R2) and (R3). The determinant doesn’t change under the first two transformations, and
changes sign under the third. Thus

det(





1 2 3
1 2 1
2 3 0



) = det(





1 2 3
0 0 −2
2 3 0



)

= det(





1 2 3
0 0 −2
0 −1 −6



)

= − det(





1 2 3
0 −1 −6
0 0 −2



)

= −(1)(−1)(−2) = −2

Problem 3.27: Find the determinant of






1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64









78 Math 152 – Winter 2004 – Section 3: Matrices and Determinants

Problem 3.28: Find the determinant of






1 −1 1 −1
1 2 4 8
1 −2 4 −8
1 1 1 1







The determinant of QA

To begin, we compute the determinants of the elementary matrices. Recall that if A′ is the matrix obtained
from A by an elementary row operation, then

(1) det(A′) = − det(A) if the row operation is swapping two rows

(2) det(A′) = s det(A) if the row operation is multiplying a row by s

(2) det(A′) = det(A) if the row operation is adding a multiple of one row to another

Recall that the elementary matrices are obtained from the identity matrix I by an elementary row operation.
So we can take A = I and A′ = Q in the formulas above to obtain

(1) det(Q) = − det(I) = −1 if the row operation is swapping two rows

(2) det(Q) = s det(I) = s if the row operation is multiplying a row by s

(2) det(Q) = det(I) = 1 if the row operation is adding a multiple of one row to another

Going back to the first set of formulas, we have that in each case A′ = QA. In each case the factor in front
of det(A) is exactly det(Q) So we see that in each case

det(QA) = det(Q) det(A).

This formula can be generalized. If Q1, Q2, . . ., Qk are elementary matrices then det(Q1Q2Q3 · · ·QkA) =
det(Q1) det(Q2Q3 · · ·QkA) = det(Q1) det(Q2) det(Q3 · · ·QkA) and so on, so we arrive at the formula

det(Q1Q2Q3 · · ·QkA) = det(Q1) det(Q2) · · ·det(Qk) det(A).

The determinant of A is zero exactly when A is not invertible

Recall that if R denotes the reduced form of A, obtained by performing the sequence of row reductions
corresponding to Q1, Q2, . . ., Qk, then

A = Q−1
1 Q−1

2 · · ·Q−1
k R

Each Q−1
i is an elementary matrix, therefore

det(A) = det(Q−1
1 ) det(Q−1

2 ) · · · det(Q−1
k ) det(R)

If A is not invertible, then R has a row of zeros along the bottom. Thus R is an upper triangular matrix
with at least one zero on the diagonal. The determinant of R is the product of the diagonal elements so
det(R) = 0. Thus det(A) = 0 too.

If A is invertible, then we can reduce A to to identity matrix. In other words, we can take R = I . Then
det(R) = 1. Each det(Q−1

i ) is non-zero too, so det(A) 6= 0.
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Inverses of Products

If both A and B are invertible, then so is AB. The inverse of AB is given by B−1A−1. To check this, simply
compute

ABB−1A−1 = AIA−1 = AA−1 = I.

If one of A or B is not invertible then AB is not invertible. To see this recall that a matrix C is not invertible
exactly whenever there is a non-zero solution x to Cx = 0.

If B is not invertible, then there is a non-zero vector x with Bx = 0. Then ABx = A0 = 0 so AB is not
invertible too.

If B is invertible, but A is not, then there is a non-zero x with Ax = 0. Let y = B−1x. Since B−1 is
invertible, y cannot be zero. We have ABy = ABB−1x = Ax = 0 so AB is not invertible.

The product formula: det(AB) = det(A) det(B)

If either A or B is non-invertible, then AB is non-invertible too. Thus det(AB) = 0 and one of det(A) or
det(B) is zero, so det(A) det(B) = 0 too. Thus det(AB) = det(A) det(B).

If both A and B are invertible, then

A = Q−1
1 Q−1

2 · · ·Q−1
k

so

det(A) = det(Q−1
1 ) det(Q−1

2 ) · · · det(Q−1
k )

and

B = Q̃−1
1 Q̃−1

2 · · · Q̃−1
j

so

det(B) = det(Q̃−1
1 ) det(Q̃−1

2 ) · · ·det(Q̃−1
j )

Therefore

AB = Q−1
1 Q−1

2 · · ·Q−1
k Q̃−1

1 Q̃−1
2 · · · Q̃−1

j

so

det(AB) = det(Q−1
1 ) det(Q−1

2 ) · · · det(Q−1
k ) det(Q̃−1

1 ) det(Q̃−1
2 ) · · · det(Q̃−1

j ) = det(A) det(B)
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The determinant of the transpose

Recall that the transpose AT of a matrix A is the matrix you get when you flip A about its diagonal. If A
is an n × n matrix, so is AT and we can ask what the relationship between the determinants of these two
matrices is. It turns out that they are the same.

det(AT ) = det(A).

If A is an upper or lower triangular matrix, this follows from the fact that the determinant of a triangular
matrix is the product of the diagonal entries. If A is an arbitrary n×n matrix then the formula follows from
two facts.

(1) The transpose of a product of two matrices is given by (AB)T = BT AT

This implies that (A1A2 · · ·An)T = AT
n · · ·AT

2 AT
1 .

(2) For an elementary matrix Q we have det(QT ) = det(Q).

If you accept these two facts, then we may write

A = Q−1
1 Q−1

2 · · ·Q−1
k R

where R is upper triangular. Thus

AT = RT (Q−1
k )T · · · (Q−1

2 )T (Q−1
1 )T

so
det(AT ) = det(RT ) det((Q−1

k )T ) · · · det((Q−1
1 )T )

= det(R) det(Q−1
k ) · · · det(Q−1

1 )

= det(Q−1
1 ) · · · det(Q−1

k ) det(R)

= det(A)

More expansion formulas

We can use the properties of the determinant to derive alternative expansion formulas. Recall that we defined
the determinant to be

det(A) =

n
∑

j=1

(−1)j+1a1,j det(M1,j).

In other words, we expanded along the top row. Now lets see that we can expand along other rows as well.
Let A be the original matrix with rows a1 = [a1,1, a1,2, . . . , a1,n], . . . an = [an,1, an,2, . . . , an,n]. For example,
if A is a 5 × 5 matrix then

A =











a1

a2

a3

a4

a5











Suppose we want to expand along the fourth row. Let A′ be the matrix, where the fourth row of A has been
moved to the first row, with all other rows still in the same order, i.e.,

A′ =











a4

a1

a2

a3

a5
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How is the determinant of A′ related to the determinant of A? We can change A to A′ be a series of row
flips as follows:

A =











a1

a2

a3

a4

a5











,











a1

a2

a4

a3

a5











,











a1

a4

a2

a3

a5











,











a4

a1

a2

a3

a5











= A′

We have performed 3 flips, so det(A′) = (−1)3 det(A) = − det(A).

In general, to move the ith row to the top in this way, we must perform i−1 flips, so det(A′) = (−1)i−1 det(A)

Notice that A′ is a matrix with the properties

(1) a′
1,j = ai,j , since we have moved the ith row to the top

(2) M ′
1,j = Mi,j , since we haven’t changed the order of the other rows.

Therefore
det(A) = (−1)i−1 det(A′)

= (−1)i−1
n
∑

j=1

(−1)j+1a′
1,j det(M ′

1,j)

= (−1)i−1
n
∑

j=1

(−1)j+1ai,j det(Mi,j)

=

n
∑

j=1

(−1)i+jai,j det(Mi,j)

This is the formula for expansion along the ith row.

As an example lets compute the determinant of a 3 × 3 matrix by expanding along the second row.

det





1 2 3
1 3 1
1 2 1



 = − det

[

2 3
2 1

]

+ 3 det

[

1 3
1 1

]

− det

[

1 2
1 2

]

= −2 + 6 + 3 − 9 − 2 + 2 = −2

The formula for expanding along the ith row is handy if the matrix happens to have a row with many zeros.

Using the fact that det(A) = det(AT ) we can also write down expansion formulas along columns, since the
columns of A are the rows of AT .

We end up with the formula

det(A) =

n
∑

i=1

(−1)i+jai,j det(Mi,j)

As an example lets compute the determinant of a 3 × 3 matrix by expanding along the second column.

det





1 2 3
1 3 1
1 2 1



 = −2 det

[

1 1
1 1

]

+ 3 det

[

1 3
1 1

]

− 2 det

[

1 3
1 1

]

= −2 + 2 + 3 − 9 − 2 + 6 = −2

The formula for expanding along the ith row is handy if the matrix happens to have a column with many
zeros.
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An impractical formula for the inverse

We can use the expansion formulas of the previous section to obtain a formula for the inverse of a matrix
A. This formula is really only practical for 3 × 3 matrices, since for larger matrices, the work involved in
computing the determinants appearing is prohibitive.

We begin with the expansion formula

det(A) =

n
∑

j=1

(−1)i+jai,j det(Mi,j)

If A is invertible, then det(A) 6= 0 so we can divide by it to obtain

1 =
n
∑

j=1

ai,j

(−1)i+j det(Mi,j)

det(A)

Now suppose we take the matrix A and replace the ith row by the kth row for some k 6= i. The resulting
matrix A′ has two rows the same, so its determinant is zero. Its expansion is the same as that for A, except
that ai,j is replaced by ak,j . Thus, if k 6= i

0 =

n
∑

j=1

(−1)i+jak,j det(Mi,j)

Dividing by det(A) yields

0 =

n
∑

j=1

ak,j

(−1)i+j det(Mi,j)

det(A)

Now let B be the matrix with entries

bi,j =
(−1)i+j det(Mj,i)

det(A)

This turns out to be the inverse A−1.

It gets a bit confusing with all the indices, but lets think about what we need to show. The k, ith entry of
the product AB is given by

(AB)k,i =
n
∑

j=1

ak,jbj,i

=

n
∑

j=1

ak,j

(−1)i+j det(Mi,j)

det(A)

According to the formulas above, this sum is equal to 1 if k = i and equal to 0 if k 6= i. In other words, AB
is the identity matrix I . This shows that B = A−1
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Cramer’s rule

Given an impractical way to compute the inverse, we can derive an impractical formula for the solution of
a system of n equations in n unknowns, i.e., a matrix equation

Ax = b

The solution x is equal to A−1b. So if x =





x1

x2
...xn



 and b =





b1

b2
...bn



, then using the formula of the previous

section for the inverse, we get

xi =

n
∑

j=1

A−1
i,j bj =

n
∑

j=1

(−1)i+j det(Mj,i)

det(A)
bj

but this is exactly (1/ det(A)) times the formula for expanding the determinant matrix obtained from A by
replacing the ith column with b. Thus

xi =
det(matrix obtained from A by replacing the ith column with b)

det(A)

Problem 3.29: Compute

det





1 0 1
1 2 3
3 0 1





by expanding along the second row, and by expanding along the third column.

Problem 3.30: Find the inverse of





1 0 1
1 2 3
3 0 1



 using the impractical formula

Problem 3.31: Solve the equation




1 0 1
1 2 3
3 0 1









x1

x2

x3



 =





1
0
1





using Cramer’s rule.


