Numerical Solution of PDE

2. Introduction to PDE

2.1 Classification of PDE

1st order PDE

$$
\text { Eg: } \quad \begin{array}{rlr}
F\left(x, y, u_{x}, u_{y}\right) & =0 \\
u u_{x}+u_{t} & =1 \quad \text { shock waves in traffic flow and fluid mechanics }
\end{array}
$$

Solving 1st order PDE using the method of characteristics

$$
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u)
$$

The solution $z=u(x, y)$ is a surface.
Now consider the surface

$$
F(x, y, z)=u(x, y)-z=0
$$

Then $\boldsymbol{\nabla} F=\left(u_{x}, u_{y},-1\right)$ is a normal to the surface $F=0$.

Now the $\operatorname{PDE}(*)$ can be rewritten in the form

$$
\mathbf{v} \cdot \boldsymbol{\nabla} F=(a, b, c) \cdot\left(\frac{\partial u}{\partial x}, \frac{\partial y}{\partial y},-1\right)=0
$$

Thus $\mathbf{v}=(a, b, c)$ represents a tangent vector to the solution surface $F=0$ at the point $(x, y, z=u)$.
We can construct a curve $C:(x(t), y(t), z(t))$ lies in the solution surface for which \mathbf{v} is a tangent at each point. Since \mathbf{v} is tangent to c it follows that the tangent vector to c is

$$
\begin{array}{r}
\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right) \|(a, b, c) \Leftrightarrow\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)=\alpha(a, b, c) \quad \text { or equivalently } \\
\frac{d x}{d t}=a(x, y, u) \quad \frac{d y}{d t}=b(x, y, u) \quad \frac{d u}{d t}=c(x, y, u) \tag{**}
\end{array}
$$

by defining the arclength of C to be such that $\alpha=1$. Thus the solution of the $\operatorname{PDE}(*)$ has been reduced to solving the system of ODE's.

Eg. 1: 1D wave equation $u_{t}+c u_{x}=0 ; \quad u(x, 0)=f(x)$.

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{c}{1} \\
& \Rightarrow x-c t=\text { constant }=\xi \quad \frac{d u}{d \xi}=0 \Rightarrow u=\mathrm{const}=B \\
& u(x, 0)=f(x)=B \quad x-c \cdot 0=\xi \Rightarrow x=\xi \Rightarrow B=f(\xi) \\
& \therefore u(x, t)=f(x-c t) .
\end{aligned}
$$

Cauchy problem

Given $u(x, y)$ along $C: y=y(x)$, when can we determine u_{x} and u_{y} ?

$$
\begin{aligned}
& u(x, y(x))=f(x) \\
& u_{x}+u_{y} y^{\prime}=f^{\prime}(x) a u_{x}+b u_{y} \\
&=c \\
& {\left[\begin{array}{cc}
1 & y^{\prime} \\
a & b
\end{array}\right]\left[\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right] }=\left[\begin{array}{c}
f^{\prime} \\
c
\end{array}\right]
\end{aligned}
$$

Cannot calculate u_{x} and u_{y} when

$$
\begin{aligned}
\operatorname{det}\left(\left(\begin{array}{cc}
1 & y^{\prime} \\
a & b
\end{array}\right)\right) & =0 \\
b-a y^{\prime} & =0 \\
b & =a \frac{d y}{d x} \\
\frac{d x}{a} & =\frac{d y}{b}
\end{aligned}
$$

Cannot specify data along a characteristic curve.

2nd order PDE $F\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right)=0$

- Higher order PDE often occur, but we already have an extremely rich class of PDE in $(*)$.
- Linear if F is linear in each term involving u.
- Quasilinear if linear in the highest derivatives.

Eg:

$$
\begin{aligned}
& \text { Heat Eq: } \quad u_{t}=u_{x x} \\
& \text { Wave Eq: } \quad u_{t t}=c^{2} u_{x x} \\
& \text { Laplace's Eq: } \quad u_{x x}+u_{y y}=0 \\
& \text { Burger's Eq: } \quad u_{t}+u u_{x}=u_{x x} \quad \text { quasilinear, shocks smoothed by viscosity } \\
& \text { Porous Media Eq: } \quad u_{t}=\left(\beta(u) u_{x}\right)_{x} \quad \text { nonlinear }
\end{aligned}
$$

Classification of general 2nd order linear PDE

$$
L u=\underbrace{a u_{x x}+b u_{x y}+c u_{y y}}_{\text {Principal part }}+\underbrace{d u_{x}+e u_{y}+f u}_{\text {Lower order terms }}=\underbrace{g}_{\text {Inhomogeneous term }} \quad a=a(x, y) \text { variable ? }
$$

by analogy with quadratic forms $a X^{2}+b X Y+c Y^{2}+\ldots$ we define the equations to be
(a) Hyperbolic if $b^{2}-4 a c>0$
(b) Parabolic if $b^{2}-4 a c=0$
(c) Elliptic if $\quad b^{2}-4 a c<0$.

Cauchy Problem

If we are given u, u_{x}, u_{y} along some curve $c: y=y(x)$, i.e., $u(x, y(x))=F(x), \quad u_{x}(x, y(x))=$ $G(x), \quad u_{y}(x, y(x))=H(x)$. Can we determine $u(x, y)$ at some neighboring point?

$$
\left[\begin{array}{ccc}
1 & y^{\prime} & 0 \\
0 & 1 & y^{\prime} \\
a & b & c
\end{array}\right]\left[\begin{array}{l}
u_{x x} \\
u_{x y} \\
u_{y y}
\end{array}\right]=\left[\begin{array}{c}
G^{\prime} \\
H^{\prime} \\
K
\end{array}\right]
$$

We can calculate $u_{x x}, u_{x, y}$ and $u_{y y}$ provided $\operatorname{det}(\cdot)=a\left(y^{\prime}\right)^{2}-b y^{\prime}+c \neq 0$
(i) If $b^{2}-4 a c>0$ we get 2 curves along which data cannot be specified and used to get a neighboring solution. These curves are called characteristics and are defined by $y^{\prime}=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Eg: Wave equation

$$
\begin{aligned}
& \left(\frac{\partial z}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0 \\
& b^{2}-4 a c=0^{2}-4(1)\left(-c^{2}\right)=4 c^{2}>0 \\
& x \pm c t=\text { const are characteristics }
\end{aligned}
$$

(ii) If $b^{2}-4 a c=0$ we get 1 characteristic curve

$$
\begin{array}{ll}
E g . & u_{t}-u_{x x}=0 \\
& b^{2}-4 a c=0-4(-1)(0)=0 \\
& \frac{d t}{d x}=0 \text { is a characteristic } \\
& t=\text { const are characteristics }
\end{array}
$$

(Signals propagate with infinite speed.)

(iii) If $b^{2}-4 a c<0$ there are no characteristic curves

Eg: Laplace's equation $u_{x x}+u_{y y}=0$

$$
b^{2}-4 a c=0-4=-4<0
$$

Thus, Cauchy data can be specified for any curve to obtain a neighboring solution. This presents a problem if Cauchy data are specified for a boundary value problem - over specified.

$$
u_{x x}+u_{y y}=0
$$

Prototype parabolic problem

$$
\begin{aligned}
& u_{t}=\underbrace{D u_{x x}}_{\text {Diffusion }}-\underbrace{c u_{x}}_{\text {Convection }}-\underbrace{b u}_{\text {Cooling }}+\underbrace{f(x, t)}_{\text {External input/output of heat }} x \in \Omega \\
& D>0- \text { Diffusion coefficient } \\
& c- \text { Wave speed }(c>0 \Rightarrow \text { wave moves in positive } x \text { direction }) \\
& b- \text { heat transfer coefficient }(b>0 \text { heat loss, } b<0 \text { heat gain) } \\
& \text { Later we will consider the cases } \quad b(x)-\text { variable coefficients } \\
& b(x, u)-\text { quasilinear }
\end{aligned}
$$

Different types of boundary conditions:

1) Periodic BC - temperature in a conducting ring

- $\Omega=(0,2 \pi)$
- ‘Boundary Condition': $u(x, t)=u(x+2 \pi, t)-u$ is periodic
- Initial Condition $u(x, 0)=u_{0}(x)$
- For the solution to make physical sense $b>0$ otherwise $u \Rightarrow \infty$.

2) Dirichlet BC - temperature in a bar with fixed end temperature

- $\Omega=(0,1)$
- Dirichlet BC $-u(0, t)=\alpha(t) \quad u(1, t)=\beta(t)$

- Initial Condition: $u(x, 0)=u_{0}(x)$.

3) Mixed BC - Temperature in a bar with one end at a specified temperature and the other at a specified flux.

- $\Omega=(0,1)$
- Mixed BC $\quad u(0, t)=\alpha(t), \quad \frac{\partial u}{\partial x}(1, t)=\beta(t)$

Time Independent Problem

- Will return to the parabolic problem later.
- Assume f, α and β do not depend on time. Then we can show that $u(x, t) \xrightarrow{t \rightarrow \infty} u(x)$ a steady state.
$u(x)$ satisfies the steady state equation:

$$
\begin{aligned}
& D u_{x x}-c u_{x}-b u=f(x) \\
& \text { - } u \text { satisfies periodic, Dirichlet or mixed BC. }
\end{aligned}
$$

This is our prototype elliptic problem

- Elliptic problems arise in
- Steady state for problems with diffusion or viscosity.
- Potential problems.
- Mathematical characterization of elliptic problems.
- Unique solutions that are smoother (i.e., have more derivatives) than the data function f.
- Why is this a prototype problem?
- Only 1 space dimension - problem character does not change in 2D or 3D but there are extra numerical issues that arise (e.g. iterative solution methods, boundary conditions).
- For periodic problem there are no boundary conditions, which makes the analysis easier.

Discretization Process:

- Periodic case: $\Omega=[0,2 \pi]$

Divide domain into N sample points

- Dirichlet and mixed cases: $\Omega=(0,1)$

Divide domain into $N+1$ sample points

$$
\begin{aligned}
& x_{k}=(2 \pi / N) k \quad \begin{array}{c}
k=0,1, \ldots, N-1 \\
h=(2 \pi) / N
\end{array}
\end{aligned}
$$

$$
x_{k}=(1 / N) k \quad k=0, \ldots, N \quad h=1 / N
$$

Sample u at each of the grid points with a uniform spacing h. We use capital letters to denote approximate values at grid points:

$$
\left.\begin{array}{rl}
U_{k} & \simeq u\left(x_{k}\right) \\
F_{k} & =f\left(x_{k}\right) \\
C_{k} & =c\left(x_{k}\right) \\
B_{k} & =b\left(x_{k}\right)
\end{array}\right\} \text { Exact }
$$

We will consider the following types of discretizations for the prototype problem.
(I) Finite Difference
(II) Spectral - For the periodic case
(III) The method of weighted residuals

- Collocation
- Galerkin
(IV) The finite element method

The finite difference method

Idea: Approximate derivatives by difference quotients.
Periodic Problem: $-D u_{x x}+b u=f, \quad u(x+2 \pi)-u(x), \quad D=1$

$$
\begin{aligned}
& u_{x x} \simeq \frac{\delta^{2} U_{n}}{h^{2}}=\frac{U_{n+1}-2 U_{n}+U_{n-1}}{h^{2}} \\
& \therefore \frac{-1}{h^{2}} U_{n+1}+\left(\frac{2}{h^{2}}+B_{n}\right) U_{n}-\frac{U_{n-1}}{h^{2}}=F_{n} \quad n=0, \ldots, N-1
\end{aligned}
$$

Periodicity $\Rightarrow U_{N}=U_{0} \quad U_{N-1}=U_{-1}$
so we have the matrix problem

$$
\begin{aligned}
& A^{h} U=F^{h} \\
& \text { where } \quad A^{h}=\left[\begin{array}{cccc}
\left(2 / h^{2}+B_{0}\right) & -1 / h^{2} & 0 \ldots 0 & -1 / h^{2} \\
-1 / h^{2} & \left(2 / h^{2}+B_{1}\right) & -1 / h^{2} & 0 \ldots 0 \\
& 0 & \ddots & \\
\vdots & & & \\
0 & & & \\
-1 / h^{2} & 0 \ldots 0 & -1 / h^{2} & \left(2 / h^{2}+B_{N-1}\right)
\end{array}\right]
\end{aligned}
$$

Properties of A:

- A is symmetric
- A is positive definite
- A is diagonally dominant i.e., $\left|A_{i i}\right| \geq \sum_{\substack{j=1 \\ j \neq i}}^{N}\left|A_{i j}\right|$
- A is almost tridiagonal - can be solved in $O(N)$ operations

Questions:

(1) Is $A U=F$ solvable? Yes, all eigenvalues are positive.
(2) How close is U to u ?

We expect $\|U-u\| \leq k h^{2}$ but we need to do some work to prove this.

Truncation Error: The truncation error (T.E.) is the remainder you get when you substitute the exact solution to $-D u_{x x}+b u=f(*)$ into the difference equation.

$$
\text { i.e.: } \quad T_{h}=-\frac{\delta^{2}}{h^{2}} u_{i}+B_{i} u_{i}-F_{i}=O\left(h^{2}\right)
$$

A difference scheme is consistent with the differential equation $(*)$ if $T_{h} \Rightarrow 0$ as $h \Rightarrow 0$.

Vector and Matrix Norms

Vector Norms: Let $\mathrm{x} \in \mathbb{R}^{N}$, then $\|\cdot\|: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$is a real valued function satisfying:

$$
\begin{array}{ll}
\text { (i) } & \|x\| \geq 0 \quad \forall \mathbf{x} \in \mathbb{R}^{N} \quad\|x\|=0 \Leftrightarrow \mathbf{x}=0 \\
\text { (ii) } & \|c \mathbf{x}\|=|c|\|\mathbf{x}\| \quad \forall \mathbf{x} \in \mathbb{R}^{N}, c \in \mathbb{R} \\
\text { (iii) } & \|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{N} \quad \Delta \text { inequality. }
\end{array}
$$

If $\|\cdot\|$ satisfies (i)-(iii) then it is called a vector norm.

Examples:

$$
\begin{aligned}
\|\mathbf{x}\|_{1} & =\sum_{i=1}^{N}\left|x_{i}\right| & & \text { absolute sum norm } \\
\|\mathbf{x}\|_{2} & =\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{1 / 2} & & \text { Euclidean norm } \\
\|\mathbf{x}\|_{\infty} & =\max _{i}\left|x_{i}\right| & & \text { maximum norm }
\end{aligned}
$$

The sets of points in \mathbb{R}^{2} for which the various norms are 1 i.e. unit circles.

Matrix Norms:

A matrix norm is a function $\|\cdot\|: \mathbb{R}^{N} \times \mathbb{R}^{N} \Rightarrow \mathbb{R}^{+}$which satisfies the properties
(i) $\|A\|>0 \quad\|A\|=0 \Leftrightarrow A \equiv 0$
(ii) $\quad\|c A\|=|c|\|A\|$
(iii) $\|A+B\| \leq\|A\|+\|B\|$

A matrix norm with the property $\|A B\| \leq\|A\|\|B\|$ is called multiplicative.
A matrix norm and a vector norm are consistent if

$$
\|A x\| \leq\|A\|\|x\| \quad\|x\| \neq 0 \Rightarrow \frac{\|A x\|}{\|x\|} \leq\|A\|
$$

Induced matrix norms:

Define $\|A\|=\max _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}=\max _{\|x\|=1}\|A x\|-$ Lengths of images of the unit sphere.
Example 1. $\|A\|_{\infty}=\max$ row sum of the elements of $A=\max _{i} \sum_{j}\left|a_{i j}\right|$
Proof:

$$
\begin{align*}
\|x\|_{\infty} & =\max _{i}\left|x_{i}\right| \\
\|A x\|_{\infty} & =\max _{i}\left|\sum_{j} a_{i j} x_{j}\right| \stackrel{\Delta \text { ineq }}{\leq} \max _{i} \sum_{j}\left|a_{i j} x_{j}\right| \leq\left(\max _{i} \sum_{j}\left|a_{i j}\right|\right)\|x\|_{\infty} \\
\therefore \frac{\|A x\|_{\infty}}{\|x\|_{\infty}} & \leq\left(\max _{i} \sum_{j}\left|a_{i j}\right|\right) \therefore\|A\|_{\infty} \leq \max _{i} \sum_{j}\left|a_{i j}\right| \tag{*}
\end{align*}
$$

If $\max _{i} \sum_{j}\left|a_{i j}\right|=\sum_{j}\left|a_{k j}\right|$ for some row index k, then let

$$
\hat{x}=\left(\bar{a}_{k 1} /\left|a_{k 1}\right|, \ldots, \bar{a}_{k N} /\left|a_{k N}\right|\right) \Rightarrow \sum_{j} a_{k j} \hat{x}_{j}=\sum_{j}\left|a_{k j}\right|^{2} /\left|a_{k j}\right|=\sum_{j}\left|a_{k j}\right|
$$

If for some index $j, a_{k j}=0$ then let $\hat{x}_{j}=1$. Then $\|\hat{x}\|_{\infty}=1$, and

$$
\begin{align*}
\|A \hat{x}\|_{\infty} & =\max _{i}\left|\sum_{j} a_{i j} \hat{x}_{j}\right| \geq \sum_{j}\left|a_{k j}\right|=\sum_{j}\left|a_{k j}\right|\|\hat{x}\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right|\|\hat{x}\|_{\infty} \\
\|A\|_{\infty} & \geq \frac{\|A \hat{x}\|_{\infty}}{\|\hat{x}\|_{\infty}} \geq \max _{i} \sum_{j}\left|a_{i j}\right| \tag{**}
\end{align*}
$$

Combining $(*)$ and $(* *)$ we have $\|A\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right|$
Exercise 2: $\|A\|_{1}=$ maximum column sum of the moduli of elements of $A=\max _{j} \sum_{i}\left|a_{i j}\right|$
Example 3: $\|A\|_{2}=\left(\text { maximum eigenvalue of } A^{*} A\right)^{1 / 2}=\rho\left(A^{*} A\right)$ where $\rho(B)=\max _{j}\left|\lambda_{j}\right|$ where λ_{j} are the eigenvalues of B, is known as the spectral radius of B.

Proof: Since $A^{*} A$ is Hermitian there exists a unitary matrix u (for which $u^{*} u=I$) such that

$$
u^{*}\left(A^{*} A\right) u=\left[\begin{array}{cc}
\mu_{1} & 0 \\
0 & \mu_{N}
\end{array}\right]
$$

where $\mu_{i} \geq 0$ are the eigenvalues of $A^{*} A$. Let $y=u^{*} x$ so that $x=u y$. Then

$$
\begin{aligned}
\|A\|_{2}=\max _{\|x\| \neq 0} \frac{\|A x\|_{2}}{\|A\|_{2}} & =\max _{\|x\| \neq 0} \sqrt{\frac{\left\langle A^{*} A x, x\right\rangle}{\langle x, x\rangle}} \quad \begin{array}{r}
\|A x\| \\
=(A x)^{*}(A x) \\
=\left(A^{*} A x\right)(x)
\end{array} \\
& =\max _{\|y\| \neq 0} \sqrt{\frac{\left\langle u^{*} A^{*} A u y, y\right\rangle}{\left\langle u^{*} u y, y\right\rangle}}
\end{aligned}
$$

$$
\begin{aligned}
& =\max _{\|y\| \neq 0} \sqrt{\frac{\sum_{i} \mu_{i}\left|y_{i}\right|^{2}}{\sum\left|y_{i}\right|^{2}}} \\
& =\sqrt{\max \left|\mu_{i}\right|} \\
\therefore\|A\|_{2} & =\rho\left(A^{*} A\right)
\end{aligned}
$$

Note: If A is symmetric $\|A\|_{2}=\max _{i}\left|\lambda_{i}\right|$. Also $\left\|A^{-1}\right\|_{2}=\frac{1}{\min \left|\lambda_{i}\right|}$.

Error estimate for the finite difference method:

Let us look at the size of the error $e=u-U$.

$$
\begin{array}{r}
A U=F \\
A u=F+T_{h} \tag{2}
\end{array}
$$

where T_{h} is the truncation error and $\left\|T_{h}\right\|_{\infty}=O\left(h^{2}\right)$ and $\left\|T_{h}\right\|_{2}=O\left(h^{2}\right)$. Subtract (1) from (2):

$$
\begin{aligned}
A e & =T_{h} \\
e & =A^{-1} T_{h} .
\end{aligned}
$$

We want $\|e\|$? to be $O\left(h^{2}\right)$ the same as T_{h}, so we must have that $\left\|A^{-1}\right\|_{\text {? }}$ is bounded independent of h.

Definition: (Norm stability)
A discretization $A^{h} u^{h}=F^{h}$ for any elliptic problem

$$
\begin{aligned}
& \ell_{\infty}: \text { is said to be max-norm stable if } \\
& \qquad\left\|\left(A^{h}\right)^{-1}\right\|_{\infty} \leq K \text { for all } h .
\end{aligned}
$$

ℓ_{2} : is said to be ℓ_{2} norm stable if

$$
\left\|\left(A^{h}\right)^{-1}\right\|_{2} \leq K \quad \text { for all } h \text {. }
$$

Convergence Theorem:

A consistent, stable discretization for a linear elliptic problem converges with the order of the truncation error:

PF: $\quad\|e\|_{\infty} \leq k\left\|T_{h}\right\|_{\infty} \quad\|e\|_{2} \leq k\left\|T_{h}\right\|_{2}$.

Claim 1: The finite difference matrix for the periodic problem with constant heat transfer coefficient $B_{n}=B$:

$$
A .^{h}=-\frac{E}{h^{2}}+\left(\frac{2}{h^{2}}+B\right) I-\frac{E^{-1}}{h^{2}}
$$

is ℓ_{2}-norm stable.

Observe that the DFT basis vectors $\phi_{j}^{k}=e^{i \frac{2 \pi}{N} j k} \quad k=0,1, \ldots, N-1$ are eigenvectors of A^{h}

$$
\begin{aligned}
A .^{h} \phi_{j}^{k} & =-\frac{e^{i\left(\frac{2 \pi}{N}\right) k(j+1) h}}{h^{2}}+\left(\frac{2}{h^{2}}+B\right) e^{i\left(\frac{2 \pi}{N}\right) k j h}-\frac{e^{i\left(\frac{2 \pi}{N}\right) k(j-1) h}}{h^{2}} \\
& =\left\{\frac{2-2 \cos (k h \pi / N)}{h^{2}}+B\right\} \phi_{j}^{k} \\
& =\left\{\frac{4 \sin ^{2}(k h \pi / 2 N)}{h^{2}}+B\right\} \phi_{j}^{k} \\
& =\lambda^{k} \phi_{j}^{k}
\end{aligned}
$$

Note:

- Eigenvalues λ^{k} are all positive.
- $\left\|A^{-1}\right\|_{2}=\frac{1}{\min \left|\lambda^{k}\right|}=\frac{1}{B}$ which is bounded independent of h.
- The fact that the DFT basis vectors ϕ_{j}^{k} diagonalize A^{h} can be used as a computational device to invert the matrix A^{h}. Let $\hat{u}^{k}=F F T(U)$ and $\hat{F}^{k}=F F T(F)$. Then since $A^{h} \phi^{k}=\lambda^{k} \phi^{k}$ and $U=\sum \hat{u}^{k} \phi^{k}, F=\sum \hat{F}^{k} \phi^{k}$. It follows that $\lambda^{k} \hat{U}^{k}=\hat{F}^{k}$.

$$
\therefore \hat{U}^{k}=\hat{F}^{k} / \lambda^{k}
$$

so that $u=F F T^{-1}\left(\hat{U}^{k}\right)$.

- The above analysis and inversion technique only works for constant coefficients b. It is possible to analyze the stability of a variable coefficient problem by freezing coefficients and performing a DFT stability analysis.

The Dirichlet Problem:

$$
\begin{align*}
& y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \\
& y(0)=\alpha \quad y(1)=\beta . \\
& y_{n+1}-2 y_{n}+y_{n-1}=h^{2} f\left(x_{n}, y_{n}, \frac{y_{n+1}-y_{n-1}}{2 h}\right)=h^{2} f_{n} \tag{3}\\
& y_{0}=\alpha \quad y_{N}=\beta \\
& \downarrow \text { from B.-C. } \\
& {\left[\begin{array}{rrrlr}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \cdots & 0 \\
& & \ddots & & \vdots \\
& \ddots & & & 0 \\
& & \ddots & & 1 \\
0 & & & & 1-2
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
\\
y_{N-1}
\end{array}\right]=h^{2}\left[\begin{array}{c}
f_{1} \\
\\
\vdots \\
\vdots \\
\\
f_{N-1}
\end{array}\right]-\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0 \\
\beta
\end{array}\right]}
\end{align*}
$$

Tridiagonal $\quad A \mathbf{y}=h^{2} \mathbf{f}(\mathbf{y})-\mathbf{r}$

$$
\begin{aligned}
& 0=\mathbf{g}\left(\mathbf{y}^{k+1}\right)=\mathbf{g}\left(\mathbf{y}^{k}\right)+\frac{\partial \mathbf{g}}{\partial \mathbf{y}}\left(\mathbf{y}^{k}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right) \\
& \therefore \mathbf{y}^{k+1}=\mathbf{y}^{k}-\left[\frac{\partial \mathbf{g}}{\partial \mathbf{y}}\left(\mathbf{y}^{k}\right)\right]^{-1} \mathbf{g}\left(\mathbf{y}^{k}\right)
\end{aligned}
$$

Solve using Newton Iteration
$\mathbf{g}(\mathbf{y})=A \mathbf{y}-h^{2} \mathbf{f}(\mathbf{y})+\mathbf{r}=0$
$\mathbf{y}^{(k+1)}=\mathbf{y}^{(k)}-\left[\frac{\partial \mathbf{g}}{\partial \mathbf{y}}\left(\mathbf{y}^{(k)}\right)\right]^{-1} \mathbf{g}\left(\mathbf{y}^{(k)}\right)$

Eg. $1 y^{\prime \prime}=0 \quad y(0)=0 \quad y(1)=1 \Rightarrow y(x)=x$

$$
\begin{aligned}
y_{n+1}= & 2 y_{n}+y_{n-1}=0 \quad 1 \leq n \leq N-1 \\
y_{n}= & \theta^{n} \Rightarrow \theta^{2}-2 \theta+1=0 \\
& \theta=1,1 \\
y_{n}= & A+B n \\
y_{0}= & A=0 \\
y_{N}= & B N=1 \Rightarrow y_{n}=\left(\frac{n}{N}\right)=n h=x_{n}
\end{aligned}
$$

- Shape of solution was captured exactly by the quadratic variation assumed by the difference approximation.

Special Tricks:

(1) For derivative boundary conditions:

$$
y^{\prime}(b)=\beta \text { say } \quad x_{N-1} x_{N} x_{N+1}^{x_{N}----0}
$$

we introduce the pseudo meshpoint x_{N+1} and we have the condition

$$
\frac{y_{N+1}-y_{N-1}}{2 h}=\beta \Longrightarrow y_{N+1}=\left(y_{N-1}+2 h \beta\right)
$$

Let's look at the effect on the simple problem $y^{\prime \prime}=0 \quad y(a)=\alpha \quad y^{\prime}(b)=\beta$

$$
\begin{gathered}
y_{1} y_{2} \\
\\
{\left[\begin{array}{rrrrr}
-2 & 1 & 0 & \cdots & 0 \\
1 & & & & \\
& \ddots & & \ddots & \\
& & 1 & & \\
& & 2 & & -2
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\\
y_{N}
\end{array}\right]=-\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0 \\
2 h \beta
\end{array}\right]}
\end{gathered}
$$

(2) For self-adjoint problems we often have: $\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=T(x)$. In this case we use

$$
\frac{1}{h}\left[p_{n+1 / 2}\left(\frac{y_{n+1}-y_{n}}{h}\right)-p_{n-1 / 2}\left(\frac{y_{n}-y_{n-1}}{h}\right)\right] .
$$

Eg. 1 with derivative BC:

$$
\begin{aligned}
y^{\prime \prime} & =x \quad y(0)=0 \quad y^{\prime}(1)=0 \\
y & =\frac{x^{3}}{6}+A x+B \quad y(0)=B=0 \\
y^{\prime}(x) & =\frac{x^{2}}{2}+A \Rightarrow y^{\prime}(1)=\frac{1}{2}+A=0 \Rightarrow A=-\frac{1}{2} \\
\therefore y(x) & =\frac{x^{3}}{6}-\frac{x}{2} .
\end{aligned}
$$

Homog. eq.

$$
\begin{aligned}
& y_{n+1}-2 y_{n}+y_{n-1}=0 \quad O\left(h^{2}\right) \\
& y_{n}=\theta^{n} \Rightarrow(\theta-1)^{2}=0 \Rightarrow \theta=1,1 \\
& y_{n}=a n+b
\end{aligned}
$$

Particular solution

$$
\begin{aligned}
& \begin{array}{c}
x_{n} \\
y_{n+1}-2 y_{n}+y_{n-1}
\end{array} \\
&=h^{2}(n h)=h^{3} n \\
& y_{n}=c n^{3} \Rightarrow c\left[(n+1)^{3}-2 n^{3}+(n-1)^{3}\right] \\
&=c\left[n^{3}+3 n^{2}+3 n+1-2 n^{3}+n^{2}-3 n^{2}+3 n-1\right] \\
&=6 n c=h^{3} n \\
& \therefore c=\frac{h^{3}}{6} \\
& \therefore y_{n}=\frac{n^{3} h^{3}}{6}+a n+b=\frac{(n h)^{3}}{6}+a n+b . \\
& y_{0}=0 \rightarrow b=0 .
\end{aligned}
$$

BC 1:

$$
\begin{aligned}
& \frac{y_{N}-y_{N-1}}{h}=0 \quad O(h) \\
& 0=\frac{N^{3} h^{3}}{6}+a N-\left[\frac{(N-1)^{3} h^{3}}{6}+a(N-1)\right] \Rightarrow a[N-(N-1)]=\frac{-h^{3}}{6}\left[N^{3}-(N-1)^{3}\right] \\
& \therefore a=-\frac{h^{3}}{6}\left[N^{3}-N^{3}+3 N^{2}-3 N+1\right]=-\frac{h^{3}}{6}\left[3 N^{2}-3 N+1\right] \quad \\
& y_{n}=\frac{x_{n}^{3}}{6}-\frac{n h^{3}}{6}\left[3 N^{2}-3 N+1\right]=\frac{x_{n}^{3}}{6}-\frac{x_{n}}{2}\left[h^{2} N^{2}-h(h N)+\frac{1}{3} h^{2}\right] \quad h N=1 \\
& \quad=\frac{x_{n}^{3}}{6}-\frac{x_{n}}{2}+\frac{x_{n}}{2}\left(h-\frac{h^{2}}{3}\right) \Leftarrow O(h) \longrightarrow(\text { comes from BC })
\end{aligned}
$$

BC 2:

$$
\begin{aligned}
& \frac{y_{N+1}-y_{N-1}}{2 h}=0 \Rightarrow y_{N+1}=y_{N-1} \\
& \frac{(N+1)^{3} h^{3}}{6}+a(N+1)=\frac{(N-1)^{3} h^{3}}{6}+a(N-1)
\end{aligned}
$$

$$
\begin{aligned}
\therefore 2 a & =\frac{h^{3}}{6}\left[(N-1)^{3}-(N+1)^{3}\right] \\
& =-\frac{h^{3}}{6}\left[N^{3}+3 N^{2}+3 N+1-N^{3}+3 N^{2}-3 N+1\right] \\
a & =-\frac{h^{3}}{6}\left[3 N^{2}+1\right] \\
\therefore y_{n} & =\underbrace{\frac{x_{n}^{3}}{6}-\frac{(n h) h^{2}}{6}\left(3 N^{2}+1\right)}_{\text {exact }} \\
& =\underbrace{\frac{x_{n}^{3}}{6}-\frac{x_{n}}{2}}_{\text {error }}-\frac{x_{n} h^{2}}{6}
\end{aligned} O\left(h^{2}\right)
$$

Eg:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=0 \\
& y(0)=0 \quad y(1)=1 \\
& y=A \sin 2 x+B \cos 2 x \\
& y(0)=0 \Rightarrow B=0 \\
& y(1)=1 \Rightarrow A \sin 2=1 \Rightarrow A=\frac{1}{\sin 2} \\
& \therefore y(x)=\frac{\sin 2 x}{\sin 2}
\end{aligned}
$$

$$
\begin{array}{ll}
& y_{n+1}-2 y_{n}+y_{n-1}+4 h^{2} y_{n}=0 \\
y_{n}=\theta^{n} \quad & \theta^{2}-\left(2-4 h^{2}\right) \theta+1=0 \\
\theta_{1} \theta_{2}=1 \quad & \theta=e^{i \alpha} \\
& e^{i \alpha}-\left(2-4 h^{2}\right)+e^{-i \alpha}=0 \\
& 2(1-\cos \alpha)=4 h^{2} \quad \cos \alpha=1-2 \sin ^{2} \alpha / 2 \\
& 4 \sin ^{2} \alpha / 2=4 h^{2} \\
& \therefore \sin ^{2} \alpha / 2=h^{2} \quad \alpha=2 \sin ^{-1} h \\
& y_{n}=A \cos \alpha n+B \sin \alpha n \\
& y_{0}=0 \Rightarrow A=0 \quad y_{N}=B \sin \alpha N=1 \\
\therefore \quad & B=\frac{1}{\sin (\alpha N)} \\
\therefore \quad & y_{n}=\frac{\sin \left(2 n \sin ^{-1} h\right)}{\sin \left(2 N \sin ^{-1} h\right)} \quad
\end{array}
$$

Eg. 2: An eigenvalue problem

$$
\begin{aligned}
y^{\prime \prime}+\lambda^{2} y & =0 \\
y(0) & =0=y(1) \\
y & =A \cos \lambda x+B \sin \lambda x \\
y(0) & =A=0 \Rightarrow y(x)=B \sin \lambda x
\end{aligned}
$$

$$
\begin{aligned}
& y(1)=0=B \sin \lambda \quad \Rightarrow \begin{array}{l}
\lambda=n \pi \text { for nontrivial sol. } \\
n=1,2 \ldots
\end{array} \\
& \Rightarrow \quad y_{k}(x)=B \sin (k \pi x) ; \lambda=k \pi \\
& F D \Rightarrow \quad y_{n+1}-2 y_{n}+y_{n-1}+h^{2} \lambda^{2} y_{n}=0 \quad n=1, \ldots, N-1 \\
& y_{n+1}-\left(2-r^{2}\right) y_{n}+y_{n-1}=0 \leftarrow \text { discrete eigenvalue problem } r=(h \lambda) \\
& y_{n}=\theta^{n}: \theta-\left(2-r^{2}\right)+\theta^{-1}=0 \quad \theta_{1} \theta_{2}=1 \\
& \theta=e^{i \alpha} \\
& 2[\cos \alpha-1]+r^{2}=0 \\
& h^{2} \lambda^{2}=4 \sin ^{2}\left(\frac{\alpha}{2}\right) \\
& \begin{aligned}
y_{n} & =A \cos (\alpha n)+B \sin (\alpha n) \\
y_{0} & =A=0 \\
y_{N} & =B \sin (\alpha N)=0 \Rightarrow \alpha=\frac{k \pi}{N} \quad k=1, \ldots, N-1
\end{aligned} \\
& y_{k, n}=B_{k} \sin \left(\frac{k \pi n}{N}\right) ; \quad \lambda_{k}=\frac{2}{h} \sin \left(\frac{k \pi}{2 N}\right)=2 N \sin \left(\frac{k \pi}{2 N}\right) \\
& \text { Aside: If we had tried: } \theta=e^{\alpha} \\
& e^{\alpha}-\left(2-r^{2}\right)-e^{-\alpha}=0 \\
& 2 \cosh \alpha-2-r^{2}=0 \\
& 4 \sinh ^{2} \frac{\alpha}{2}+r^{2}=0 \\
& \text { roots unless } \alpha \in \mathbb{C} \\
& \text { Recall } \cos \alpha-1=2 \sin ^{2}\left(\frac{\alpha}{2}\right) \\
& N \gg 1: \quad k=1 \\
& \lambda_{1}=2 N \sin \left(\frac{\pi}{2 N}\right) \approx 2 N \cdot \frac{\pi}{2 N}=\pi
\end{aligned}
$$

Asymptotic behavior of eigenvalues:

Richardson Extrapolation: $\quad \lambda_{k}=\lambda^{e}+c_{2} h^{2}+c_{4} h^{4}+\ldots$

$$
\begin{array}{ll}
\lambda_{k}=\lambda_{k}^{\text {exact }}+c h^{2} \quad \lambda_{k}(2 h)=\lambda_{k}^{e}+c 4 h^{2} & \frac{4 \lambda_{k}(h)-\lambda_{k}(2 h)}{3}=\lambda_{k}^{e} \\
\lambda_{1}(h=1)=\frac{2}{1} \sin \left(\frac{\pi}{2}\right)=2 \\
\lambda_{1}\left(h=\frac{1}{2}\right)=\frac{2}{(1 / 2)} \sin \left(\frac{\pi}{4}\right) 2 \sqrt{2}=2.8284271 & \lambda_{1}\left(h=\frac{1}{4}\right)=8 \sin \left(\frac{\pi}{8}\right)=3.0614675 \\
\lambda_{k}^{e} \simeq \frac{8 \sqrt{2}-2}{3}=3.10456
\end{array}
$$

S	h_{2}	λ_{s}^{0}	λ_{s}^{1}	λ_{s}^{2}	$\lambda_{s}^{0}=$	$\lambda\left(h_{s}\right)$
1	1	2	3.10456	3.1414534	$\lambda_{s}^{(m)}$	$=\lambda_{s+1}^{(m-1)}+\frac{\lambda_{s+1}^{(m-1)}-\lambda_{s}^{(m-1)}}{\left(\frac{h_{s}}{h_{s+m}}\right)^{2}-1}$
2	$1 / 2$	$2 \sqrt{2}$	3.1391476			

1.2.2. Numerical solution of ALGEBRAIC EQUATIONS:

Iterative methods

Consider the solution of

$$
\begin{array}{ll}
& \begin{array}{l}
A x=b \\
\text { or } \\
\sum_{j=1}^{N} \\
A_{i j} x_{j}=b_{i}
\end{array} \quad i=1, \ldots, N
\end{array} \quad[A]=\left[\begin{array}{ll}
& 0 \\
L &
\end{array}\right]+\left[\begin{array}{ll}
& \\
& D
\end{array}\right]+\left[\begin{array}{ll}
& \\
0 &
\end{array}\right]
$$

Jacobi Iteration:

$$
\begin{array}{ll}
& \sum_{j=1}^{i-1} A_{i j} x_{j}+A_{i i} x_{i}+\sum_{j=i+1}^{N} A_{i j} x_{j}=b_{i} \\
\text { or } & L x+D x+U x=b
\end{array}
$$

Iteration Procedure:

$$
\begin{aligned}
x_{i}^{(k+1)} & =\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{N} A_{i j} x_{j}^{(k)}\right) / A_{i i} \Longleftrightarrow \mathbf{x}^{(k+1)}=D^{-1}\left(\mathbf{b}-L \mathbf{x}^{(k)}-u \mathbf{x}^{(k)}\right) \\
\text { or } \quad x_{i}^{(k+1)} & =x_{i}^{(k)}+\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{(k)}-A_{i i} x_{i}^{(k)}-\sum_{j=i+1}^{N} A_{i j} x_{j}^{(k)}\right) / A_{i i} \Leftrightarrow \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+D^{-1}\left(b-A x^{(k)}\right) \\
x^{(k+1)} & =x^{(k)}+D^{-1}\left(b-A x^{(k)}\right) \\
\text { Let } \quad r^{(k)} & =b-A x^{(k)} \text { define the residual vector } \\
& =A\left(\left(x^{*}-x\right)^{(k)}\right) \\
& =A e^{k} \text { which is a measure of the error. }
\end{aligned}
$$

$$
x^{(k+1)}=x^{(k)}+\omega D^{-1} r^{(k)} \text { where } \omega \text { is an acceleration parameter. }
$$

Jacobi iteration
Eg. 1

$$
\begin{aligned}
& u^{\prime \prime}=0 \quad u_{e x}=1-x \\
& u(0)=1 \quad u(1)=0 \\
& \frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}=0 \quad u_{0}=1 \quad u_{N}=0 \\
& A \quad u=b \\
& {\left[\begin{array}{rrrrr}
-2 & 1 & & & \\
1 & -2 & 1 & 0 & \\
& \ddots & & & \\
& 0 & \ddots & & 1 \\
& & & 1 & -2
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\\
\vdots \\
\\
u_{N-1}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right]} \\
& u_{n}^{(k+1)}=\frac{u_{n+1}^{(k)}+u_{n-1}^{(k)}}{2}
\end{aligned}
$$

Let $u_{0}^{(0)}=1 \quad u_{1}^{(0)}=0 \quad u_{2}^{(0)}=0 \quad u_{3}^{(0)}=0 \Leftarrow \mathrm{BC}$

$$
\begin{aligned}
& u_{1}^{(1)}=(0+1) / 2=1 / 2 \\
& u_{2}^{(1)}=(0+0) / 2=0
\end{aligned}
$$

$$
\begin{aligned}
u_{1}^{(2)} & =(0+1) / 2=1 / 2 \\
u_{2}^{(2)} & =(0+1 / 2) / 2=1 / 4
\end{aligned}
$$

$$
\begin{aligned}
u_{1}^{(3)} & =(1 / 4+1) / 2=5 / 8 \\
u_{2}^{(3)} & =(0+1 / 2) / 2=1 / 4
\end{aligned}
$$

$$
\begin{aligned}
& u_{1}^{(4)}=(1 / 4+1) / 2=5 / 8=0.625 \\
& u_{2}^{(4)}=(0+5 / 8) / 2=5 / 16=0.3125
\end{aligned}
$$

$$
\begin{aligned}
u_{1}^{(5)} & =(5 / 16+1) / 2=21 / 32=0.6563 \\
u_{2}^{(5)} & =(0+5 / 8) / 2=5 / 16=0.3125 \\
u_{1}^{(6)} & =(5 / 16+1) / 2=21 / 32=0.6563 \\
u_{2}^{(6)} & =(0+21 / 32) / 2=21 / 64=0.3281
\end{aligned}
$$

$$
\begin{gathered}
x_{i}^{(k+1)}=\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{N} A_{i j} x_{j}^{(k)}\right) / A_{i i} \\
\Leftrightarrow \quad x^{(k+1)}=D^{-1}\left(b-L x^{(k+1)}-u x^{(k)}\right) \text { or } x^{(k+1)}=x^{(k)}+D^{-1}\left(b-L x^{(k+1)}-D x^{(k)}-u x^{(k)}\right) \\
(D+L) x^{(k+1)}=D x^{(k)}+\left(b-D x^{(k)}-u x^{(k)}\right) \\
=(D+L) x^{(k)}+\left(b-L x^{(k)}-D x^{(k)}-u x^{(k)}\right) \\
\therefore \quad x^{(k+1)}=x^{(k)}+(D+L)^{-1}\left(b-A x^{(k)}\right) \\
\\
\quad x^{(k+1)}=x^{(k)}+(D+L)^{-1} r^{(k)} \Leftarrow \text { Interpretation. }
\end{gathered}
$$

Successive-over-Relaxation (SOR):

$$
x^{(k+1)}=x^{(k)}+\omega D^{-1}\left(b-L x^{(k+1)}-D x^{(k)}-U x^{(k)}\right) . \quad \begin{aligned}
& \omega \text { acceleration parameter } \\
& \omega=1 \Rightarrow G S .
\end{aligned}
$$

Interpretation:

$$
\begin{aligned}
& \left(\omega^{-1} D+L\right) x^{(k+1)}=\left(\omega^{-1} D+L\right) x^{(k)}+\left(b-L x^{(k)}-D x^{(k)}-u x^{(k)}\right) \\
& \therefore x^{(k+1)}=x^{(k)}+\left(\omega^{-1} D+L\right)^{-1}\left(b-A x^{k}\right) \\
& \quad x^{(k+1)}=x^{(k)}+\left(\omega^{-1} D+L\right)^{-1} r^{(k)}
\end{aligned}
$$

Gauss Seidel Iteration

Eg:

$$
\begin{aligned}
& u^{\prime \prime}=0 \\
& u(0)=1 ; \quad u(1)=0 \\
& \frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}=0 \\
& {\left[\begin{array}{rrrr}
-2 & 1 & & \\
1 & -2 & 1 & \\
0 & 1 & -2 & 1 \\
\\
& & & \\
A u=b & 1 & \\
\\
\\
u_{N-1}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
\\
0
\end{array}\right]} \\
& u_{n}^{(k+1)}=\frac{\left(u_{n+1}^{(k)}+u_{n-1}^{(k+1)}\right)}{2}
\end{aligned}
$$

Let

$$
\begin{array}{llr}
u_{0}^{(0)} & =1 \quad u_{1}^{(0)}=0 \quad u_{2}^{(0)}=0 \quad u_{3}^{(0)}=0 \Leftarrow \text { BC } & \\
u_{1}^{(1)} & =(0+1) / 2=1 / 2=0.5 & \\
u_{2}^{(1)} & =(0+1 / 2) / 2=1 / 4=0.25 & \\
& \\
u_{1}^{(2)} & =(1+1 / 4) / 2=5 / 8=0.625 & u_{1}^{(1)}=\frac{u_{2}^{(0)}+u_{0}^{(1)}}{2} \\
u_{2}^{(2)} & =(0+5 / 8) / 2=5 / 16=0.3125 & u_{2}^{(1)}=\frac{u^{(0)}+u_{1}^{(1)}}{2} \\
& \\
u_{1}^{(3)} & =(1+5 / 16) / 2=21 / 32=0.6563 & \\
u_{2}^{(3)} & =(0+21 / 32) / 2=21 / 64=0.3281 & \\
u_{1}^{(4)} & =(1+21 / 64) / 2=85 / 128=0.6641 & \\
u_{2}^{(4)} & =(0+85 / 128) / 2=85 / 256=0.3320 & \\
u_{1}^{(5)} & =(1+85 / 256) / 2=341 / 512=0.6660 \\
u_{2}^{(5)} & =(0+341 / 512) / 2=341 / 1024=0.3330 . &
\end{array}
$$

General iterative method:

$$
\begin{aligned}
& x^{(k+1)}= x^{(k)}+\alpha_{k} B^{-1} r^{(k)} \text { where } r^{k}=b-A x^{k} . \\
& \alpha_{k} \equiv 1 \quad B^{-1}=D^{-1} \Rightarrow \text { Jacobi } \\
& \alpha_{k}=1 \quad B^{-1}=\left(\omega^{-1} D+L\right) \Rightarrow \text { SOR and Gauss Seidel. } \\
& \alpha_{k}=1 B^{-1}=A^{-1} \Rightarrow \text { Newton's method (vacuous in this case). } \\
& r^{(k+1)}= b-A x^{k+1} \\
&= b-A\left(x^{(k)}+\alpha_{k} B^{-1} r^{(k)}\right) \\
&= r^{(k)}-\alpha_{k} A B^{-1} r^{(k)} \\
&=\left(I-\alpha_{k} A B^{-1}\right) r^{(k)} \\
&=\left(I-\alpha_{k} A B^{-1}\right)\left(I-\alpha_{k-1} A B^{-1}\right) r^{(k-1)} \\
& r^{(k+1)}= \prod_{s=1}^{k}\left(I-\alpha_{s} A B^{-1}\right) r^{(1)}=P_{k}\left(A B^{-1}\right) r^{(1)}
\end{aligned}
$$

where $P_{k}(\hat{A})=\prod_{s=1}^{k}\left(I-\alpha_{s} \hat{A}\right)$ is a polynomial of degree k in \hat{A}.
Let $\left\{\lambda_{j}\right\}$ be the eigenvalues and $\left\{v_{j}\right\}$ be the corresponding eigenvectors of $\hat{A}=A B^{-1}$: i.e. $\hat{A} \mathbf{v}_{j}=$ $\lambda_{j} \mathbf{v}_{j}$. Then expanding \mathbf{r}^{1} and $\mathbf{r}^{(k+1)}$ in terms of $\left\{v_{j}\right\}$:

$$
\mathbf{r}^{(1)}=\sum_{j=1}^{N} \hat{r}_{j}^{(1)} \mathbf{v}_{j} \quad \text { and } \quad \mathbf{r}^{(k+1)} \sum_{j=1}^{N} \hat{r}^{(k+1)} \mathbf{v}_{j}
$$

we obtain:

$$
\hat{r}_{j}^{(k+1)}=\prod_{s=1}^{k}\left(1-\alpha_{s} \lambda_{j}\right) \hat{r}_{j}^{(1)}=P_{k}\left(\lambda_{j}\right) \hat{r}_{j}^{(1)}
$$

Note: For Jacobi and SOR $\quad \alpha_{k} \equiv 1$ so that $P_{k}(\lambda)=(1-\lambda)^{k}$

$$
\begin{aligned}
\left|r^{(k+1)}\right|^{2} & =\left|\sum_{i}\left(1-\lambda_{j}\right) \hat{r}_{j}^{(k)} v_{j}\right|^{2} \\
& \leq|1-\hat{\lambda}|^{2}\left|\sum_{j} \hat{r}_{j}^{(k)} v_{j}\right|^{2} \quad \hat{\lambda}:|1-\hat{\lambda}|=\max \left\{\left|1-\lambda_{1}\right|,\left|1-\lambda_{N}\right|\right\}
\end{aligned}
$$

$$
\left|r^{k+1}\right| \leq \rho\left|r^{(k)}\right| \text { where } \rho=\max \left\{\left|1-\lambda_{1}\right|,\left|1-\lambda_{N}\right|\right\}
$$

Example of degredation of Jacobi with mesh refinement.

$$
\begin{aligned}
-u^{\prime \prime} & =f \\
A \cdot u_{n} & =-u_{n-1}+2 u_{n}-u_{n-1}=h^{2} f_{n} \\
\lambda_{k} & =4 \sin ^{2}\left(\frac{k \pi}{2 N}\right) \quad \text { are the eigenvalues of } A \\
A D^{-1} & =\frac{-E^{-1}+2-E}{2} \Rightarrow \mu_{1}=2 \sin ^{2}\left(\frac{\pi}{2 N}\right) \stackrel{N 刃}{\approx}^{2} \frac{\pi^{2}}{2 N^{2}} \\
\therefore \quad & \rho{ }^{N \gg 1} 1-\frac{\pi^{2}}{2 N^{2}} .
\end{aligned}
$$

We can expect poor performance as N increases. Look for the number of iterations it will take to achieve a tolerance ε :

$$
\begin{aligned}
\rho^{r} & =\varepsilon \\
r & =\frac{\ln \varepsilon}{\ln \rho}=\frac{\ln \varepsilon}{\ln \left(1-\frac{\pi^{2}}{2 N^{2}}\right)}=\frac{\ln \varepsilon}{-\frac{\pi^{2}}{2 N^{2}}\left(1+\frac{1}{2}\left(\frac{\pi^{2}}{2 N^{2}}\right)+\ldots\right)} \sim-\frac{2 N^{2}}{\pi^{2}} \ln \varepsilon
\end{aligned}
$$

Physical interpretation of Jacobi's method as a diffusion process:

$$
\begin{aligned}
u_{n}^{(k+1)} & =\frac{u_{n+1}^{(k)}+u_{n-1}^{(k)}}{2} \\
\therefore u_{n}^{(k+1)}-u_{n}^{(k)} & =\frac{u_{n+1}^{(k)}-2 u_{n}^{(k)}+u_{n-1}^{(k)}}{2} \\
\therefore \frac{u_{n}^{(k+1)}-u_{n}^{(k)}}{\Delta t} & =\left(\frac{h^{2}}{2 \Delta t}\right) \frac{u_{n+1}^{(k)}-2 u_{n}^{(k)}+u_{n-1}^{(k)}}{h^{2}} \stackrel{h, \Delta t \Rightarrow 0}{\longleftrightarrow} \frac{\partial u}{\partial t}=\frac{D \partial^{2} u}{\partial x^{2}}
\end{aligned}
$$

Fourier analysis:

$$
\begin{aligned}
\frac{\partial \hat{u}}{\partial t} & =-D \omega^{2} \hat{u} \\
\hat{u} & =\hat{u}_{0} e^{-D \omega^{2} t}
\end{aligned}
$$

Minimization approach to solving linear equations:

Instead of solving $A x=b$, consider the equivalent problem of minimzing the quadratic form

$$
E(x)=\frac{1}{2} x^{T} A x-x^{T} b .
$$

For a minimum we have the necessary conditions

$$
0=\frac{\partial E}{\partial x}=A x-b .
$$

Let A be symmetric and positive definite, then the eigenvalues λ_{k} of A are all real and positive. So $E(x)$ can be viewed as a parabolic surface with elliptic cross sections.

2D Example:

Level sets of E are ellipses

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \\
E & =\frac{1}{2} x^{T} A x-x^{T} b=\frac{1}{2}\left(\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}\right)-\left(x_{1} b_{1}+x_{2} b_{2}\right)
\end{aligned}
$$

What happens if $\lambda_{2} \gg \lambda_{1}$

Steepest descent algorithm:

Idea: Search for a minimum along the path defined by $\nabla E=A x-b$

Consider the so-called Richardson Scheme:

$$
x_{k+1}=x_{k}+\alpha_{k}\left(b-A x_{k}\right) . \quad \text { We must look in the steepest descent direction }-\nabla E .
$$

$$
\begin{aligned}
& \text { Choose } \\
& \begin{aligned}
E\left(x_{k+1}\right) & \alpha_{k} \quad \text { to minimize } E: \\
& =x_{k+1}^{T} A x_{k+1} \\
& =\left(x_{k}+\alpha r_{k}\right)^{T} A\left(x_{k}+\alpha r_{k}\right) \\
0=\frac{\partial E}{\partial \alpha} & =2 r_{k}^{T} A\left(x_{k}+\alpha r_{k}\right) \Rightarrow \quad \alpha_{k}=-\frac{r_{k}^{T} A x_{k}}{r_{k}^{T} A r_{k}} .
\end{aligned}
\end{aligned}
$$

Algorithm: Steepest descents.

$$
x_{k+1}=x_{k}+\alpha_{k} r_{k} \quad \text { where } \quad \alpha_{k}=-\frac{r_{k}^{T} A x_{k}}{r_{k}^{T} A r_{k}}
$$

Notice:

- The similarity to the general iterative method, in this case $B=I$.
- The role of the preconditioner is to try to make all the eigenvalues of $A B^{-1}$ as close as possible to 1 . In this case the ellipses \sim circles and the steepest descent method will converge rapidly.

