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Systems of linear equations

So far, we have seen systems of linear equations as the equations that describe points, lines and planes.
However, linear systems of equations show up in many other ways in engineering problems. We will look
at examples involving computing the equilibrium configuration of a system of weights and springs and of a
LCR circuit. Other examples would be the calculation of equilibrium temperature distributions or electric
fields. Such examples often involve the discretization of a continuous function. In other words, a continuous
function like the temperature distribution in a body (which has a value for each of the infinitely many points
in the body) will be replaced by a list of temperatures at a large but finite number n of closely spaced points.
This gives rise to a system of linear equations in n unknowns, where n can be in the tens of thousands, or
higher. Therefore, we want to develop a technique to solve systems of linear equations in n unknowns when
n is large.

The most general form of a linear system of equations is

a1,1x1 + a1,2x2 + · · · + a1,nxn = c1

a2,1x1 + a2,2x2 + · · · + a2,nxn = c2

...
...

...
...

am,1x1 + am,2x2 + · · · + am,nxn = cm

Here the numbers ai,j and cj are known, and the goal is to find all values of x1, . . . , xn that satisfy all the
equations.

Lets start with some examples. Consider the system of equations

x1 + x2 + x3 = 6
x1 − x2 + x3 = 0
2x1 + x2 − 8x3 = −11

One could try to proceed as follows. Solve the first equations for, say, x3. This gives

x3 = 6 − x1 − x2.

Now substitute this value for x3 into the second and third equations. This gives

x1 − x2 + (6 − x1 − x2) = 0
2x1 + x2 − 8(6 − x1 − x2) = −11

or
−2x2 = −6

10x1 + 9x2 = 37

Now solve the first of these equations for x2 and substitute into the last equation. This gives x2 = 3 and
x1 = 1. Finally we can go back and calculate x3 = 6 − 1 − 3 = 2.

Although this procedure works fine for n = 2 or even n = 3, it rapidly becomes unwieldy for larger values
of n. We will now introduce a technique called Gaussian elimination that works well for large n and can be
easily implemented on a computer.

We have already observed that there may be many systems of equations with the same solution. When there
are only two unknowns, this amounts to saying that different pairs of lines may intersect in the same point.
Gaussian elimnation is based on the following idea. We introduce three elementary row operations. These
operations change the system of the equations into another system with exactly the same the set of solutions.
We then apply these elementary row operations in a systematic way to change the system of equations into
a system that is easily solved.
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Elementary row operations

The first elementary row operation is

1. Multiplication of a row by a non-zero number

For example, if we multilply the first equation in the system above by 3, we end up with

3x1 + 3x2 + 3x3 = 18
x1 − x2 + x3 = 0
2x1 + x2 − 8x3 = −11

This new system of equations has exactly the same solutions as the original system, because we can undo
the elementary row operation simply by dividing the first equation by 3. Thus the values x1, x2, x3 solve this
system if and only if they solve the original system. (Notice that this would not be true if we multiplied by
zero. In that case we could not undo the operation, and the new system of equations could well have more
solutions than the original system.)

The second elementary row operation is

2. Adding a multiple of one row to another row

For example, if added 2 times the first row to the second row in our example we would obtain the system

x1 + x2 + x3 = 6
3x1 + x2 + 3x3 = 12
2x1 + x2 − 8x3 = −11

Again, the new system of equations has exactly the same solutions as the original system, since we could
undo this elementary row operation by subtracting 2 times the first row from the second row.

The third and final elementary row operation is

3. Interchanging two rows

For example, if we swapped the first and second equations in our original system we would end up with

x1 − x2 + x3 = 0
x1 + x2 + x3 = 6
2x1 + x2 − 8x3 = −11

This obviously doesn’t change the solutions of the system.

Problem 2.1: Start with the system

x1 + x2 + x3 = 6
x1 − x2 + x3 = 0
2x1 + x2 − 8x3 = −11

and perform the following sequence of row operations:

1. Subtract the first row from the second row

2. Subtract twice the first row from the third row

3. Multiply the second row by −1/2

4. Add the second row to the third row

5. Multiply the third row by −1/10

Solve the resulting system of equations by starting with the third equation, then the second and then the first.
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Gaussian Elimination

To save unnecessary writing, we now set up an streamlined notation for systems of linear equations. Notice
that the only thing that distinguished one system of equations from another are the coefficients. So, as
shorthand, we can write the system of equations

x1 + x2 + x3 = 3
x1 − x2 + x3 = 3
2x1 + x2 − 8x3 = −4

as




1 1 1
1 −1 1
2 1 −8

∣

∣

∣

∣

∣

∣

3
3
−4





This is called an augmented matrix. “Augmented” refers to the column to the right of the line that contains
the information about the right side of each equation.

Recall that we want to use a sequence of elementary row operations to turn an arbitary system of equations
into an easily solved system of equations (with exactly the same solutions). What equations are easily solved?
Well, the easiest possible equations to solve are ones of the form





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

3
3
−4





If we translate from the shorthand back to the equations they represent, the first row says x1 = 3, the second
row says x2 = 3 and the third row says x3 = −4. In other words, we can just read off the values of x1, x2

and x3 in the rightmost column. The equations are already solved, and there is nothing left to do!

Slightly more work, but still easy to do, are upper triangular systems. These are systems where all the
entries below the diagonal are equal to zero, as in





1 1 1
0 −1 1
0 0 −4

∣

∣

∣

∣

∣

∣

3
3
−8





The reason these are easy to solve is that the equation represented by the jth row only involves the variables
xj , xj+1, . . . , xn. So if we start with the last equation (in the example −8x3 = −4), we can solve it imme-
diately for xn (in the example x3 = 2). Now we move up one equation. This equation only involves xn−1

and xn, and we already know xn. So we can solve it for xn−1 (in the example −x2 + x3 = 3 so −x2 + 2 = 3
so x2 = −1). We can continue in this way until all the xn’s have been found. (In the example there is one
more equation x1 + x2 + x3 = 3 or x1 − 1 + 2 = 3 or x1 = 2.)

Problem 2.2: Show that the lower triangular system of equations represented by





1 0 0
1 −1 0
2 1 −8

∣

∣

∣

∣

∣

∣

3
3
−4





is also easily solved, by easily solving it! It’s just a matter of convention whether we aim for upper triangular

or lower triangular systems in the elimination procedure.
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In practise (i.e., in a typical computer program) the procedure that is actually used is to apply a sequence
of row operations to turn the system of equations into an upper triangular system. Then the equations are
solved one by one, starting at the bottom and working up. This is the most efficient way to solve a system
of equations. However, its sometimes convenient to apply row operations to bring the equation into the
“completely solved” form. Then, you can just read off the solution from the last column.

Let us now do a bunch of examples to illustrate this procedure. I’ll cook them up so that everything that
possibly can go wrong, does go wrong. (I’ll also cook them up so that the numbers come out looking nice.
This will definitely not be the case in an example coming up in a real application!). Here is a shorthand for
indicating which elementary row operation was done. The notation 3(1) means the first row was multiplied
by the non-zero number 3. The notation (2) − 4(5) means that 4 times the fifth row was subtracted from
the second row. Finally, (2) ↔ (3) means that the second and third row were interchanged.

Lets start with







1 2 −2 −7
1 2 −1 −5
0 3 0 −3
−1 4 1 1

∣

∣

∣

∣

∣

∣

∣

−29
−18
−6
14






.

We are trying to put this matrix in upper triangular form. So we start by trying to produce zero entries in
the first column under the top entry. We can do this by adding multiples of the first row to the other rows.
So, the first move is to subtract the first row from the second row. The result is







1 2 −2 −7
0 0 1 2
0 3 0 −3
−1 4 1 1

∣

∣

∣

∣

∣

∣

∣

−29
11
−6
14







(2) − (1)

The third row already has a zero in the first column, so there is nothing to do here. To put a zero in the
fourth row we add the first row to the last row.







1 2 −2 −7
0 0 1 2
0 3 0 −3
0 6 −1 −6

∣

∣

∣

∣

∣

∣

∣

−29
11
−6
−15







(4) + (1)

Now we shift our attention to the second column. We want to produce zeros below the diagonal. If we
attempt to do this by adding multiples of the first row to other rows, we will destroy the zeros that we have
already produced. So we try to use the second row. This is where we run into the first glitch. Since the
diagonal entry in the second row is zero, adding a multiple of this row to the others won’t have any effect
on the numbers in the second column that we are trying to change. To rememdy this we simply swap the
second and third columns.







1 2 −2 −7
0 3 0 −3
0 0 1 2
0 6 −1 −6

∣

∣

∣

∣

∣

∣

∣

−29
−6
11
−15







(2) ↔ (3)
(2) ↔ (3)

Now we can complete the job on the second column by subtracting 2 times the second row from the last row.







1 2 −2 −7
0 3 0 −3
0 0 1 2
0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

−29
−6
11
−3







(4) − 2(2)
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Now we shift our attention to the third column. To produce a zero in the entry below the diagonal we must
add the third row to the last row.







1 2 −2 −7
0 3 0 −3
0 0 1 2
0 0 0 2

∣

∣

∣

∣

∣

∣

∣

−29
−6
11
8







(4) + (3)

The matrix is now in upper triangular form. Lets find the solution. This last row is shorthand for the
equation 2x4 = 8. So x4 = 2. The third row now gives x3 + 2(4) = 11, so x3 = 3. The second row gives
3x2 − 3(4) = −6 so x2 = 2. Finally the first row gives x1 + 2(2) − 2(3) − 7(4) = −29 so x1 = 1.

There is really no need to do anything more, but lets continue with elementary row operations to put the
equations into the “completely solved” form, just to see how this goes. First we divide the second row by 3.







1 2 −2 −7
0 1 0 −1
0 0 1 2
0 0 0 2

∣

∣

∣

∣

∣

∣

∣

−29
−2
11
8







(1/3)(2)

Now we subtract twice the second row from the first row.






1 0 −2 −5
0 1 0 −1
0 0 1 2
0 0 0 2

∣

∣

∣

∣

∣

∣

∣

−25
−2
11
8







(1) − 2(2)

Now add twice the third row to the first row. Then divide the last row by 2.






1 0 0 −1
0 1 0 −1
0 0 1 2
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

−3
−2
11
4







(1) + 2(3)

(1/2)(4)

Finally, we add various multiples of the last row to the previous rows.






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

1
2
3
4







(1) + (4)
(2) + (4)
(3) − 2(4)

We now can read the solution off from the last column.

In the previous example there was a unique solution to the system of equations. We already know, from
the geometrical meaning of the equations, that sometimes there will be lots of solutions depending on a
parameter. This is expected to happen when there are fewer equations than unknowns (e.g., the intersections
of two planes in three dimensional space is usually a line) but will also occur in certain degenerate cases when
the number of equations is equal to or more than the number of unknown (e.g., three, or even four, planes
may intersect in a line too). What happens in the procedure of row reductions when there are parameters
in the solution? Lets look at another example.







1 3 2 −2
1 3 4 −2
−2 −6 −4 5
−1 −3 2 1

∣

∣

∣

∣

∣

∣

∣

−1
3
5
6







We begin, as before, by trying to produce zeros in the first column under the diagonal entry. This procedure
yields







1 3 2 −2
0 0 2 0
0 0 0 1
0 0 4 −1

∣

∣

∣

∣

∣

∣

∣

−1
4
3
5







(2) − (1)
(3) + 2(1)
(4) + (1)
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As in the previous example, there is now a zero sitting in the diagonal spot in the second column. Last time,
we swapped rows at this point to put a non-zero entry in this place. But now, all the other entries below this
one are zero too! So there is nothing we can swap in to save the situation. (Clearly, swapping the first row
down is not a good idea, since that would destroy the zero in the first column.) So we just have to admit
defeat, and shift our attention one column to the right. We subtract twice the second row from the fourth
row.







1 3 2 −2
0 0 2 0
0 0 0 1
0 0 0 −1

∣

∣

∣

∣

∣

∣

∣

−1
4
3
−3







(2) − (1)

(4) − 2(2)

Now we complete the job by adding the third row to the last row.







1 3 2 −2
0 0 2 0
0 0 0 1
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

−1
4
3
0







(2) − (1)

(4) + (3)

What the solutions? The third equation says x4 = 3 and the second equation says x3 = 2. There is nothing
new here. However the first equation introduces not just one, but two new variables x1 and x2. It reads
x1 + 3x2 + 2(2) − 2(3) = −1, or, x1 + 3x2 = 1 Clearly, there are infinitely many values of x1 and x2 that
satisfy this equation. In fact, if we fix x2 to be any arbitrary value x2 = s, and then set x1 = 1− 3s, x1 and
x2 will be solutions. So for any choice of s

x1 = 1 − 3s, x2 = s, x3 = 2, x4 = 3

is a solution. There are infinitely many solutions depending on a parameter s. We could also write this as







x1

x2

x3

x4






=







1
0
2
3






+ s







−3
1
0
0







and recognize the solutions as a line in four dimensional space passing through [1, 0, 2, 3] in the direction
[−3, 1, 0, 0].

Problem 2.3: The following equations have already been put in upper triangular form. In each case there are

infinitely many solutions, depending on one or more parameters. Write down the general expression for the

solution in terms of parameters.







1 2 1 2
0 0 1 1
0 0 0 1
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

1
4
2
0













1 2 1 2
0 0 1 1
0 0 0 0
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

1
4
0
0







[

1 2 1 2
0 0 1 1

∣

∣

∣

∣

1
4

]
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There is one situation left to consider, namely when there are no solutions at all. Geometrically, this happens,
for example, when we are trying to find the intersection of two parallel planes. Lets look at an example.







1 3
1 4
−1 −3
2 6

∣

∣

∣

∣

∣

∣

∣

1
2
0
4







We begin in the usual way.







1 3
0 1
0 0
0 0

∣

∣

∣

∣

∣

∣

∣

1
1
1
2







(2) − (1)
(3) + (1)
(4) − 2(1)

There is nothing left to do in the second column, so we shift our attention to the third column and subtract
twice the third row from the fourth row.







1 3
0 1
0 0
0 0

∣

∣

∣

∣

∣

∣

∣

1
1
1
0







(4) − 2(3)

Now we are done. If we write down the equation corresponding to the third row, we get 0x1 + 0x2 = 1, or
0 = 1. Clearly there is no choice of x1 or x2 that makes this true. Similarly, the third equation is 0 = 1. So
this is a system of equations with no solutions.

Lets summarize what we have done in this section. Every system of equations can be brought into upper
triangular form using a sequence of elementary row transformations. The resulting upper triangular matrix
will look something like

** *

* * * * ** * *

* * * * * * *

* * * * *

* * * *

* *

*

* * *

In this diagram, all the entries below the staircase line are zero. The boxes represent non-zero entries. The
stars represent arbitary entries, that may or may not be zero. Each circled star corresponds to a parameter
that must be introduced.

If we want to put this example in completely reduced form, we use elementary row operations to zero out
the entries lying about the boxes too. Then we multiply each row by a number so that the corner entries
(in the boxes) become 1. The the completely reduced form for the example above would look like this. (The
official name of this form is the reduced row echelon form.)
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1

1

1

1

1

0

0

0 0

0

0

0

0

0 0
* ** * *

* * * *

* * *

* * *

*

**

* *

*

*

*

If the bottom of the matrix has a row that is all zeroes, except for the augmented entry, then the system of
equations has no solutions. This is because the bottom row stands for an equation of the form 0 = with

6= 0. Here is a typical example.

** *

* * * * ** * *

* * * * * * *

* * * * *

* * * *

* *

*

* * *

If all the steps on the staircase in the non-augmented part of the matrix have size one, then there are no
parameters to introduce, and the solution is unique. Notice that in this case there are the same number of
equations as variables. Here is a typical example.

** *

* * *

* * *

*

* *

** *

*

*

*

*

*

*

Finally, we introduce some terminology. The rank of a matrix is the number of non-zero rows in the matrix
obtained after reducing it to the upper triangular form described above. In other words the rank is the
number of boxes in the diagrams above. We can now rephrase the different possibilities in terms of rank.
If the rank of the augmented matrix is greater than the rank of the unaugmented matrix (i.e., the matrix
without the last column) then there are no solutions. If the rank of the matrix is equal to the number of
unknowns then the solution is unique. If the rank r of the matrix is equal to the rank of the unaugmented
matrix, but less than the number n of unknowns, then there are n − r parameters in the solution.
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Problem 2.4: Solve the following system of equations.

x1 − 2x2 + 3x3 = 2
2x1 − 3x2 + 2x3 = 2
3x1 + 2x2 − 4x3 = 9

Problem 2.5: Solve the following system of equations.

2x1 + x2 − 1x3 = 6
x1 − 2x2 − 2x3 = 1
−x1 + 12x2 + 8x3 = 7

Problem 2.6: Solve the following system of equations.

x1 + 2x2 + 4x3 = 1
x1 + x2 + 3x3 = 2
2x1 + 5x2 + 9x3 = 1

Problem 2.7: Solve the following system of equations.

x1 + 2x2 + 4x3 = 1
x1 + x2 + 3x3 = 2
2x1 + 5x2 + 9x3 = 3

Problem 2.8: Solve the following system of equations.

3x1 + x2 − x3 + 2x4 = 7
2x1 − 2x2 + 5x3 − 7x4 = 1
−4x1 − 4x2 + 7x3 − 11x4 = −13

Problem 2.9: For what values of a, b, c, d, α and β does the system of equations

ax1 + bx2 = α
cx1 + dx2 = β

have a unique solution?

Using MATLAB for row reductions

The MATLAB program that you are using in the labs has a built in command called rref that reduces a
matrix to reduced row echelon form. Lets try it on the example in the previous section. First we define the
initial matrix A. Remember that the last column of this matrix is the augmented part.

A = [1 2 -2 -7 -29; 1 2 -1 -5 -18; 0 3 0 -3 -6; -1 4 1 1 14]

To find the reduced row echelon form, simply type

>> rref(A)

ans =

1 0 0 0 1
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0 1 0 0 2

0 0 1 0 3

0 0 0 1 4

This gives the final answer instantly, but not the intermediate steps. We can compute these as well. In
MATLAB A(1,1:end) is the first row of the matrix A. So to do the first two steps of the row reduction we
could type

>> A(2,1:end)=A(2,1:end)-A(1,1:end)

A =

1 2 -2 -7 -29

0 0 1 2 11

0 3 0 -3 -6

-1 4 1 1 14

>> A(4,1:end)=A(4,1:end)+A(1,1:end)

A =

1 2 -2 -7 -29

0 0 1 2 11

0 3 0 -3 -6

0 6 -1 -6 -15

Swapping the second and third row could be done as follows.

>> temprow=A(2,1:end);

>> A(2,1:end)=A(3,1:end);

>> A(3,1:end)=temprow

A =

1 2 -2 -7 -29

0 3 0 -3 -6

0 0 1 2 11

0 6 -1 -6 -15

Finally, if we wanted to multiply the second row by 1/3 we could do this as follows.

>> A(2,1:end)=(1/3)*A(2,1:end)

A =

1 2 -2 -7 -29

0 1 0 -1 -2

0 0 1 2 11

0 6 -1 -6 -15
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Homogeneous equations and the structure of solutions

If the coefficients on the right sides of a system of equations are all zero, the system is said to be homogeneous.
In other words, a homogeneous system is a system of equations of the form

b1,1x1 + b1,2x2 + · · · + b1,nxn = 0
b2,1x1 + b2,2x2 + · · · + b2,nxn = 0

...
...

...
...

bm,1x1 + bm,2x2 + · · · + bm,nxn = 0

Given a system of equations, the associated homogeneous system is the homogeneous system of equations you
get by setting all the right sides to zero.

Geometrically, homogeneous systems describe points, lines and planes that pass through the origin. In fact
x = 0, i.e., x1 = 0, x2 = 0, . . . , xn = 0 is always a solution to a homogeneous system of equations.

When are there other (nonzero) solutions to the above homogeneous system? We have n unknowns and m
equations. When we perform the Gaussian reduction, the right-hand sides of the equations will stay zero so
the augmented matrix will generally have the form



























1 ∗ ∗ ∗ · · · · · · · · · ∗
0 1 ∗ ∗ · · · · · · · · · ∗
0 0 0 1 ∗ · · · · · · ∗
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1 ∗ ∗
0 0 0 · · · · · · · · · 1 ∗
0 0 0 · · · 0 0 0 1
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
0
0
· · ·
0
0
0
· · ·
0



























.

The last several lines may be identically zero. In the last section we saw that there are solutions depending
on parameters if the number of variables is greater than the rank of the matrix. Thus, if n (the number
of unknowns) is bigger than the number of non-zero lines in the above row-reduced matrix, then there
exists a non-zero solution. Otherwise only a trivial solution x1 = 0, x2 = 0, . . . , xn = 0 is present. We
illustrate the idea with examples.

1. Consider a homogeneous system

3x1 + 6x2 + x3 = 0
6x1 + 2x2 + 2x3 = 0
x1 + x2 + 3x3 = 0

The augmented matrix can be reduced by row operations to the form (check!)





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

0
0
0



 ,

which implies x1 = x2 = x3 = 0. And, in agreement with our above statement, the number of variables (3)
is not more than the number of non-zero rows (also 3).

2. Another homogeneous system:
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−x1 + 2x2 + 4x3 = 0
2x1 − 4x2 − 8x3 = 0
x1 − x2 + 3x3 = 0

.

Its augmented matrix





−1 2 4
2 −4 −8
1 −1 3

∣

∣

∣

∣

∣

∣

0
0
0



 →





−1 2 4
0 0 0
0 1 7

∣

∣

∣

∣

∣

∣

0
0
0



 →





1 0 10
0 1 7
0 0 0

∣

∣

∣

∣

∣

∣

0
0
0



 ,

and the number of nonzero rows is 2, which is less than the number of unknowns, 3. Hence by the above
statement there must be a nonzero solution. We find x1 = −10x3,x2 = −7x3, with no requirement on x3.
Hence x3 is any number t, and we obtain infinitely many nonzero solutions

x1 = −10t, x2 = −7t, x3 = t, t ∈ (−∞,∞),

one for each value of t.

In a similar manner, if for some homogeneous system with 4 variables the augmented matrix has only 2
nonzero rows, then the general solution has 4-2=2 free (undefined) variables on which the other two depend.

Properties of solutions of homogeneous systems.

1. A homogeneous system has either one zero-solution (x1 = ... = xn = 0) or infinitely-many solutions that
depend on parameters.

2. If (x1, ..., xn) and (y1, ..., yn) are solutions to a given homogeneous system, (x1 + y1, ..., xn + yn) is also a
solution. (Solutions are additive.)

3. If (x1, ..., xn) is a solution to a given homogeneous system, (ax1, ..., axn) is also a solution, for any number
a. (Solutions are scalable.)

the first statement follows from our previous discussion; the other two are easy to verify, using the initial
homogeneous system.

Connection of solutions to homogeneous and inhomogeneous systems.

The importance of homogeneous equations comes from the following fact. If x = [x1, x2, . . . , xn] and y =
[y1, y2, . . . , yn] are two solutions to a (not neccesarily homogeneous) system of equations,

b1,1x1 + b1,2x2 + · · · + b1,nxn = c1

b2,1x1 + b2,2x2 + · · · + b2,nxn = c2

...
...

...
...

bm,1x1 + bm,2x2 + · · · + bm,nxn = cm

then the difference x − y = [x1 − y1, x2 − y2, . . . , xn − yn] solves the associated homogeneous system. This
is a simple calculation

b1,1(x1 − y1) + b1,2(x2 − y2) + · · · + b1,n(xn − yn) = (c1 − c1) = 0
b2,1(x1 − y1) + b2,2(x2 − y2) + · · · + b2,n(xn − yn) = (c2 − c2) = 0

...
...

...
...

bm,1(x1 − y1) + bm,2(x2 − y2) + · · · + bm,n(xn − yn) = (cm − cm) = 0

To see the implications of this lets suppose that x = q is any particular solution to a (non-homogeneous)
system of equations. Then if y is any other solution y−x = z is a solution of the corresponding homogenous
system. So y = q + z. In other words any solution can be written as q+ some solution of the corresponding



Math 152 – Winter 2003 – Section 2: Systems of Linear Equations and Gaussian Elimination 39

homogenous system. Going the other way, if z is any solution of the corresponding homogenous system,
then q + z solves the original system. This can be seen by plugging q + z into the equation. So structure of
the set of solutions is

x = q + (solution to homogeneous system)

As you run through all solutions to the homogenous system on the right, x runs through all solution of the
original system. Notice that it doesn’t matter which q you choose as the starting point. This is completely
analogous to the parametric form for a line, where the base point can be any point on the line.

If we have applied the process of Gaussian elimination to the orginal system, and concluded that the general
solution has parameters, we will end up with a general solution of the form

q + s1a1 + · · · + snan.

Notice that q is a particular solution (corresponding to all parameters equal to zero) and s1a1 + · · · + snan

is the general solution to the corresponding homogeneous system.

These considerations have practical importance if you have to solve a bunch of systems, all with the same
coefficients on the left side, but with different coefficients on the right. In this situation, you could first
find the general solution to the corresponding homogeneous system of equations. Then to find the general
solution to one of the systems, you would only need to find a single particular solution, and then add the
general solution to the homogeneous system to obtain all solutions. The only trouble with this is that it
might not really be any easier to find a single particular solution than it is to find all solutions.

Problem 2.10: Find the general solution of the system of equations





1 1 0 0
−1 −1 1 2
3 3 −1 −2

∣

∣

∣

∣

∣

∣

1
1
1





In the form x = q + s1a1 + s2a2. Verify that a1 and a2 solve the corresponding homogeneous equation.

Problem 2.11: Consider the system of equations





1 1 0 0
−1 −1 1 2
3 3 −1 −2

∣

∣

∣

∣

∣

∣

4
−1
9





Verify that [4, 0, 3, 0] is a solution and write down the general solution.
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Some geometric applications

Now we will apply Gaussian elimination to some of the geometry problems we studied in the first part of
this course.

Lets start with the question of linear independence. Recall that a collection of vectors x1,x2, . . . ,xn is called
linearly dependent if we can find some non-zero coefficients c1, c2, . . . , cn such that

c1x1 + c2x2 + · · · + cnxn = 0

This is actually a homogeneous system of linear equations for the numbers c1, . . . , cn. If c1 = c2 = · · · =
cn = 0 is the only solution, then the vectors are linearly indpendent. Otherwise, they are linearly dependent.
To decide, we must set up the matrix for the system of equations and perform a row reduction to decide if
there is a unique solution or not. In setting up the equations, it is convenient to treat the xi’s as row vectors.

For example, lets decide if

x1 =





1
2
0



 x2 =





1
1
1



 x3 =





1
2
1





are linearly independent. The equation c1x1 + c2x2 + c3x3 = 0 can be written

c1 +c2 +c3 = 0
2c1 +c2 +2c3 = 0
0c1 +c2 +c3 = 0

The matrix for this system of equations is




1 1 1
2 1 2
0 1 1





Since this is a homogeneous system, we don’t have to write the augmented part of the matrix. Performing
a row reduction yields





1 1 1
0 1 0
0 0 1





Since the number of non-zero rows is the same as the number of variables (three) there are no non-zero
solutions. Therefore the vectors are linearly independent.

This same row reduction also shows that any vector y in R
3 can be written as a linear combination of x1, x2

and x3. Writing y as a linear combination of x1, x2 and x3 means finding coefficients c1, c2 and c3 such that
c1x1 + c2x2 + c3x3 = y. This is a (non-homogeneous) system of linear equations with augmented matrix





1 1 1
2 1 2
0 1 1

∣

∣

∣

∣

∣

∣

y1

y2

y3





Using the same Gaussian elimination steps as above, this matrix reduces to





1 1 1
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

∗
∗
∗





where the ∗’s are some numbers. This system has a (unique) solution.

Here is another geometric example. Do the planes whose equations are given by x1 + x2 + x3 = 1, 2x1 +
x2 +2x1 = 1 and x2 = 1 intersect in a single point? To anwer this, we note that the intersection of the three
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planes is given by the set of points that satisfy all three equations. In other words they satisfy the system
of equations whose augmented matrix is





1 1 1
2 1 2
0 1 0

∣

∣

∣

∣

∣

∣

1
1
1





A row reduction yields




1 1 1
0 −1 0
0 0 0

∣

∣

∣

∣

∣

∣

1
−1
0





Thus solutions are given by




0
1
0



+ s





1
0
−1





This is the parametric equation of a line. Thus the three planes intersect in a line, not a point.

Problem 2.12: Are the following vectors are linearly dependent or independent?

x1 =







1
2
0
2






x2 =







1
1
−1
1






x3 =







1
0
1
0







Can every vector in R
4 be written as a linear combination of these vectors? How about the vector the

y1 =







2
4
−3
4






?

Minimizing quadratic functions

Let begin by recalling how we would find the minimum of a quadratic function in one variable, namely a
parabola given by f(x) = ax2 + bx + c. We simply find the value of x for which the derivative is zero, that
is, we solve f ′(x) = 0. Notice that since f is quadratic, this is a linear equation

2ax + b = 0

which is easily solved for x = −b/2a (provided a 6= 0). So the minimum value is f(−b/2a) = −b2/(4a) + c.

-b/2a

-b/4a+c
2
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Of course, if a is negative, then the parabola points downwards, and we have found the minimum value, not
the maximum value.

A quadratic function of two variables x1 and x2 is a function of the form

f(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 + dx1 + ex2 + f.

(The 2 in front of b is just for convenience.) For what values of x1 and x2 is f(x1, x2) the smallest? Just like
with the parabola in one variable, there may be no such values. It could be that f has a maximum instead,
or that f has what is called a saddle point. However if f does have a minimum, the procedure described
below is guaranteed to find it. (If f has a maximum or saddle point, the procedure will find these points
instead.)

The idea behind finding the minimum is simple. Suppose that x1 and x2 are the values for which f(x1, x2)
is smallest. Then the function g(s) = f(x1 + s, x2) must have a minimum at s = 0. So g′(0) = 0. But

g′(s) =
d

ds
f(x1 + s, x2)

=
d

ds
a(x1 + s)2 + 2b(x1 + s)x2 + cx2

2 + d(x1 + s) + ex2 + f

= 2a(x1 + s) + 2bx2 + d

so that the condition is
g′(0) = 2ax1 + 2bx2 + d = 0.

Notice that this expression can be obtained by holding x2 fixed and differentiating with respect to x1. It is

called the partial derivative of f with respect to x1 and is denoted
∂f

∂x1

.

The same argument can be applied to h(s) = f(x1, x2 + s) (or
∂f

∂x2

.) This yields

h′(0) =
∂f(x1, x2)

∂x2

= 2bx1 + 2cx2 + e = 0.

Therefore we conclude that the pair of values x1 and x2 at which f achieves its minimum satisfy the system
of linear equations

2ax1 +2bx2 = −d
2bx1 +2cx2 = −e

This is a 2 by 2 system with augmented matrix
[

2a 2b
2b 2c

∣

∣

∣

∣

−d
−e

]

This is easily generalized to n variables. In this case the quadratic function is given by

f(x1, x2, . . . , xn) =

n
∑

i=1

n
∑

j=1

ai,jxixj +

n
∑

i=1

bixi + c

To see this is the same, lets expand out the first term when n = 2. Then

n
∑

i=1

n
∑

j=1

ai,jxixj = a1,1x1x1 + a1,2x1x2 + a2,1x2x1 + a2,2x2x2

= a1,1x
2
1 + (a1,2 + a2,1)x1x2 + a2,2x

2
2
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So this is just the same as before with a1,1 = a, a1,2 + a2,1 = 2b and a2,2 = c. Notice that we might as well
assume that ai,j = aj,i, since replacing both ai,j and aj,i with (a1,2 + a2,1)/2 doesn’t change f .

If this function f has a minimum we can find it by generalizing the procedure above. In other words we try
to find values of x1, . . . , xn for which ∂f/∂x1 = ∂f/∂x2 = · · · = ∂f/∂xn = 0. This leads to a system of n
linear equations whose associated augmented matrix is









2a1,1 2a1,2 . . . 2a1,n

2a2,1 2a2,2 . . . 2a2,n

...
...

...
2an,1 2an,2 . . . 2an,n

∣

∣

∣

∣

∣

∣

∣

∣

−b1

−b2

...
−bn









1. Least squares fit

As a first application lets consider the problem of finding the “best” straight line going through a collection
of data points (x1, y1), (x2, y2), . . . , (xn, yn). (Careful! the xi’s are not the unknowns in this problem, but
rather the known fixed data points, together with the yi’s.) Which straight line fits best? There is no one
answer. One can measure how good the fit of a straight line is in various ways. However the following way
of measuring the fit results in a problem that is easy to solve.

i iy -ax -b

(x ,y )

(x ,y )

1 1

n n

y

ax +b

i

i

xi

(x ,y )i i

Each line is given by an equation y = ax + b. So the variables in this problem are a and b. We want to find
the values of a and b that give the best fitting line. The vertical distance between the point (xi, yi) and the
line is given by |yi − axi − b|. We will take as a measure of the fit, the square of this quantity, added up over
all the data points. So

f(a, b) =
∑

i

(yi − axi − b)2

=
∑

i

(

y2
i + x2

i a
2 + b2 − 2xiyia − 2yib + 2xiab

)

=

(

∑

i

x2
i

)

a2 + 2

(

∑

i

xi

)

ab + nb2 − 2

(

∑

i

xiyi

)

a − 2

(

∑

i

yi

)

b +

(

∑

i

y2
i

)

Here we used that (
∑

i 1) = n, the number of points. Therefore the linear equations we must solve for a and
b are

[

2
(
∑

i x2
i

)

2 (
∑

i xi)
2 (
∑

i xi) 2n

∣

∣

∣

∣

2 (
∑

i xiyi)
2 (
∑

i yi)

]

We could solve these equations numerically in each particular case, but since its just a 2 by 2 system we can
also write down the answer explicitly. In fact, the solution to

[

A B
C D

∣

∣

∣

∣

E
F

]
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is






DE − BF

AD − BC
AF − CE

AD − BC






,

provided AD−BC 6= 0, as you may check directly, or derive using a sequence of row transformations. So in
this case

a =
n(
∑

xiyi) − (
∑

xi)(
∑

yi)

n(
∑

x2
i ) − (

∑

xi)2

b =
(
∑

x2
i )(
∑

yi) − (
∑

xi)(
∑

xiyi)

n(
∑

x2
i ) − (

∑

xi)2

Lets do an example. Suppose we want to find the best straight line through the points (1, 1), (2, 2), (2, 3),
(3, 3) and (3, 4). Calculate

∑

1 = n = 5
∑

xi = 1 + 2 + 2 + 3 + 3 = 11
∑

yi = 1 + 2 + 3 + 3 + 4 = 13
∑

x2
i = 1 + 4 + 4 + 9 + 9 = 27

∑

y2
i = 1 + 4 + 9 + 9 + 16 = 39

∑

xiyi = 1 + 4 + 6 + 9 + 12 = 32

so
a = (5 · 32 − 11 · 13)/(5 · 27 − 112) = 17/14 = 1.214 . . .

and
b = (27 · 13 − 11 · 32)/(5 · 27 − 112) = −1/14 = −0.0714 . . .

Problem 2.13: Find the “best” straight line going through the points (1, 1), (2, 1), (2, 3), (3, 4), (3, 5) and

(4, 4).

Problem 2.14: Consider the problem of finding the parabola y = ax2 + bx+ c that best fits the n data points

(x1, y1) . . . (xn, yn). Derive the system of three linear equations which determine a, b and c. (You need not

solve solve them!)
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2. Equilibrium configuration of hanging weights and springs

Consider the problem of n vertically hanging weight connected by springs. What is the equilibrium configu-
ration? We can solve this problem by calculating the total potential energy of the system. The equilibrium
configuration minimizes the total potential energy.

Here is the diagram of the setup. Our goal is to compute the numbers x1, . . ., xn. In the diagram n = 3.

x1

x2

x3

k l

k l

k l

1 1

2 2

3 3

m1

m2

m3

,

,

,

There are two sources of potential energy. One is the potential energy stored in the spring. This is equal
to ks2/2, where k is the spring constant that measures the stiffness of the spring, and s is the amount that
the spring has been streched from its natural length. In our problem, suppose that the spring constant
of the ith spring is ki and its natural length is li. Then the potential energy stored in the ith spring is
ki(xi − xi−1 − li)

2/2. To make this formula work out correctly for the first spring we set x0 = 0.

The other source of potential energy is gravity. The gravitational potential energy of the ith weight is
−migxi. The reason for the minus sign is that we are measuring distances downward.

Thus the total potential energy in the system for n weights is the function

f(x1, x2, . . . , xn) =

n
∑

i=1

ki

2
(xi − xi−1 − li)

2 − migxi.

When n = 3 this becomes

f(x1, x2, x3) =
k1

2
(x1 − l1)

2 +
k2

2
(x2 − x1 − l2)

2 +
k3

2
(x3 − x2 − l3)

2 − m1gx1 − m2gx2 − m3gx3

This is a quadratic function, so we know how to find the minimum. The equations are obtained by taking
partial derivatives: To get the first equation we hold x2 and x3 fixed and differentiate with respect to x1



46 Math 152 – Winter 2003 – Section 2: Systems of Linear Equations and Gaussian Elimination

and so on. Thus the equations are

k1(x1 − l1) − k2(x2 − x1 − l2) − m1g = 0

k2(x2 − x1 − l2) − k3(x3 − x2 − l3) − m2g = 0

k3(x3 − x2 − l3) − m3g = 0

The augmented matrix for this system is





k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

∣

∣

∣

∣

∣

∣

m1g + k1l1 − k2l2
m2g + k2l2 − k3l3

m3g + k3l3





Suppose that the spring constants are k1 = 1, k2 = 2 and k3 = 1. The masses are all equal to 1, g = 10
and the natural length of the springs is 1 for all springs (in appropriate units). Then to find the equilibrium
configuration we must solve





3 −2 0
−2 3 −1
0 −1 1

∣

∣

∣

∣

∣

∣

9
11
11





Gaussian elimination gives




3 −2 0
0 −1 1
0 0 2

∣

∣

∣

∣

∣

∣

9
11
106





which can be solved to give x1 = 31, x2 = 42, x3 = 53.

Problem 2.15: Write down the augmented matrix for a system of n weights and springs.

Problem 2.16: Write down the system of equations you would have to solve if there are 5 identical springs with

ki = 1 and li = 1 and five weights with m1 = 1, m2 = 2, m3 = 3, m4 = 4, and m5 = 5.

Choosing basic variables in a circuit

So far our examples have always involved equations with a unique solution. Here is an application using
equations that don’t have a unique solution. Consider the following circuit.

L

R1

R2C

I V1 1

I V3 3

I V2 2I V44
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We won’t be able to solve this circuit until we a studied differential equations in the last part of this course.
However we can make some progress using what we know already.

There are three types of components: resistors, inductors (coils) and capacitors. Associated with each
component is the current I flowing through that component, and the voltage drop V across that component.
If there are n different components in a circuit, then there are 2n variables (currents and voltages) to
determine. In the circuit above there are 8.

Of course, these variables are not all independent. They satisfy two types of linear relations: algebraic and
differential. We won’t touch the differential relations for now, but we can consider the algebraic relations.

The first algebraic relation relates the current and voltage drop across a resistor. If R is the resistance and I
and V are the current and voltage drop respectively, then V = IR. In our example, this gives two equations

V1 = I1R1

V2 = I2R2

The other two algebraic relations are Kirchoff’s laws. The first of these states that the total voltage drop
across any loop in the circuit is zero. For the two loops in the example circuit, this gives the equations

V4 − V2 = 0

V1 + V3 + V2 = 0

Notice we have to take the direction of the arrows into account. The second Kirchoff law states that current
cannot accumulate at a node. At each node, the current flowing in must equal the current flowing out. In
the example circuit there are three nodes, giving the equations.

I4 + I2 − I1 = 0

I1 − I3 = 0

I3 − I2 − I4 = 0

We now want to pick a few of the variables, and solve for all the rest in terms of these. In a small circuit
like the example, this can be done “by hand.” For example, its pretty obvious that I1 = I3 and V2 = V4 so
one could eliminate two variables right off the bat. However, it is also useful to have a systematic way of
doing it, that will work for any circuit (but probably will require a computer for anything but the simplest
circuit).

As a rule of thumb, you can pick the voltages across the capacitor and the currents across the inductors as
basic variables and solve for the rest in terms of these. In other words, we want I3 and V4 to be parameters
when we solve the system of equations. To accomplish this we will choose the order of the variables with I3

and V4 at the end of the list. With this in mind we choose the order I1, I2, I4, V1, V2, V3, I3, V4. Then the
equations become

R1I1 −V1 = 0
R2I2 −V2 = 0

−V2 +V4 = 0
V1 +V2 +V3 = 0

−I1 +I2 +I4 = 0
I1 −I3 = 0

−I2 −I4 +I3 = 0

The matrix for this system is (since it is a homogeneous system of equations, we don’t have to bother writing
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the augmented part)


















R1 0 0 −1 0 0 0 0
0 R2 0 0 −1 0 0 0
0 0 0 0 −1 0 0 1
0 0 0 1 1 1 0 0
−1 1 1 0 0 0 0 0
1 0 0 0 0 0 −1 0
0 −1 −1 0 0 0 1 0



















Here is the reduced form of this matrix.





















1 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 − 1

R2

0 0 1 0 0 0 −1 1

R2

0 0 0 1 0 0 −R1 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 R1 1
0 0 0 0 0 0 0 0





















Thus
I1 = I3

I2 =
1

R2

V4

I4 = I3 −
1

R2

V4

V1 = R1I3

V2 = V4

V3 = −R1I3 − V4

So we have succeeded in expressing all the variables in terms of I3 and V4. We therefore need only determine
these to solve the circuit completely.

Problem 2.17: If a circuit contains only resistors, then we can solve it completely using the ideas of this

section. Write down the linear equations satisfied by the currents in the following circuit. In this diagram, the

component on the far left is a voltage source (battery). The voltage across the voltage source is always E.

RR1 R3 2n-1

R2 R4 R2nE


