1 Math 405/607 E: Ass. 0: Due 23 Sept 2009

1. toeplitz: Use the MATLAB function toeplitz to build the matrix A in the demo programs we constructed in class, i.e., which is equivalent to:
$\mathrm{A}=\operatorname{diag}\left(-2^{*}\right.$ ones $\left.(\mathrm{N}-2,1), 0\right)+\operatorname{diag}($ ones $(\mathrm{N}-3,1), 1)+\operatorname{diag}($ ones $(\mathrm{N}-3,1),-1)$;
For $N=16$ plot the eigenvector corresponding to the eigenvalue with the smallest absolute value.
2. Simple boundary value problem function: Alter the program demo2.m to construct a function which determines the second order finite difference solution to the boundary value problem

$$
u^{\prime \prime}=f(x), \quad u(0)=0, \quad u(1)=1
$$

where $f(x)$ is an input function that is supplied by the user. As an example for presenting your results use the function $f(x)=\sin (\pi x)$ and $N=8$. Compare your result to the exact solution by plotting $u\left(x_{k}\right)$ and $u_{\text {exact }}\left(x_{k}\right)$ vs x on one graph and plot the error $\left|u\left(x_{k}\right)-u_{\text {exact }}\left(x_{k}\right)\right|$ vs x on a separate graph.
3. Newton's Method:Write a function newton(fdf,x0,tol) to implement Newton's method for finding a root of a scalar function:

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)
$$

The first input is a handle to a function that computes f and f^{\prime} and $x 0$ is the initial guess for the root. Your function should have a loop (either a for ... end or a while ... end - use MATLAB help to discover the syntax for these two operations) to iterate till either $\left|f\left(x_{n+1}\right)\right|<t o l$ or $\left|x_{n+1}-x_{n}\right|<t o l$. You might want to have a safety valve to avoid an infinite loop. As an example use the function $f=x^{5}-5$ to determine the fifth root of 5 . Insert a statement in your function to plot $\log \left|f\left(x_{n}\right)\right|$ against n - this curve is a characteristic of Newton's method even in multiple dimensions and can be used to determine if your Newton scheme is converging.

