Numerical
2. Introduction to PDE
2.1 Classification of PDE
1st order PDE

F(%?Jy“xv“@/) = 0

Solution of PDE

Eg: Uy +up = 1 shock waves in traffic flow and fluid mechanics

Solving 1st order PDE using the method of characteristics

|a(w,y, u)us + bz, g wuy = clay,u)| (+)

z = u(z,y)

The solution z = u(z,y) is a surface.
Now consider the surface

F(I’,y,Z) = U(S(I,y)—ZZO
Then VF = (ug,uy, —1) is a normal to the
surface F = 0.

VF

F(z,y,2) =0

Now the PDE (%) can be rewritten in the form

V~VF:(a,b,c)~<au %y —1)20. @

%7@7

Thus v = (a, b, ¢) represents a tangent vector to the solution surface F' = 0 at the point (z,y,z = u).

We can construct a curve C' : (x(t),y(t), 2(t)) lies in the solution surface for which v is a tangent

at each point. Since v is tangent to c¢ it follows that the tangent vector to c is

dxr dy dz dx
<dtdtdt> (@ 8.0) & <dt
dx ( ) dy
— =a(z,y,u) — =
dt S

dy dz

27 27 = i 1

o dt> a(a,b,c)  or equivalently
d

be,y,u) o= cle,yw)

by defining the arclength of C' to be such that & = 1. Thus the solution of the PDE (x) has been

reduced to solving the system of ODE’s.

Eg. 1: 1D wave equation u; 4+ cu, = 0;  wu(z,0) = f(x).

=x—ct = constant =

u(xz,0) = f(x)=DB
sou(zt) = f(z—ct).

dx c

a1

d
3 —u:0:>u: const = B

dg§
r—c-0=¢=>ax=(= B=f(¢

()



T —ct =const =¢§

CharacteristicCurves

Cauchy problem

Given u(z,y) along C : y = y(z), when can we determine u, and u,?

u(z,y(z)) = f(z)
Uy +uyy' = f'(z)
aug +buy = c

] =

Cannot calculate u; and u, when

or b—ay = 0
dy
b = a2
adx

do _dy

b

Cannot specify data along a characteristic curve.

2nd order PDE F(z,y, u, Uz, Uy, Ugg, Ugy, Uyy) = 0 (%)
e Higher order PDE often occur, but we already have an extremely rich class of PDE in (k).
e Linear if F is linear in each term involving u.

e Quasilinear if linear in the highest derivatives.

Eg:
Heat Eq: Ut = Ugy
Wave Eq: Uy = CQUM
Laplace’s Eq: Ugz + Uyy = 0
Burger’s Eq: Up + Uy = Ugy quasilinear, shocks smoothed by viscosity
Porous Media Eq:  ut = (B(u)ug), nonlinear



Classification of general 2nd order linear PDE

Lu = augy + bugy + cuyy +  duy +euy + fu = g a = a(z,y) variable ?
——
Principal part Lower order terms Inhomogeneous term

by analogy with quadratic forms aX? + bXY + cY? + ... we define the equations to be

(a) Hyperbolic if b% — dac > 0
(b) Parabolic if ~ b? — dac =0
(c) Elliptic if b? — dac < 0.

Cauchy Problem

If we are given u,ug,u, along some curve c : y = y(z), i.e., u(z,y(x)) = F(z), u(z,y(z)) =
G(z), wuy(z,y(x)) = H(z). Can we determine u(zx,y) at some neighboring point?

! !
Ugy + Ugyy = G ()
U, Ug, Uy

Ugy + uyyy' = H'(x)
A Ugy + bUgy + cuyy = g — LOT = K(x)

(z, y(x))
1 4 0 Ugy G’
0 1 y' Ugy = | H
a b c Uyy K

We can calculate Uy, ty, and uy, provided det (-) = a(y’)? — by +c #0

(i) If > —4ac > 0 we get 2 curves along which data cannot be specified and used to get a neighboring

solution. These curves are called characteristics and are defined by ¢’ = %Z_ZMC.
Eg: Wave equation
0z 5 07 0 0 0 0
(5 a) =G em) (o +eaw) =0
b —dac = 0% —4(1)(=c*) =4 > 0
2 £ ct = const are characteristics c
(ii) If b? — 4ac = 0 we get 1 characteristic curve
t A
Eg. Ut — Uge = 0
b —dac=0—4(-1)(0)=0
dt . __
e 0 is a characteristic
t = const are characteristics
(Signals propagate with infinite speed.) r



(iii) If b2 — 4ac < 0 there are no characteristic curves

Eg: Laplace’s equation gy + tyy = 0

W —dac=0—4=—-4<0

Thus, Cauchy data can be specified for any curve to obtain a neighboring solution. This
presents a problem if Cauchy data are specified for a boundary value problem — over specified.

Ugz + Uyy =0

Prototype parabolic problem

u = Dugy, — cuy — bu + fla,t) z €N
——— ~— ~— ——
Diffusion ~ Convection  Cooling  External input /output of heat
D >0 — Diffusion coefficient

—  Wave speed (¢ > 0 = wave moves in positive = direction )
— heat transfer coefficient (b > 0 heat loss, b < 0 heat gain)
Later we will consider the cases  b(x) — variable coefficients

b(x,u) — quasilinear

Different types of boundary conditions:
1) Periodic BC — temperature in a conducting ring
e O =(0,2m)

e ‘Boundary Condition’: u(z,t) = u(x + 2m,t) — u is pe-

e Initial Condition u(z,0) = ug(x)

riodic // N(x’ g
N/

e For the solution to make physical sense b > 0 otherwise
U = 00.

2) Dirichlet BC — temperature in a bar with fixed end temperature

e 0=(0,1)
u(z,t)
e Dirichlet BC — u(0,t) = a(t)  u(1,t) = A(t) | |

e Initial Condition: u(z,0) = ug(x).

3) Mixed BC — Temperature in a bar with one end at a specified temperature and the other at a
specified flux.

* =01 u(a, )

ou ‘

o Mixed BC  u(0.t) = a(t), 5-(L,t)=B(t) 0 |




Time Independent Problem

e Will return to the parabolic problem later.

e Assume f, a and (3 do not depend on time. Then we can show that u(z, t) ooy u(x) a steady
state.

u(x) satisfies the steady state equation:

D uyy — cuy — bu = f(x)
e u satisfies periodic, Dirichlet or mixed BC.

This is our prototype elliptic problem

e Elliptic problems arise in
— Steady state for problems with diffusion or viscosity.
— Potential problems.

e Mathematical characterization of elliptic problems.
— Unique solutions that are smoother (i.e., have more derivatives) than the data function f.

e Why is this a prototype problem?
— Only 1 space dimension — problem character does not change in 2D or 3D but there are
extra numerical issues that arise (e.g. iterative solution methods, boundary conditions).
— For periodic problem there are no boundary conditions, which makes the analysis easier.

Discretization Process:

0 1 N-1
2
e Periodic case: Q = [0, 27] 0 "
Divide domain into N sample points o = 2/ Nk k=01 N 1
h = (2m)/N
0 1 N
e Dirichlet and mixed cases: Q = (0,1) 0 | |

Divide domain into N + 1 sample points to= (1IN k=0, N h=1/N

Sample u at each of the grid points with a uniform spacing h. We use capital letters to denote
approximate values at grid points:

Up =~ wu(zy)
Fe = f(zx)
Cy = c(zp) Exact
By = blxk)

We will consider the following types of discretizations for the prototype problem.
(I) Finite Difference
(IT) Spectral — For the periodic case

(IIT) The method of weighted residuals



e Collocation

o Galerkin

(IV) The finite element method

The finite difference method

Idea: Approximate derivatives by difference quotients.

Periodic Problem: —D u,, + bu = f, u(z + 27) — u(x), D=1

N 52Un - Up+y1 —2U,+Up—1

Uzz = h2 h2
-1 2 Un—1
Periodicity = Uy = Uy Un_1=U_
so we have the matrix problem
Ay = ph
[ (2/Rh* + By) —1/h? 0...0 —1/h?
—1/h? (2/h* + B)) —1/h? 0...0
where Al = . 0 .
0
—1/h? 0...0 —1/h* (2/h* + By_1) |

Properties of A:
e A is symmetric

e A is positive definite

N
e A is diagonally dominant i.e., |A;| > Z |Aij]

j=1

JF#i

e A is almost tridiagonal — can be solved in O(NN) operations

Questions:

(1) Is AU = F solvable? Yes, all eigenvalues are positive.

(2) How close is U to u?

We expect ||[U — u|| < kh? but we need to do some work to prove this.




Truncation Error: The truncation error (T.E.) is the remainder you get when you substitute the
exact solution to —Dug, + bu = f(x) into the difference equation.

(52

—ﬁui + Bju; — F; = O(h2)

ie.: Th =
A difference scheme is consistent with the differential equation (%) if T, = 0 as h = 0.

Vector and Matrix Norms

Vector Norms: Let x € RV then || - || : RY — R7 is a real valued function satisfying:
@) [lell=z0  vxeRY |lz[|=0&x=0
(i) flexl| =le| |Ix]]  vxeRY, ceR

i) |x+yll <|xI+]lyl]] Vvx,yeRY A inequality.

If || - || satisfies (i)—(iii) then it is called a vector norm.
Examples:
N
l|Ix||l1 = L absolute sum norm
i=1
N 1/2
l|x]|2 = <Z |x12> Euclidean norm
i=1
[1%]]c0 = max |z maximum norm
K]

The sets of points in R?
for which the various norms
are 1 i.e. unit circles.

Matrix Norms:

A matrix norm is a function || - || : RY x RN = R* which satisfies the properties

@ (Al>0  JAl=0sA=0
() lledll = el |4
(i) |14+ Bl < |4 +[|B]

A matrix norm with the property ||AB|| < ||A]|| ||B|| is called multiplicative.

A matrix norm and a vector norm are consistent if

|| Az]]
[ Az[[ < |[A[[ flz]] ]|l # 0 = Tl S [A]l-



Induced matrix norms:

A
Define ||A|| = max [LAz] = max ||Az|| — Lengths of images of the unit sphere.
llzliZo [lz]] llzll=1

Example 1. ||A||oc = max row sum of the elements of A = max ) |a;;|
L
j

Proof:
l#lloc = max|a;]
Aineq
[Az]lc = max > aga| < mfxzmz‘jleﬁ mgXZlaijl 2|0
j j j

Az
A Sl 1o < max S Ja (+)

|12 oo o e

If m?XZ laij| = Z |aj;| for some row index k, then let
J J

&= (ana/laxa, - ann/larn|) =D ards =Y larg?/lari| =D larl-
: i i

J

If for some index j, ap; = 0 then let &; = 1. Then ||Z|[cc = 1, and

1A2]lo = max |} aid;| > lag| = ) law] |2l = max D faij][12]]oc
j j j j

Az
L (54
J

[12]|oo
Combining () and (%) we have ||A|oc = max ) |ai;|
L

Exercise 2: ||A||; = maximum column sum of the moduli of elements of A = max ) |a|
T
Example 3: ||A||2 = (maximum eigenvalue of A*A)Y/2? = p(A*A) where p(B) = max |)\;| where );
J
are the eigenvalues of B, is known as the spectral radius of B.

Proof: Since A*A is Hermitian there exists a unitary matrix u (for which v*u = I') such that
where p; > 0 are the eigenvalues of A*A. Let y = u*x so that x = uy. Then

[|All2 = max Azl —  max M ||Az|| = (Az)*(Ax)
lleli0 () = (A*Az)(z)

llzl[#0 |All2
(u*A* Auy, y)
= max *7
llyl[0 (u*uy, y)




> palyal®
K3
> lwil?
/max ;]

Al = p(A4)

= max

[lyll#0

| |
1
Note: If A is symmetric ||A||s = max |\;|. Also [|[A7Y |y = — .
i min |\
Error estimate for the finite difference method:
Let us look at the size of the error e = u — U.
AU =F (1)
Au=F+ Ty, (2)

where T}, is the truncation error and ||T},||cc = O(h?) and ||T}||2 = O(h?). Subtract (1) from (2):
Ae = Th
e = AilTh.

We want ||e||7 to be O(h?) the same as T}, so we must have that ||A7!||; is bounded independent
of h.

Definition: (Norm stability)
A discretization A"Mu = F? for any elliptic problem

lo : is said to be maz-norm stable if
(A" |oo < K for all h.

{5 : is said to be #5 norm stable if
(A" 2 < K for all h.

Convergence Theorem:

A consistent, stable discretization for a linear elliptic problem converges with the order of the
truncation error:

PF:  lelloo < K[| Thlloo [lell2 < K[ Thl]2-

Claim 1: The finite difference matrix for the periodic problem with constant heat transfer coeffi-
cient B,, = B:

E 2 E-1
h _

is /9 -norm stable.



Observe that the DFT basis vectors gbf =Nk | = 0,1,...,N — 1 are eigenvectors of A"

i(22)k(i+1)h 9 o ei(%’“)k(jfl)h
A = S () @O0
h? h? h?
2 —2cos(khm/N)
2
B {4sin2(kh7r/2N)

+B}¢§

2 +B}¢§

k .k
= A quj
Note:

e Eigenvalues ¥ are all positive.

L 1 which is bounded independent of h.

—1 _ —_
o 147 = min [\¥| B

e The fact that the DFT basis vectors ¢§? diagonalize A" can be used as a computational device
to invert the matrix A". Let @ = FFT(U) and F¥ = FFT(F). Then since A"¢* = \egk
and U = Y aF¢k, F =Y FF¢F. It follows that \*U* = F*.

S UR = FR/NF
so that u = FFT! (U’“)

e The above analysis and inversion technique only works for constant coefficients b. It is possible
to analyze the stability of a variable coefficient problem by freezing coefficients and performing
a DFT stability analysis.

The Dirichlet Problem:

v o= flz,y,y)
y(0) = o y(1)=4
Ynt1 = 20 + Yno1 = 2 (azy y“;hyl) =1y (3)
Yo = yn =0
| from B.-C.
-2 1 0 0 r n 7 r fi b o]
1 -2 1 0 0
0 =’ -
, . .
0 0
1-2 L YN—-1 | _fN—1_ -6-

10



Tridiagonal Ay = h*f(y) —r

Solve using Newton Iteration

2
og gly)=Ay —rf(y)+r=0
0=gly"") =)+ @(yk)(ykﬂ ) ki) o 198 (an] o fw
o=y 28 ()] g )

Eg. 1y=0 y(0)=0 y(1)=1=y(x) ==z

Ynt1 — 2Yn+Yn-1=0 1<n<N-1
Y = " =>602—-204+1=0
9=1,1
yn = A+ Bn
yw = A=0

yv = BN=1= yn:(ﬁ):nh:aﬁn

e Shape of solution was captured exactly by the quadratic variation assumed by the difference
approximation.

Special Tricks:

(1) For derivative boundary conditions:

y,(b) = [ say TN-1 TN 0

we introduce the pseudo meshpoint x4 and we have the condition

YN+1 — YN-1

5% = = yn+1 = (yn—1 + 2h0)

Let’s look at the effect on the simple problem y” = 0 y(a) =« y'(b) =7

Y1 Y2
—2 10 0] [ v ] o
1 0
1 0
2 =2 |y | 2183

(2) For self-adjoint problems we often have: (p(z)y’)’ + ¢(x)y = T(z). In this case we use

l D Ynt1 —Yn | P Yn — Yn—1
n n+1/2 h n—1/2 n .

11



Eg. 1 with derivative BC:

y// = y(o) =0 y’(l) -0
3
y = THAc+B y0)=B=0
/ 132 ’
y(r) = ?+A:>y(1)_—+A:0:>A:_,
oz
Homog. eq.
Ynt1 = 2Un+yn1=0  O(h?)
Y =0"=(0—-1)’=0=0=1,1
Yn =an—+b
Particular solution
T
yn+1 - 2yn + Yn—1 = h2 (’I’lh): h3n

Yn =cn® = ¢ [(n—i— 1% —2n% + (n — 1)3}

= c[n3+3n2+3n+1—2n3+n273n2+3n—1]

= 6nc=h’n
h3
~ 6
3h3 h3
.'-ynZnT—i-cm—l—b = (n6) +an +b.

C

y0:O—>b:O.

(N —1)3h3
6

+aN—{ +a(N—1)}:>a[N—(N—1)]:

h? h?
coa=——[N*= N3+ 3N?-3N +1] =5 [3N? —3N +1]

n 1
3N? —3N +1] =2 — % {h2N2 — h(hN) + -h*

T[ 6 3

2
_ o n % <h _ f;) < O(h) — (comes from BC)
BC 2:

YN+1 —YN-1
+T =0 = yn+1 = YN-1

_h3

[N3 — (N —1)%

hN =1

False
Meshpoint

(N +1)3m3 N (N —1)3n3

N+1)=
5 a(N +1) 5

+a(N—-1)

12

N-1 N N+1



h3

sl = [(N—1)3—(N+1)3]
h3
= —E[N3+3N2+3N+1—N3+3N2—3N—|—1]
h3
= ——[3N?+1
@ = — T BN 4]
3 (nh)h?
cogp = = ———(3N?+1
Y 6 g OV
2z Tnh?
= In_2Zn_In K2
6 2 ¢ oW
exact error
Eg:
y//+4y:0

y(0)=0 y(1)=1
y = Asin2x + B cos 2z
y(0)=0= B =0

y(l)=1= Asin2=1= A=

sin 2
sin 2z
(@) = sin 2
Ynt1 = 2Yn + Yn—1 + 4h%y, =0
Yy =0" 0> —(2—-4n*)0+1=0
=1 ="
e — (2—4h?) +e =0
2(1 — cos o) = 4h? cosa =1 —2sin’a/2
4sin? a/2 = 4h*
s.sin? /2 = h? a=2sin"'h

Yn = Acosan + Bsinan
yw=0=>A=0 ynN = BsinaN =1
B 1
~ sin(aN)

sin(2nsin~! h) .1 h3 5
= ————= h=h+—+0O(h°).
sin(2N sin~! h) o * 6 +Or)

Eg. 2: An eigenvalue problem

y//+)\2y = 0
y(0) = 0=y(1)
y = AcosAx+ Bsin\z
y(0) = A=0=y(z)=Bsin\x

13



A = nr for nontrivial sol.

y(1) =0= Bsin A n=1.2...

‘ yp(z) = Bsin(krz) ;A = kn ‘

FD=  yni1—2yn+Yn1+h*Xy, =0 n=1,...,.N—1
Yn+1 — (2 7”2)yn + yn—1 =0 « discrete eigenvalue problem r = (h\)

Yn=0":0—(2—1*) 467" =0 6162 = 1
6 =e
2cosa — 1] +72 =0
R2A2 = 4 gin? (g) Aside: If we had tried: 6 = e
—2=-rH—e =0

2cosha — 2 — 12 =0

yn = Acos(an)+ Bsin(an) o
v = A=0 dsinh® 2 4 7% = 0
k
yn = Bsin(aN)=0=a=—— k=1,...,N—1 roots unless a € €
N 2 (¢
Recallcosa — 1 = 2sin (5)

k 2 k k
Yk,n = B sin (ﬁ) A= 7 sin (2;) = 2N sin (2]7\rf>

TN
2NN =k N>1: k=1
T
A1 = 2N sin (QN) N -
‘\Xn = 2N sin(nw/(2N))
1 2 N—IN g
Asymptotic behavior of eigenvalues:
kw1 (kmw
A = 2N{2N 6<) +}
s <N ) <
. T 23111 N—oo 2COS (k—”) .k
N — 9N v 2N 2 2
Ap(N) sm( N> a/N) — 1 = k7
k=1

Yk, (N) = By pnsin(kmnh)

14



Richardson Extrapolation: A = A+ coh? + eyt + ...
AN (h) — A (2h)

Ak = AP+ ch® Ae(2h) = Af + c4h? 3 =X
2 . ym
)\1(}1: ):iSln (5) 2
1 2 .y 1 . (T
A (h - 2) = g (Z) 29V2 = 2.8284271 A <h - 4> — 8sin (g) — 3.0614675
8v2 —2
Af, o~ \/; = 3.10456
S ho PV Al 22
A= A(hy)
11 2 3.10456  3.1414534 Ly AmeD )
Am) = \(m=1) L Dl
2 1/2 2v/2 3.1391476 s s+1 b\ 2
3 1/4 3.0614675 <h z ) -1
s+m
1.2.2. Numerical solution of ALGEBRAIC EQUATIONS:
Iterative methods
Consider the solution of
Ar =b 0 0 U
N
: [A]= +| D |+
or ZAle]:bZ ”LZL...,N L 0 0
j=1
Jacobi Iteration:
i—1 N
ZAijIj + Az + Z Aijxj =b;
J=1 j=i+1
or Lr+Dx+Ux=5b
Iteration Procedure:
i—1 N
x@(kH) = |bi— ZAijaT;k) - Z Az’jl';k) /Aii — x(F+D) = p~1 (b —Lx® — ux(k)>
j=1 j=i+1

i N
or o = a0 el - Al = 3T Ay /An‘ & xkH) = xk) 4 p-1 (b —~ Aac(k))
Jj=1 j=i+1

kD = gk 4 p—l (b - Ax(k))

Let P8 — b~ Az(®) define the residual vector
= A ((x* — x)(k)>

= Ae* which is a measure of the error.

ekt = 2®) 1 D1y (k) ‘ where w is an acceleration parameter.

15



Jacobi iteration

Eg. 1

Let uéo) =1

1

u =
u(0) =1
Un+1 — 2un + Unp—1
h2 -
A
[ —2 1
1 -2 10
0 1
I 1 -2
k k)
L) Uy + Uy
(k+1) _
2
’U,go) =0 Uéo) =0
u) = (0+1)/2=1/2
u) = (040)/2=0
u? = (0+41)/2=1/2
uf = (0+1/2)/2=1/4
WY = (1/4+1)/2=5/8
1 —_— =
W = (0+1/2)/2=1/4

= (1/4+1)/2=75/8=0.625
= (04+5/8)/2="5/16 = 0.3125

16

UN-1

ugo) =0« BC

uezzl—x
u(l)=0

— ¢ ——————
0 1/3 2/3 1

h=1/3

>
>

*

(
(
(
(

>

5/16 +1)/2 = 21/32 = 0.6563
0+5/8)/2=5/16 = 0.3125
5/16 +1)/2 = 21/32 = 0.6563
0+ 21/32)/2 = 21/64 = 0.3281.



Gauss Seidel: | since these are known

i—1 N
x£k+1) = (bz — ZAijxg»k—H) — Z A”xgk)) /A“

j=1 j=i+1

o | gkt — p-t (b _ kD) M(k)) or |z*+D) = (B 4 p-1 (b Lk _ path) _ M(k))

(D + L)z ) = pg®) 4 (b — Da®) — ux(k)>
= (D + L)z® + (b — Lz®) — Dg) — um(k))

) = 28 4 (D 4+ 1)} (b _ Am(k))

2D = ) 1 (D + L)~ | < Interpretation.

Successive-over-Relaxation (SOR):

(k1) _ (k) e S O W o) w acceleration parameter
x x\ 4+ wD (b Lx Dx Ux ) w—1= 5.

Interpretation:

(W'D + L)z = (w™'D + L)z® + (b — La®) — Dg®) — ux(k))

$(k+1) — .CL'(k) + (w_lD 4 L)_l (b . A.f[,’k)

® D = 2™ 4 (W™D + L)f1 r).,

Gauss Seidel Iteration

Eg:
u’ = u=1-—2x
u(0)=1;  wu(l)=
Un+1 — 2un + Up—1
h? =0
-2 1 u1 -1
1 -2 1 0
0 1 -2 1 =
01 -2 UN_1 0
Au=1>
(k) (k+1))
u B+ — (u"“ T+l
no 2

Let

17



W =1 WP=0 WV=0 W¥=0<BC

WA= (0+1)/2=1/2=05 FIGURE
W= (04+1/2)/2=1/4=025
o w _ w) +ug
u;” = (1+1/4)/2=5/8 =0.625 = 2
u? = (0+5/8)/2=5/16=0.3125 Lo _ a4 ne
2 2
WP = (1+45/16)/2 = 21/32 = 0.6563
W) = (04 21/32)/2 = 21/64 = 0.3281
ulV = (1421/64)/2 = 85/128 = 0.6641
WS = (0+85/128)/2 = 85/256 = 0.3320
ul® = (14 85/256)/2 = 341/512 = 0.6660
u) = (04 341/512)/2 = 341/1024 = 0.3330.

General iterative method:
gD = (k) 4 akB_lr(k) where 7* = b — Az*.

ap,=1 B! =D ' = Jacobi
a =1 B™!' = (w™'D+ L) = SOR and Gauss Seidel.
o =1 B™! = A7! = Newton’s method (vacuous in this case).
N I R
= b-A (a:(k) + akB_lr(k)>

= 70— q,aB 1k
= (I- ozkAB_l) ()
= (I-AB™Y) (I —ap_1AB™!) (=D

N

pktl) — H — aAB~1) () = Pk(ABfl)r(l)

where Py (A

sz

(I Qs ) is a polynomial of degree k in A.

Let {)\;} be the cigenvalues and {v;} be the corresponding eigenvectors of A = AB~!: ie. Av; =
Ajv;. Then expanding r' and r*+1) in terms of {v;}:

N N
= Z f§1)vj and rtD) Z f(kH)V]
j=1 j=1
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we obtain:

k
A =TT (= aah) 7Y = Py

s=1
1
(1= eigenvalues of AB~!
1/ (o)
\ 1-— Ozk)\

Note: For Jacobi and SOR  aj = 1 so that Pi(\) = (1 — \)*

2
(k+1)|2

~(k
PP

i

|r

IN

1= A2 S At |1= A =max {1 — Ay, |1 - An|}
J

|7,.k+1| S p|T(k)| where p= max{|l - )\1|; |]- - )\N|}

Example of degredation of Jacobi with mesh refinement.
7“” — f
A Uy = —Up1+2Up —Up-1 = thn
k
\e = 4sin? <2]7\r7> are the eigenvalues of A

2

—E'4+2-F ™\ N>1 T
2 pr==si (9N IN?
N2>1 1— 7T2
2N2’

We can expect poor performance as N increases. Look for the number of iterations it will take to
achieve a tolerance ¢:

T

p = ¢
Ine Ine Ine 2N?
B m: P L[ 7 TR e
In(l-— ——— | 14+35 | =
(o) o (b Ew) )
Physical interpretation of Jacobi’s method as a diffusion process:
k k
Uy, = — 5
k k k
C D) (R) “£l+)1 —2ul) + “5121
S Up — Up 9
uF Y — () h? uffﬁl —2ulP + ugi)l hAt=0 | Ou  DO*u
L — = —_— > _— = —
’ At 2At h? ot Ox?

19



Fourier analysis:

ou .
= —Dw?i
ot
N N _ 2
i = dge Dw=t

Error

———————— Low Frequencies
(low damped)

High Frequencies (high damped)

t

Minimization approach to solving linear equations:

Instead of solving Az = b, consider the equivalent problem of minimzing the quadratic form

1
E(x) = ixTAx —z7b.

For a minimum we have the necessary conditions

oF
= — = Ax —b.
0 o T

Let A be symmetric and positive definite,
then the eigenvalues A\ of A are all real and positive.
So E(x) can be viewed as a parabolic surface
with elliptic cross sections.

(M0
f= ()
1

E = §mTAx — 2Ty =

2D Example:

NN

Level sets of E are ellipses

What happens if Ao > A\

(Alx% + )\Qx%) — (x1b1 + 22b2)

T2
R
I

1/(vA2)

20
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Steepest descent algorithm: - )
Idea: Search for a minimum along the path defined by Target
VE =Az —b o = const
Consider the so-called Richardson Scheme:
Tpy1 = xp + agp(b— Axy). We must look in the steepest descent direction — VE.
Choose «j  to minimize FE :
E(zps1) = xfﬂAi’?kH
= (zp +ar) T A(zy, + ary)
oE T ri Axy,
0=— = 2"{A(zp+ar)=> a,=—-= .
% i Alzk k) k VT Ar,
Algorithm: Steepest descents.
T
Ty Az
Tk+1 = Tk + agry  where o = — ]% k.
Ty Ary
Notice:

e The similarity to the general iterative method, in this case B = I.

e The role of the preconditioner is to try to make all the eigenvalues of AB~! as close as possible
to 1. In this case the ellipses ~ circles and the steepest descent method will converge rapidly.
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