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Abstract. These notes are written in connection with a five lecture
mini-course to be given at a workshop on Essential and Canonical Di-
mension in Lens, France, June 23-27, 2008. The goal is to give a give an
overview and some highlights of the theory of essential dimension. Some
of the material in these notes is based on joint work with G. Berhuy, P.
Brosnan, J. Buhler, Ph. Gille, A. Vistoli and B. Youssin.
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1. Leture 1: Definition and first properties

In this lecture I will discuss the definition of essential dimension, and prove
some lower bounds based on cohomological invariants and the Tsen-Lang
theorem. Most of the results in this section come from [RY00] and [Rei99].

Let k be a base field, K/k be a field extension and q be an n-dimensional
quadratic form over K. Let us assume that char(k) 6= 2 and denote the
symmetric bilinear form associated to q by b. We would like to know if q
can be defined over some smaller field k ⊂ K0 ⊂ K. This means that there is
a K-basis e1, . . . , en of Kn such that b(ei, ej) ∈ K0 for every i, j = 1, . . . , n.
If we can find such a basis, we will say that q descends to K0 or that q is
defined over K0. It is natural to ask if there is a minimal field Kmin (with
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respect to inclusion) to which q descends. The answer to this question is
usually “no”. For example, the “generic” form

(1.1) q(x1, . . . , xn) = a1x
2
1 + · · ·+ anx

2
n

over the field K = k(a1, . . . , an), where a1, . . . , an are independent variables,
has no minimal field of definition; see Exercise 1.1. We will thus modify our
question a bit: instead of asking for a minimal field of definition K0 for q,
we will ask for the minimal value of the transcendence degree tr degk(K0) 1

Note that neither the number we just defined and nor the line of reasoning
that led to this definition is in any way particular to quadratic forms. In
exactly the same way we can talk about fields of definition of any polynomial
in K[x1, . . . , xn], of a K-algebra, of an algebraic variety defined over K,
etc. In each case the minimal transcendence degree of a field of definition
is an interesting numerical invariant which gives us some insight into the
“complexity” of the object in question. This brings us to the following
general definition.

We will write Fieldsk for the category of field extensions K/k. Let
F : Fieldsk → Sets be a covariant functor.

Let K/k be a field extension. We will say that a ∈ F (K) descends to
an intermediate field k ⊆ K0 ⊆ K if a is in the image of the induced map
F (K0) → F (K).

The essential dimension ed(a) of a ∈ F (K) is the minimum of the tran-
scendence degrees tr degk(K0) taken over all fields k ⊆ K0 ⊆ K such that a
descends to K0.

The essential dimension edF of the functor F is the supremum of ed(a)
(respectively, of ed(a; p)) taken over all a ∈ F (K) with K in Fieldsk.

These notions are clearly relative to the base field k, we will write ed
instead of edk, if the reference to k is clear from the context. To simplify
matters, unless otherwise specified, we will assume in the sequel that k is
algebraically closed of characteristic 0. Also, to streamline our terminology,
the term “functor” will always refer to a functor of the above form, i.e., to a
covariant functor from Fieldsk to Sets (we will occasionally vary k though).

Example 1.2. Let F (K) := Hr(K,µn). If α ∈ Hr(K,µn) is non-trivial
then by the Serre vanishing theorem, ed(α) ≥ r.

Example 1.3. Let Formsn,d(K) be the set of homogeneous polynomials of
degree d in n variables. If α ∈ Formsn,d(K) is anisotropic over K then by
the Tsen-Lang theorem, n ≤ ded(α) or equivalently,

ed(α) ≥ logd(n) .

On the other hand, clearly, ed(α) ≤
(
n+d−1

d

)
; in particular, ed Formsn,d is

finite. The exact value of ed Formsn,d is not known in general. We will
return to this question in the sequel.

1One can also ask which quadratic forms have a minimal field of definition. To the
best of my knowledge, this is an open question.
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Of particular interest to us will be the Galois cohomology functors, FG
given by K  H1(K,G), where G is an algebraic group over k. Here, as
usual, H1(K,G) denotes the set of isomorphism classes of G-torsors over
Spec(K), in the fppf topology. The essential dimension of this functor is a
numerical invariant of G, which, roughly speaking, measures the complexity
of G-torsors over fields. We write edG for ed FG. Essential dimension
was originally introduced in this context; see [BuR97, Rei00, RY00]. (The
above definition of essential dimension for a general functor F is due to
A. Merkurjev; see [BF03].) In special cases this invariant was investigated
much earlier. To the best of our knowledge, the first non-trivial result related
to essential dimension appeared in in the work of Felix Klein [Kl1884]. In
our terminology, Klein showed that the essential dimension of the symmetric
group S5 over k = C, is 2. (Klein referred to this fact as Kroeneker’s
theorem, so it may go back even further.) The problem of computing the
essential dimension of the symmetric group Sn, which remains open to this
day for every n ≥ 7 (cf. Example 2.9), is related to the algebraic form of
Hilbert’s 13th problem.

The groups of essential dimension zero are the so-called special groups,
introduced by Serre and classified by Grothendieck (over an algebraically
closed field) in the 1950s. The problem of computing the essential dimension
of an algebraic group may be viewed as a natural extension of this theory.

It is easy to see that if k ⊂ k′ is a field extension then

(1.4) edk(F) ≥ edk′(F) .

In particular,

(1.5) edk(G) ≥ edk′(G)

for any k-group G.
Recall that an action of an algebraic group G on an algebraic k-variety

X is called generically free if X has a dense open subset U such that
StabG(x) = {1} for every x ∈ U(k) and primitive if G permutes the ir-
reducible components of X.

If K/k is finitely generated then elements of H1(K,G) can be interpreted
as isomorphism classes of generically free primitive G-varieties. If X is
a generically primitive G-variety, let us write [X] for its class in H1(K,G).
The essential dimension ed [X] is then the minimal value of ed(Y )−dim(G),
where the minimum is take over all dominant rational G-equivariant maps
X 99K Y .

An important feature of the functor H1( ∗ , G) is the existence of so-called
versal objects. We briefly recall the following definition.

Definition 1.6. a G-torsor α over a finitely generated field extension K/k
is called versal if

(a) it can be represented by a G-torsor π : X → Y , where Y is an irre-
ducible k-variety and k(Y ) = K. In other words, α is the restriction of π to
the generic point of Y .
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(b) Given a closed subvariety Y0 ( Y and a G-torsor τ : T → Spec(L),
there exists an L-point p : L → Y such that p is not contained in Y0 and τ
is the pull-back of π via p:

T //

τ
��

X

π

��

Spec(L)
p

// Y .

If α ∈ H1(K,G) is a versal torsor then ed(α) ≥ ed(β) for any other torsor
β ∈ H1(L,G); cf. Exercise 1.4. In particular, [V ] is known to be a versal
object for any generically free linear representation V of G. Consequently,

(1.7) ed(G) = ed([V ]) ≤ dim(V )− dim(G) .

These notes are devoted to the problem of computing ed(G), and, in
particular, bounding this number from below. The simplest approach is to
relate H1(K,G) to the functors in Examples 1.2 or 1.3, using the following
simple observation.

Lemma 1.8. Suppose a morphism of functors φ : F → F ′ takes α to β.
Then ed(α) ≥ ed(β). In particular, if φ is surjective then ed(F ) ≥ ed(F ′).

Proof. Obvious from the definition. ♠

Example 1.9. Consider the tautological map H1(K,On) → Formsn,2 tak-
ing a non-degenerate quadratic form q in n variables to itself. Taken K =
k(a1, . . . , an) and q = 〈a1, . . . , an〉, one easily checks that q is anisotropic.
Thus ed(On) ≥ ed(q) ≥ log2(n).

To get a better lower bound, define φ : H1(K,On) → Forms2n,2. Let b
be the bilinear form on V = Kn, associated to q. Then b naturally induces
a non-degenerate bilinear form ∧2(b) on

∧2(V ) by

∧2(b)(v1 ∧ v2, w1 ∧ w2) = b(v1, w1)b(v2, w2)− b(v1, w2)b(v2, w1) .

Similarly we define a symmetric bilinear form ∧i(b) on
∧i(V ) for every

i = 1, . . . , n; adding them all up, we obtain a symmetric bilinear form ∧(b)
on the 2n-dimensional K-vector space

∧
(V ). Let φ(q) be the 2r-dimensional

quadratic form associated to ∧(b). If

q = 〈a1, . . . , an〉

then one easily checks, in the obvious basis of
∧

(V ), that φ(q) is the n-fold
Pfister form

φ(q) =� a1, . . . , an � .

We claim that for K = k(a1, . . . , an) as above, with a1, . . . , an independent
variables, φ(q) is anisotropic. (We will prove his below.) Example 1.3 now
tells us that ed(On) ≥ ed(q) ≥ n. This inequality is, in fact, sharp, i.e.,

ed(On) = n .
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To show that ed(On) ≤ n, note that every quadratic form can be diagonal-
ized and hence, descends to a field generated by n elements.

To prove the claim, suppose

(1.10)
∑

1≤i1<···<ir≤n
ai1ai2 . . . ainp

2
i1,...,ir(a1, . . . , an) = 0 ,

for some the rational functions pi1,...,ir ∈ K. (Here r ranges from 0 to n.)
Now consider the valuation ν : K(a1, . . . , an) → Zn which associates to a
polynomial p(a1, . . . , an) the exponent of its lexicographically largest term.
(This valuation extends to all of K in the obvious way: if p, q ∈ k[a1, . . . , an]
then ν(p/q) = ν(p)− ν(q).). The non-zero terms in the above sum all have
different valuations in Zn, modulo 2. This means that they cannot add up
to 0. We conclude that (1.10) is only possible if every pi1,...,ir = 0. In other
words, the Pfister form φ(q) =� a1, . . . , an � is anisotropic, as claimed.

Of course, φ(q) is, essentially, the nth Stielfel-Whitney class of q. Thus the
inequality ed(On) ≥ n can also be deduced from the following observation,
due to Serre.

Lemma 1.11. If G has a non-trivial cohomological invariant H1(K,G) →
Hr(K,G) then ed(G) ≥ r.

Here is another example.

Example 1.12. ed(µrn) = r. For the lower bound use the cohomological
invariant

H1(K,µrn) = K∗/(K∗)n × · · · ×K∗/(K∗)n → Hr(K,µn)

given by (a1, . . . , ar) → (a1)∪ · · · ∪ (ar). For the upper bound note that µrn
has a generically free r-dimensional representation.

Remark 1.13. It is easy to see that if H is a closed subgroup of G then
ed(G) ≥ ed(H) + dim(H)− dim(G). In particular, if a finite group contains
an abelian subgroup of rank r then ed(G) ≥ r. In particular, if G if the
symmetric group Symn and H ' (Z/2Z)[n/2] is the subgroup generated by
the commuting 2-cycles (12), (34), (56), etc. this yields ed(Sn) ≥ [n/2];
cf. [BuR97].

Example 1.14. Let n = ps be a prime power, a1, . . . , a2s be independent
variables over k, K = k(a1, . . . , a2s), and

A = (a1, a2)p ⊗K ⊗ · · · ⊗ (a2s−1, a2s)p

be a tensor product of s symbol algebras of degree p. By definition A is a
central simple algebra of degree n = ps; hence, we can identify it with an
element of H1(K,PGLn). Since tr degk(K) = 2s, we clearly have ed(A) ≤
2s. We claim that, in fact, ed(A) = 2s and thus ed(PGLn) ≥ 2s. This is
the best (and essentially the only) known lower bound on ed(PGLn), where
n ≥ 5 is a prime power.
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To show that ed(A) ≥ 2s, consider the morphism of functors

φ : H1(K,PGLn) → Formsn2,p

given by sending a central simple algebra B to the degree p trace form
x → TrB(xp). It is now easy to write out φ(A) explicitly and show that it
is anisotropic over K. (The argument here is essentially the same as in the
case of the generic Pfister form in Example 1.9.) The inequality ed(A) ≥ 2s
now follows from Lemma 1.11 and Example 1.9.

Exercises for Lecture 1

Exercise 1.1. Let a1, . . . , an are independent variables, K = k(a1, . . . , an)
and q = 〈a1, . . . , an〉 be as in (1.1). Show that q has no minimal field of
definition. I other words, if q descends to some k ⊂ K0 ⊂ K then it also
descends to a proper subfield K1 of K0 (with k ⊂ K1).

Hint: Use the fact that ed(q) = n proved in Example 1.9.

Exercise 1.2. Prove the inequalities (1.4) and (1.5).

Exercise 1.3. Show that notion of versal torsor in Definition 1.6 depends
only on α and not on the specific model X → Y .

Exercise 1.4. Show that if α ∈ H1(K,G) is versal then ed(G) = ed(α).

Exercise 1.5. Prove the inequality ed(G) ≥ ed(H) + dim(H)− dim(G) of
Remark 1.13. Here H is a subgroup of G.

Exercise 1.6. Let A be a central simple algebra of degree n over a field K,
containing k. We will view A as an element of H1(K,PGLn).

(a) Show that ed(A) ≥ 2. (Hint: Use the morphism of functorsH1(K,PGLn) →
Formsn2,n sending A to its reduced norm.)

(b) Show that equality holds in part (a) if A is cyclic. (The converse to
this assertion is an open problem.)

Exercise 1.7. Modify the argument of Example 1.9 to show that ed(SOn) =
n− 1 for any n 6= 2. What happens if n = 1?

Hint: Recall that H1(K,SOn) is the set of non-degenerate quadratic
forms q of discriminant 1 on V = Kn. Show that the quadratic form

∧0(q)× · · · × ∧[(n−1)/2](q)

is anisotropic Consider the cases where n is even and odd separately.

Exercise 1.8. Prove the inequality ed(µrn) ≥ r of example 1.12 by con-
structing a morphism of functors

H1(K,µrn) → Formsnr,n(K)

whose image contains an anisotropic form.
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2. Lecture 2: Essential dimension at p

In this lecture I will introduce essential dimension at a prime p and dis-
cuss the relationship between essential dimension and essential dimension at
p in a boader context. My main point is that some problems in Galois coho-
mology are sensitive to prime-to-p field extensions and some aren’t. Loosely
speaking, I will call such problems type 2 and type 1, respectively. Type
2 problems tend to be difficult; conversely, under closer examination many
open problems turn out to be of type 2. I find this dichotomy quite useful
in thinking about problems in Galois cohomology, including those involving
essential dimension. I should warn you however, that this section is mostly
”metamathematical”; there will be very few specific results here.

In the previous section we considered several examples where we showed
that

ed(α) ≥ d

for certain functors F , certain α ∈ F (K) and certain positive integers d.
A closer look at these arguments reveals that they all prove a bit more.
Namely, in each case there is a prime p (sometimes more than one), and our
argument shows that, in fact ed(αL) ≥ d, for every finite field extension L/K
whose degree is not divisible by p. (In the sequel we will refer to such L/K
as prime-to-p extensions.) For instance, let us briefly return to Example 1.9,
where we considered the quadratic form q = 〈a1, . . . , an〉 defined over the
field K = k(a1, . . . , an), (where a1, . . . , an are independent variables over
k) and showed that ed(q) ≥ n. We did this by exhibiting a morphism of
functors

φ : H1(K,On) → Forms2n,2(K)
and showing that φ(q) is anisotropic. But then φ(q) is, in fact, anisotropic
over any odd degree field extension L of K. This is a general fact, due to
Springer, but in this case, it follows directly from our method of proof.

(The point of sidestepping Springer’s theorem here is that the same argu-
ment can be applied to the degree p trace form x 7→ TrB(xp) in Example 1.14.
There is no analogue of Springer’s theorem for forms of degree ≥ 3; however,
the same argument that shows that the degree trace form is anisotropic over
K also shows that it is anisotropic over any field extension L/K of degree
prime to p.)

Let us now formalize these observations in the following definition.

Definition 2.1. Let F be a functor and a ∈ F (K) for some field K/k.
The essential dimension ed(a; p) of a at a prime integer p is defined as the
minimal value of ed(aL), as L ranges over all finite field extensions L/K
such that p does not divide the degree [L : K].

The essential dimension ed(F ; p) is then defined as the maximal value of
ed(a; p), as K ranges over all field extensions of k and a ranges over F (K).

As usual, in the case where F = H1(K,G) for some algebraic group G
defined over k, we will write ed(G; p) in place of ed(F ; p).
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The following lemma summarizes several basic properties of essential di-
mension at p.

Lemma 2.2. (a) If α ∈ F (K) and L/K is a prime-to-p field extension the
ed(αL; p) = ed(α; p).

(b) ed(α; p) = ed(αKp) where Kp/K is the prime-to-p-closure of K.
(c) If Γ is a finite group then ed(Γ; p) = ed(Γp; p), where Γp is a Sylow

p-subgroup of Γ.
(d) Suppose G is a semisimple group then ed(G; p) 6= 0 if and only if p is

an exceptional prime of G.

Proof. (a), (b) and (c) follow directly from the definition. (d) is a conse-
quence of the following theorem due to Tits: for every α ∈ H1(K,G) is split
by a finite field extension L/K such that the only prime divisors of [L : K]
are the exceptional primes of G; cf. [Se95]. ♠

As we noted at the beginning of this lecture, the arguments we used
in Examples 1.9, 1.12 and 1.14 actually show that in fact, ed(On; 2) = n,
ed(µrp; p) = r and ed(PGLps ; p) ≥ 2s.

The same is true of almost all existing methods for computing lower
bounds on ed(F ) and, in particular, on ed(G). In those cases where these
methods apply, and yield an inequality of the form ed(F ) ≥ d, a slightly
modification of the same argument usually yields ed(F ; p) ≥ d for a suitable
prime p. If one is lucky, one can then explicitly show that ed(F ) ≤ d and
thus ed(G; p) = ed(G) = d. If no such upper bound is available, one is usu-
ally out of luck; the “gap” between the best known lower bound on ed(F ; p)
and the best known upper bound on ed(F ) is usually very hard to close by
any existing method. The following definition will enable us to discuss this
phenomenon in more formal terms.

Let F : Fieldsk → Sets be a functor we want to study. By a property of
elements of F we shall mean a collection of maps f = {fK : F (K) → S} for
a fixed set S. Note that fK is not assumed to be functorial in K.

Our terminology is based on the case where S is the set of two elements,
say S = {0, 1} or where 1 stands for “Yes” and 0 stands for “No”. In this
case we think of α ∈ F (K) as having property f if and only if fK(α) = 1.
For example, if F (K) = H1(K,PGLn) = central simple algebras of degree n
over K, we can think of the properties of being a division algebra or of being
cyclic or of being a crossed product in this way. For F (K) = H1(K,On)
= non-degenrate quadratic forms on Kn, some of the interesting properties
are: being anisotropic, being a Pfister form, being in a given power Id(K)
of the fundamental ideal.

In other cases S can have more than two elements, say S could be the
set N of non-negative integers. For such S one could, for example, define
fK(α) = ed(α).

Given a prime integer p, we will say that f is of type 1, relative to a
prime p, if fK(α) = fL(αL) for every α ∈ F (K) and every finite field
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extension L/K of degree prime to p. Informally speaking, this means that
f is insensitive to prime-to-p field extensions. Sometimes, if the reference to
the prime p is clear, we will not mention it explicitly and simply say that
property f is of type 1.

Example 2.3. Let F = H1(K,PGLn) and S = {0, 1}, as above, and n = pr

is a prime power. Then the property of being a division algebra is of type
1, relative to p.

Example 2.4. Let F (K) = H1(K,On), S = N, and fK(q) = Witt index
of q. By a theorem of Springer, this property is of type 1, relative to the
prime p = 2.

If we take S = {0, 1} and take f to be the property of being a Pfister
form then f is again of type 1 relative to any prime q 6= 2, by a theorem of
Rost [Rost99].

I will refer to problems concerning type 1 properties as type 1 problems. If
the problem we are intereted in concerns a property f = {fK} which is not
of type 1, we can often consider the “associated” (cruder) type 1 property
fp. If S is well ordered, we define fpK(α) to be the minimal value of fL(αL)
over all prime-to-p field extensions L/K. We can then replace problems
of the form “Show that fK(α) ≤ d” by the type 1 problem “Show that
fpK(α) ≤ d” or equivalently, “Show that fL(αL) = d for some prime-to-p
extension L/K”. I will refer to such modified questions as the associated
type 1 problems and to the property fp as the associated type 1 property.

For example, if fK(α) = ed(α) then fpK(α) = ed(α; p).
Now suppose we have a problem of the form “Show that fK(α) = d” for

a particular α ∈ F (K) (or some α or every α). If the associated type 1
problem is solved (or assumed or trivial) for every p then I will refer to this
questions as a type 2 problem and to the property f as a type 2 property.

Observation 2.5. Most existing methods apply to type 1 problems only.
For this reason type 2 problems tend to be hard. Many long-standing open
problems in Galois cohomology and related areas are of type 2.

This observation is a bit vague, but I have found it to be quite useful in
thinking about a whole range of problems in Galois cohomology and related
areas. Here are some examples.

Example 2.6. The crossed product problem. Recall that a central
simple algebra A/K of degree n is a crossed product if it contains a commu-
tative Galois subalgebra L/K of degree n. For a number of years it was not
known whether every central simple algebra is a crossed product. For nota-
tional convenience, we will restrict our attention to the case where n = pr is
a prime power; the general case reduces to this one by the primary decom-
position theorem. In 1972 Amitsur [Am72] showed that a “generic division
algebra U(n) of degree n is not a crossed product. For r = 1, 2 the question
is still open.
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For r = 1 this is the famous cyclicity conjecture of Albert. This problem
is of type 2, in the sense that for every degree p algebra A/K, there exists
a field extension L/K of degree dividing p − 1 such that AL is cyclic; see
Exercise 2.2.

Rowen and Saltman [RS92] showed that the same is true for r = 2; any
central simple algebra A of degree p2 becomes a crossed product after a
prime-to-p extension of the center. Moreover, in the same paper they explain
that Amitsur’s argument can be modified to show that, in fact, UD(pr)L is a
non-crossed product for any prime-to-p extension L of the center of UD(pr).

In summary, the remaining open cases of the crossed product problem (for
algebras of degree p and p2) are of type 2. The associated type 1 problem
has been completely solved by Amitsur and Rowen-Saltman. (Note that the
only relevant prime is here p; the associated type 1 problem relative to any
other prime is trivial).

Example 2.7. The torsion index. Let F be a functor from Fields to the
category of marked sets. The torsion index nα of α ∈ H1(K,G) is defined as
the gcd of the degrees [L : K], where L ranges over all finite splitting fields
L/K (i.e., αL is split). The torsion index of F is then the least common
multiple of nα taken over all K and all α ∈ F (K).

In the case where F (K) = H1(K,G) the torsion index was introduced by
Grothendieck and is denoted by nG. One can show that nG = nαversal

, where
αversal ∈ H1(Kversal, G) is a versal G-torsor. One can show, using a theorem
of Tits [Se95], that the prime divisors of nG are precisely the exceptional
primes of G. The problem of computing nG and more generally, of nα for
α ∈ H1(K,G) can thus be rephrased as follows. Given an exceptional prime
p for G, find the highest exponent dp such that pdp divides [L : K] for every
splitting extension L/K. It is easy to see that this is a type 1 problem; d does
not change if we replace α by αK′ , where K ′/K is a prime-to-p extension.
This problem has been solved (for every simple groups G and α = αversal)
by Tits and Totaro; cf. [Ti92, To051, To052].

The related type 2 problem, of finding the possible values of e1, . . . , er
such that αversal is split by a field extension L/K of degree pe11 . . . per

r , where
p1, . . . , pr are the exceptional primes for G, remains open. This type 2
question is particularly natural for those G with only one exceptional prime,
e.g., for G = Spinn.

Example 2.8. The following open question is due to Serre [Se95, §2.4].

Suppose α ∈ H1(K,G) is split by finite field extensions L1, . . . , Ln of k
such that the degrees [Li : K] have no common prime factors. Prove that α
is split (or give a counterexample).

This is a “pure type 2” question in the following sense. The associated
type 1 problem is as follows: Given a prime p, show that αL = 1 for some
prime-to-p extension L/K. But this is trivial, since we are assuming that
Li/K is a prime-to-p extension for some i.
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Example 2.9. One of the most interesting open problems about essential
dimension is to find the exact value of ed(Sn) for n ≥ 7. We know that
ed(Sn) ≥ [n/2] for all n and ed(Sn) ≤ n − 3 for n ≥ 5; cf. Exercise 2.9
and [BuR97]. This is a type 2 problem.

The associated type 1 problem is completely solved: ed(Sn; p) = [n/p] for
every prime integer p; cf. Exercise 2.1.

Example 2.10. Another important open problem is to compute ed(PGLp).
This is again a type 2 problem. Indeed, as we mentioned in Example 2.6.
every central simple algebra of degree p becomes cyclic after a prime-to-p
extension. Hence, ed(PGLp; p) = 2.

If one can show that ed(PGLp) > 2, this would disprove Albert’s cyclicity
conjecture.

Example 2.11. Computing the canonical dimension cdim(G) of an alge-
braic group G is a largely open type 2 problem. The p-canonical dimension
cdimp(G) has been computed by Karpenko-Merkurjev [KM06] and Zain-
oulline [Zai07].

Exercises for Lecture 2

Exercise 2.1. Show that ed(Symn; p) = [n/p] for every prime integer p.
Hint: For the lower bound use the argument of Remark 1.13. For the up-

per bound show that a Sylow p-subgroup of Symn has a linear representation
of dimension [n/p], then appeal to the inequality (1.7).

Exercise 2.2. Let A/K be a division algebra of degree n. Show that for
any prime factor p of n there exists a finite field exension L/K of degree
dividing n!/p such that A⊗K L is cyclic.

3. Lecture 3. Finite abelian subgroups

In this section we will discuss lower bounds on ed(G) related to non-toral
finite abelian subgroups of G; this material is based primarily on [RY00]
and [GR07].

A key role will be played by the following result from [RY00].

Theorem 3.1. Suppose k is an algebraically closed base field and A is an
abelian group such that char(k) does not divide |A|. Let f : X 99K Y be
a rational map of A-varieties. If X has a smooth A-fixed point and Y is
complete then T has an A-fixed point.

Proof. (Kollar-Szabo [RY00]). We argue by induction on dim(X). The base
case, dim(X) = 0 is trivial.

For the induction step, let X ′ → X be the blow up of a smooth A-fixed
point x ∈ X; denote the exceptional divisor by E ' P(Tx(X))), where Tx(X)
is the tangent space to X and x. Diagonalizing the A-action on Tp(X), we
see that E has A-fixed points.
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We can now think of f as a rational map X ′ 99K Y . Since X ′ is smooth
at every point of E, E is a divisor and Y is complete, we conclude that f
restricts to an A-equivariant map E 99K Y . Since dim(E) = dim(X) − 1,
we see that Y has an A-fixed point by our induction assumption. ♠

In the sequel, A will be a finite abelian subgroup of a larger algebraic
group G. Let us start with the “toy” case where G is finite. The following
inequality is immediate from Example 1.12 but the argument below will
carry over in greater generality.

Corollary 3.2. Let G be a finite group and A be an abelian subgroup. If
char(k) = 0 then edk(G) ≥ rank(A).

Proof. Let V is a generically free G-representation. It suffices to show that
if there exists a G-compression V 99K X then dim(X) ≥ rank(A). We may
assume without loss of generality that X is smooth and projective. By the
Going Down Theorem 3.1, since V has a smooth A-fixed point (namely, the
origin), so does X. Thus dim(X) ≥ rank(A), as claimed. ♠

The above argument contains the germ of the proof of the following in-
equality conjectured by Serre and proved in [GR07]. An earlier version of
this theorem appeared in [RY00] and was refined in [CS06].

Theorem 3.3. If G is connected, A is a finite abelian subgroup of G, and
char(k) does not divide |A| then ed(G) ≥ rank(A)− rank C0

G(A).

Here by rank(A) we mean the minimal integer r such thatA can be written
as a direct product of r cyclic groups. On the other hand, by rank C0

G(A)
we mean the dimension of the maximal torus of the connected group C0

G(A).
Note that if A is contained in a torus T then C0

G(A) contains T , and the
inequality of Theorem 3.3 becomes vacuous. We will be primarily interested
in so-called non-toral abelian subgroups. These have come up in many
different contexts, starting with the work of Borel in the 1950s. The first
indication that there is a connection with essential dimension comes in the
form of the following theorem:

Theorem 3.4. Let G be a linear algebraic group over an algebraically closed
field of characteristic 0. The following conditions on a prime p are equiva-
lent. are equivalent.

(a) Every finite abelian subgroup of G is toral,
(b) G is special, i.e., H1(K,G) = {1} for every K/k,
(c) ed(G) = 0.

The equivalence of (b) and (c) is easy; see Exercise 3.1 below. The equiv-
alence of (a) and (b) is an old result of Steinberg [St75]. Let me prove (b)
=⇒ (a) using the Going Down Theorem 3.1.

Assume (b) holds and let A be a finite abelian subgroup of G. Suppose
V is a finite-dimensional generically free linear representation of G. By (b),
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the torsor defined by the G-action on a dense open subset of V is split.
In other words, V is G-equivariantly birationally isomorphic to G × Z for
some algebraic variety Z. Hence, there is a G-equivariant map V 99K G
and thus a G-equivariant rational map V 99K G/B. Since G/B is complete,
the Going Down Theorem tells us that G/B has an A-fixed point. In other
words, A lies in a Borel subgroup of G and hence, in a maximal torus of G,
as claimed. ♠

To convey the flavor of the proof of Theorem 3.3 I will make the following
additional assumptions: char(k) = 0 and CG(A) is finite. The conclusion
then simplifies to ed(G) ≥ rank(A). In this form the theorem is proved
in [RY00] but I will give a much simplified argument here.

It suffices to show the following.

Proposition 3.5. Suppose G is a connected linear algebraic group and Y is
a generically free G-variety with tr degk k(Y )G = d. Then Y has a smooth
projective birational model Y with the following property: if Y has an A-
fixed point, for some finite abelian subgroup A ⊂ G satisfying |CG(A)| <∞
then d ≥ rank(A).

Indeed, suppose the proposition is established. Let V be a generically
free G-variety, V 99K Y be a G-compression and tr degk k(Y )G = d. Need
to show that d ≥ rank(A). Replace Y by the model whose existence is
asserted by the proposition. The Going Down Theorem tells us that Y has
an A-fixed point. Thus by the proposition d ≥ rank(A), as claimed.

To prove the proposition, we use the following result of Chernousov-Gille-
R.: there exists a finite subgroup S ⊂ G such that the map H1(K,S) →
H1(K,G) is surjective for every K/k. In other words, Y is birationally
isomorphic to G×S Z, where Z is a faithful S-variety.

Now the birational model we are interested in is

Y := G×S Z ,
where Z is a smooth projective model for Z (as an S-variety) and G is a
so-called “wonderful” (or “regular”) compactification of G.

Recall that G × G acts on G, extendind the left and right G-action on
itself, that G r G is a normal crossing divisor D1 ∪ · · · ∪ Dr, where each
Di is irreducible, and the intersection of any number of Di is the closure
of a single G × G-orbit in G. The compactification G has many wonderful
properties; the only one we will need is the following.

Fact 3.6. For every x ∈ G, P = pr1(StabG×G(x)) is a parabolic subgroup of
G. Here p1 is projection to the first factor. Moreover, P = p1(StabG×G(x))
equals all of G if and only if x ∈ G; otherwise, P is a proper parabolic in G.

For a proof, see [Br98, Proposition A1].
We will now show that Y has the property asserted in the Proposition.

Here d = dim(Z), so we need to show that if dim(Z) ≥ rank(A). It suffices
to prove that S contains a conjugate A′ of A, and A′ has a fixed point in Z.
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We know that Y has an A-fixed point in Y . Denote this point by [x, z]
for some x ∈ G and z ∈ Z. That is, [ax, z] = [x, z] in Y . Equivalently,

(3.7)
{
ax = xs−1

sz = z

for some s ∈ S. In other words, for every a ∈ A, there exists an s ∈
StabS(z) such that (a, s) ∈ StabG×G(x). Equivalently, the image of the
natural projection

p1 : StabG×G(x) → G

contains A. Since we are assuming C0
G(A) is finite, A cannot be contained

in any proper parabolic subgroup of G. Thus x ∈ G. Now (3.7) tells us that
x−1Ax ⊂ StabS(z), as desired. ♠

Corollary 3.8. (a) ed(SOn) ≥ n− 1 for any n ≥ 3.

(b) ed(PGLps) ≥ 2s.

(c) ed(Spinn) ≥

{
[n/2] for any n ≥ 11,
[n/2] + 1 if n ≡ −1, 0 or 1 modulo 8.

(d) ed(G2; 2) ≥ 3.

(e) ed(F4; 2) ≥ 5.

(d) ed(F4) ≥ 5.

(e) ed(Esc6 ) ≥ 4. Here Esc6 denotes the simply connected group of type E6

over k.

(f) ed(Esc7 ) ≥ 7. Here Esc7 denotes the simply connected group of type E7

over k.

(g) ed(Ead7 ) ≥ 8. Here Ead7 denotes the adjoint E7.

(h) ed(E8) ≥ 9.

Each of these inequalities is proved by exhibiting a non-toral abelian
subgroup A ⊂ G whose centralizer is finite; the details are worked out
in [RY00] 2.

For example, in part (a) we can take A ' (Z/2Z)n−1 to be the subgroup
of diagonal matrices of the form

(3.9)


ε1 0 . . . 0
0 ε2 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . εn

 where each εi = ±1 and ε1 · . . . · εn = 1.

2In part (c) only the second line is worked out in [RY00]. The first line was first noticed
by Chernousov and Serre [CS06] who proved it by a different method. I later noticed that
it can be deduced from Theorem 3.3 as well; the finite abelian subgroups one uses here
can be found in [Woo89].
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Exercises for Lecture 3

Exercise 3.1. Show that conditions (a) and (b) of Therem 3.4 are equiva-
lent.

Exercise 3.2. Consider a faithful action of a finite abelian group A on an
irreducible algebraic variety X, defined over a field k. Assume char(k) does
not divide |A|. If A fixes a smooth k-point in X then dim(X) ≥ rank(A).

Exercise 3.3. Complete the proof of Corollary 3.8(a) by showing that the
subgroup A defined in (3.9) has finite centralizer in SOn.

Exercise 3.4. Deduce the inequality ed(PGL4) ≥ 4 from Theorem 3.3. (A
similar argument proves the more general assertion of Corollary 3.8(b).)

4. Lecture 4. Essential dimension of homogeneous forms

We now return to the question posed in Example 1.3: What is the essential
dimension of the functor Formsn,d? Recall that this functor associates to a
field K the set of homogeneous polynomials in n variables with coefficients
in K, up to equivalence. A related natural question is what is the essential
dimension of the functor Hypsurfn,d where Hypsurfn,d(K) is the set of
hypersurfaces in Pn−1

K , i.e., the set of homogeneous polynomials of degree d
in n variables, with coefficients in K, up to coordinate changes and scalar
multiplication.

We have considered the case where d = 2. If we replace Formsn,2 by
the subfunctor of non-singular quadratic forms, (which does not change
the essential dimension), it will become isomorphic to the Galois cohomol-
ogy functor H1(K,On). Informally speaking, Galois cohomology functors
F have trivial “geometric moduli spaces”. In other words, F (K) is a sin-
gle point for any algebraically closed field K, and the “complexity” of F
(some aspects of which are measured by its essential dimension) is entirely
“arithmetic”. At the other extreme, there are “purely geometric” functors
X : K 7→ X(K), where X is an algebraic variety. A simple but important
observation due to Merkurjev [BF03] is that the essential dimension of this
functor is dim(X); cf. Exercise 4.2.

For larger d, the functor Formsn,d is in neither category, it has a non-
trivial geometric moduli space (at least if one restricts to the open subset
of AN of smooth forms). In other words, if a rational function α of the
coefficients of

f(x1, . . . , xn) ∈ Formsn,d(K)
is left invariant by the action of GLn then whenever f descends to a subfield
K0 ⊂ K, then α ∈ K0. For this reason,

ed(Formsn,d) ≥ tr degk k(AN )GLn = N − n2 ,

where N =
(
n+d−1

d

)
. Here N−n2 is the “geometric contribution” to essential

dimension. However, the functors Formsn,d and Hypsurfn,d also has some
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“arithmetic” complexity, which accounds for the fact that ed(Formsn,d)
may actually be strictly larger than N − n2.

In fact, “most” functors are neither “purely arithmetic” nor “purely geo-
metric”. This phenomenon is most naturally understood in terms of fibered
categories and more specifically algebraic (Artin) stacks. In these notes I
will try to avoid stack-theoretic terminology; keep in mind however, that it
will be “lurking in the background”.

Unfortunately, I do not know what ed(Formsn,d) and ed(Hypsurfn,d)
are in general. In order to say something interesting I need to modify them
by considering only smooth forms. Denote the corresponding functors by
Formssmoothn,d and Hypsurf smoothn,d . I will also assume that n ≥ 2 and d ≥ 5 if
n = 2, d ≥ 4 if n = 3 and d ≥ 3 in all other cases. Under these assumptions,
the main theorem, based on joint work with Berhuy and Brosnan-Vistoli, is
as follows.

Theorem 4.1. Suppose gcd(n, d) = pr is a prime power, and n = psm,
where p does not divide m. Then

(a) ed(Hypsurf smoothn,d ) =

{(
n+d−1

d

)
− n2 + ps − 1, if r ≥ 1, and(

n+d−1
d

)
− n2, if r = 0.

(b) ed(Formssmoothn,d ) =

{(
n+d−1

d

)
− n2 + ps, if r ≥ 1, and(

n+d−1
d

)
− n2 + 1, if r = 0.

Everything in the sequel will be based on the following important theorem
of Karpenko [Ka00]; in particular, this theorem is ultimately responsible for
the “arithmetic contribution” of ps − 1 to ed(Hypsurf smoothn,d ) in part (a).

Theorem 4.2. Let A be a division algebra over a field K, of prime power
index pr and let BS(A) be its Brauer-Severi variety. Then every rational
map BS(A) 99K BS(A) defined over K is dominant. ♠

The rest of this lecture will be devoted to outlining a proof of Theorem 4.1.
Let us start by considering a slightly more general setting. Suppose X is
an irreducible G-variety defined over k. We are interested in the essential
dimension of the orbit functor

OrbX,G : L 7→ {the set of G(L)-orbits in X(L)}
If X = AN = space of homogeneous polynomials of degree n in d variables,
with the natural action of G = GLn, then OrbX,G becomes Formsn,d.
Similarly if we take X = PN−1 then OrbX,G becomes Hypsurfn,d.

Let FX,G be the functor which associates to a field L the isomorphism
classes of diagrams of the form

(4.3) T
ψ

//

π
��

X

Spec(L)
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where π is a G-torsor and ψ is a G-equivariant map. If G is special, this
functor is isomorphic to OrbX,G; indeed, in this case T is split over Spec(L)
and the image of φ is exactly one G(L)-orbit in X(L); cf. Exercise 4.1.

We will also consider the subfunctor Fdom
X,G of FX,G, where Fdom

X,G (K) is
the set of diagram of the form (4.3) with ψ dominant. Note that for every
such diagram L contains K = k(X)G. For this reason it is natural to think
of K as the base field for this functor, rather than k, i.e., to think of Fdom

X,G

as a functor FieldsK → Sets and to talk about edK Fdom
X,G .

Example 4.4. Suppose π : X → Y is a G-torsor. Then ed(FX,G) = dim(Y ).
Indeed, in this case diagrams of the form (4.3) are in 1-1 correspondence

with morphisms Spec(L) → Y (T is then the pullback of π), i.e., the functor
FX,G is isomorphic to Y . Here we view Y as a functor L 7→ Y (L). The
functor Y has essential dimension dim(Y ); cf. Exercise 4.2.

The actions of GLn on X = AN or PN are not of this form; in fact, a
point in general position in AN is µd or Gm, respectively. Thus we look at
the following “next simplest case”.

Assume that G is a central extension

1 → C → G→ G→ 1

and X → Y is an G-torsor but we view it as a G-variety. Let us try to com-
pute the essential dimension of the diagram (4.3). Suppose the diagram (4.3)
descends to L0, i.e., it factors as

(4.5) T
φ

//

G-torsor

��

T0

$$HHHHHHHHHH

��

XL0

G-torsor
��

// X

G-torsor
��

Spec(L) // Spec(L0) // Y

for some G-torsor T0 → Spec(L0). In particular, the G-torsor XL0 →
Spec(L0) lifts to a G-torsor. Examining the exact sequence

H1(L0, G) → H1(L0, G) →δ H2(K,C),

we see that this is equivalent to saying that L0 splits the class of α = δ([X]) ∈
H2(K,C), where K = k(Y ).

Conversely, suppose L0 splits α, i.e., G-torsor XL0 → Spec(L0) can be
lifted to a G-torsor. Since liftings are in a (non-canoical) 1-1 correspondence
with H1(L0, C). (More precisely, the set of such liftings can be thought of
as an “H1(L0, C)-torsor” .) In particular, if C is a torus, (as is the case
for the PGLn-action on X = PN−1), then this lifting is essentially unique,
and the existence of φ is guaranteed. For general C, φ may not exist. Once
we choose an intermediate field K ⊂ L1 ⊂ L so that L1 splits α, φ will
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only exist if we replace L1 by a larger intermediate extension L0, where
K ⊂ L1 ⊂ L0 ⊂ L and tr degL1

(L0) = ed(C).
I will mainly focus on the case where C = Gm, corresponding to part (a) of

Theorem 4.1 because it is easier to explain. In the setting of Theorem 4.1(b),
C = µd. This why the formulas in parts (a) and (b) differ by 1.

Proposition 4.6. Let 1 → C → G → G → 1 be a central extension of
linear algebraic k-groups, and π : X → Y an G-torsor, K = k(Y ) = k(X)G

and α = δ([X]) ∈ H2(K,C), as above. Assume that the index of α is a
prime power ps.
Suppose C = Gm. Then

(a) edK(Fdom
X,G ) = ps − 1 and

(b) edk(FX,G) = dim(Y ) + ps − 1.
Now suppose C = µd for some d ≥ 1. Then

(c) edK(Fdom
X,G ) = ps and

(d) edk(FX,G) = dim(Y ) + ps.

Proof. First we note that (b) follows from (a). Indeed, for every diagram (4.3),
ψ is dominant onto some G-invariant closed subvariety X ′ of X, where x is
itself the total space of an G-torsor X ′ → Y ′ over some closed subvariety
Y ′ ⊂ Y . Thus edk(FX,G) =

max edk(Fdom
X′,G) = max

(
tr deg(K ′/k)+edK(Fdom

X′,G)
)

= max
(
dim(Y ′)+ind(α′)−1

)
,

where K ′ = k(X ′)G, α′ = δ([X ′]) ∈ H2(K ′, C), and the maximum is taken
over the G-invariant subvarieties X ′ ⊂ X, as above. Since α′ is a special-
ization of α, its index will divide ps. In other words, the maximum in the
above formula is dim(Y ) + ps − 1; it will be attained for X ′ = X.

The same argument shows that (c) implies (d), I will now describe the
proof of (a). The proof of (c) requires an additional effort; see [BRV07].

To prove (a), consider a diagram γ of the form (4.3) with ψ dominant. We
will first show that edK(γ) ≤ ps−1. As I mentioned above, L splits α, giving
rise to an L-point p : Spec(L) → BS(α) of the Brauer-Severi variety of α
(i.e., of the underlying division algebra of α). Moreover, the diagram (4.3)
descends to L0/K if and only if p descends on L0. Thus

ed(Kγ) ≤ ed(BS(α)) = ps − 1 .

We will now construct a diagram γ whose essential dimension meets this
bound. Let L be the generic point of BS(α). Then L splits α, giving rise to
a point Spec(L) → BS(α), i.e., to a rational map BS(α) 99K BS(α) defined
over K. Suppose γ descends to a subfield K ⊂ L0 ⊂ L. Let Z0 be a K-
variety whose functoin field is L0. Since L0 splits α, we obtain the following
rational maps

BS(α)
f1
99K Z0

f2
99K BS(α)
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defined over K. Here f1 is induced by the inclusion L0 ⊂ L = K(BS(α) and
f2 exists because L0 splits α. After replacing Z0 by the closure of the graph
of f2, we may assume that f2 is regular. Applying Karpenko’s theorem 4.2
to the composition

f2 ◦ f1 : BS(α) 99K BS(α)
we conclude that

tr deg(L0/K) = dim(Y ) = dim(BS(α)) = ps − 1 ,

as claimed. ♠

Let me now explain how to deduce Theorem 4.1 from the proposition. I
will focus on part (a); the proof of part (b) is essentially the same. Our
exact sequence here is

1 → Gm → GLn → PGLn → 1

and X = PN−1 is the space of degree d hypersurfaces in Pn−1. The first
complicationis that G = PGLn does not act freely on X = PN ; however,
the proposition will apply (for suitable n and d) if we replace X by a GLn-
invariant dense open subset. The fact that this open subset can be taken to
be the subset of smooth hypersurfaces is a consequence of a deep genericity
theorem of Vistoli [BRV07]. This is not a crucial point for us, and I will not
explain this further; if you are uncomfortable with this, replace AN

smooth and
PN−1
smooth by smaller GLn-equivariant dense open subsets, where the actions

of GLn/µd and PGLn, respectively, are free,
After replacing PN−1 by a suitable GLn-invariant dense open subset

(which I will denote by X), we obtain a PGLn-torsor X → Y . Here

dim(Y ) = dim(X)− dim(PGLn) = N − n2 =
(
n+ d− 1

d

)
− n2 .

This torsor gives rise to a central simple algebra A, and α = δ([X]) ∈
H2(K,Gm) is the Brauer class of A. The index of α is thus the index of A.
In order to prove Theorem 4.1(a), we need to compute the index of A.

By constructionX is the quotient of a dense GLn-invariant open subset U
of AN by Gm. We can thus think of U as the total space of a GLn/µd-torsor
U → Y . Since the GLn/µd-action on U comes from a generically free linear
action on AN , this GLn/µd-torsor is versal. To sum up, α ∈ H2(K,Gm) is
the image of a versal GLn/µd-torsor U → Y under the natural map

H1(K,GLn/µd) // H1(K,PGLn) // H2(K,Gm)

[U ] // [X] // α

Tracing through standard exact sequences in Galois cohomology one sees
that the image of this map consists of the classes in H2(K,Gm) of index
dividing by n and exponent dividing d. or equivalently, of index dividing
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by n and exponent dividing e = gcd(n, d) = pr; cf. Exercise 4.3. Since U
is versal, we conclude that the index of α is maximal possible under these
constraints, i.e., is ps = highest power of p dividing n. Theorem 4.1 now
follows from Theorem 4.2.

Exercises for Lecture 4

Exercise 4.1. SupposeG is a special group. Show that the functors OrbX,G
and FX,G are isomorphic.

Exercise 4.2. Let Y be a (not necessarily integral) scheme defined over a
(not necessarily algebraically closed) field k. Show that the essential dimen-
sion (over k) of the functor K → Y (K) equals dimk(Y ).

Exercise 4.3. Show that the image of the connecting homomorphism

∂K : H1(K,GLn/µd) → H2(K,µd)

associated to the exact sequence

1 → Gm → GLn/µd → PGLn → 1

consists of Brauer classes of index dividing n and exponent dividing d.

Exercise 4.4. (a) Find ed(Formsn,1). (b) Find ed(Forms2,3).

5. Lecture 5. Lower bounds for central extensions

In this lecture we will prove the following theorem.

Theorem 5.1. Let X be a G-variety defined over k. Then

edk(G) ≥ edK(Fdom
X,G )− e ,

where K = k(X)G and e is the maximal dimension of a G-orbit in X.

Before proceeding with the proof we will discuss some applications. Sup-
pose

(5.2) 1 −→ C −→ G −→ G −→ 1

is an exact sequence of algebraic groups over a field k, with C central. We
would like to apply Theorem 5.1 to a G-torsor X → B, which we view
as a G-variety. For every field extension K/k the sequence (5.2) induces a
connecting map ∂K : H1(K,G) → H2(K,C). Combining Theorem 5.1 with
the formula for edK Fdom

X,G given in Proposition 4.6, we obtain the following
inequality.

Corollary 5.3. Let 1 → C → G→ G→ 1 be an exact sequence of k-groups,
where G is central and G ' Gm or µd for some d ≥ 1. For each field K/k,
consider the connecting map ∂K : H1(K,G) → H2(K,C). If ps divides the
index of ∂K(t) for some t ∈ H1(K,G) then ed(G) ≥ ps − dim(G).



ESSENTIAL DIMENSION: A SURVEY. PRELIMIANRY DRAFT, JUNE 27, 2008 21

Proof. We may assume that K is finitely generated over k.
Moreover, after replacing K by a finite prime-to-p extension, we may also

assume that the index of ∂K(t) is exactly ps. (This follows from the primary
decomposition theorem for central simple algebras; see Exercise 5.1.)

Let π : X → Y be the G-torsor representing t. Here

K = k(Y ) = k(X)G = k(X)G ;

to obtain t we restrict this torsor to the generic point of Y . If C ' Gm then
Proposition 4.6(a) tells us that edK Fdom

X,G = ps−1. Hence, by Theorem 5.1,

edk(G) ≥ ps − 1− dim(G) = ps − dim(G) .

If C ' µd then edK Fdom
X,G = ps by Proposition 4.6(c) and thus

edk(G) ≥ ps − dim(G) = ps − dim(G) ,

as claimed. ♠

Corollary 5.4. (a) If n is odd then ed(Spinn) = 2(n−1)/2 − n(n− 1)
2

.

(b) If n ≡ 2 (mod 4) then ed(Spinn) = 2(n−2)/2 − n(n− 1)
2

.

Proof. (a) We apply Corollary 5.3 to the exact sequence

1 → µ2 → Spinn → SOn → 1 ,

where µ2 is the center of Spinn. In this case δK : H1(K,SOn) → H2(K,µ2)
is the Hasse-Witt invariant. If n = 2m+1 is odd, setK = k(a1, b1, . . . , am, bm),
where a1, b1, . . . , am, bm are independent variables, and define qn recursively
by

q3 = 〈a1, b1, a1b1〉 and qn+2 = 〈anbn〉 ⊗ qn ⊕ 〈an, bn〉.
A direct computation using basic properties of the Hasse-Witt invariant
shows that c(q2m+1) is the class of the product (a1, b1)2⊗K · · ·⊗K (am, bm)2
of quaternion algebras. This class has index 2m, and Corollary 5.3 yields

ed(Spinn) ≥ 2(n−1)/2 − n(n− 1)
2

.

The opposite inequality is a consequence of (1.7), applied to the spin repre-
sentation of Spinn. The spin representation has dimension 2(n−1)/2 and is
generically free (in characteristic 0) for every n ≥ 15.

The proof of part (b) is similar, with the spin representation replaced by
the half-spin representation. ♠

We now proceed with the proof of Theorem 5.1. We will avoid stack-
theoretic language, so the argument here will be different from the one
in [BRV07]. Note however, that that I do not know a stack-free proof of
Proposition 4.6(b), on which our applications rely.
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Proof. Choose an object

(5.5) T
ψ

&&NNNNNNNNNNNNN

π

��

X

��

Spec(L) // Spec(K)

with ψ dominant, of maximal essential dimension edK(FX,G)dom. Here π is
a G-torsor, φ is a G-equivariant map, K = k(X)G. Note that the maximal
dimension of a G-orbit in X, denoted by e in the statement of the theorem
can also be written as

e = tr deg(k(X)/K) = dimK(X) ,

where we view X as a K-variety (in fact, a homogeneous space), via the
rational map X → Spec(K) induced by inclusion K = k(X)G ⊂ k(X).
Since edk(G) ≥ edK(G) (cf. (1.5)), it suffices to show that

(5.6) edK(π) ≥ edK(Fdom
X,G )− e .

Indeed, choose a subfield K ⊂ L0 ⊂ K such that π descends to L0 and
tr deg(L0/K) = edK(π). (This is by definition the minimal possible value of
tr deg(L0/K) for such L0.) In other words, we have the following diagram:

T

++VVVVVVVVVVVVVVVVVVVVVVVVVVV //

π

��

T0

π0

��

X

��

Spec(L) // Spec(L0) // Spec(K)

I claim that there exists a further intermediate extension K ⊂ L0 ⊂ L1 ⊂ L
such that tr deg(L1/L0) ≤ e and the above diagram can be factored through
a G-torsor π1 : T1 → Spec(L1) as follows:

T //

π

��

T1

++VVVVVVVVVVVVVVVVVVVVVVVVVVV //

π1

��

T0

π0

��

X

��

Spec(L) // Spec(L1) // Spec(L0) // Spec(K)

If we can establish the claim then the original object (5.5) will descend to
the field L1 and thus

ed(FX,G)dom ≤ tr deg(L1/K) = tr deg(L1/L0)+tr deg(L0/K) ≤ e+edK(π) ,
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proving (5.6).
To verify the claim, let X be the scheme S = MorG(T0, XL0) defined

over L0. Over the algebraic closure L of L this scheme becomes (non-
canonically) isomorphic to X. Indeed, over L, T0 (or equivalently, T ) can
be (non-canonically) identified with G, and specifying a morphism T → X
is equivalent to specifying which point of X is the image of the identity
element of G. We know that there exists a G-equivariant map T → X; this is
equivalent to the existence of an L-point p : Spec(L) → S. Hence, p descends
to a subfield L1 such that tr deg(L1/L0) ≤ dimL0(S) = dimK(X) = e. That
is, S has an L1-point or equivalently, there exists a map from T1 to X. ♠

Exercises for Lecture 5

Exercise 5.1. Let A/K be a central simple algebra of index n = psm,
where m is not divisible by p. Show that there exists a prime-to-p extension
L/K, so that the index of A⊗K L is exactly ps

Exercise 5.2. LetK/k be a field extension and ∂K : H1(K,G) → H2(K,C).
be the connecting homomorphism associated to the central extension

1 −→ C −→ G −→ G −→ 1 ,

as in 5.2. ∂K : H1(K,G) → H2(K,C). Show that for every t ∈ H1(K,G)
there exists a finitely generated field extension K0/k and an element t0 ∈
H1(K0, G) such that ind(α) divides indp(α0).
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