N(z) = {g:ﬁ—fg) x € [xo, 7]

x & [xo,21] 1

Xo X1

T ¢ [JJN—1733N]

) € o]

N = {

—~

N
Then p; y(x) = Y fiN}(z) =~ f(z). We notice that N} (z;) =
i=0
d0i; so that the basis functions are zero outside the interval (x;_1,x;+1) — we say that such
basis functions have local support.
Representation on a canonical interval:

Sometimes it is more convenient to perform calculations by representing the piecewise linear
basis functions on a canonical interval: [—1,1]. On the canonical interval the basis functions
assume the form.:

NH(E) V().
1 1 1 1
Ni©) =50-8 N =50+8) L !
or Ni(f) _ %(1 + £, & =—1 €= +1 Canonical Interval

Note: N} (&) = dap and z(§) = Yo_; 2aN1(€)

Error involved: Recall e,(z) = f ((;:Lll))(f)

n
[I (z — x;) for polynomial interpolants.
=0

max |ej(z)]

wE[Cﬁi,‘TH_l}
1
I F A C)

IE[Ii,Ii+1] 2

1 h?
(= 2i) (2 — zi11) S§Hf”Hoo max |(z — x;) (¢ — Tiy1) Sg\lf”l!oo-

TE [LB,L ,xi_‘_l]

Using:

w(r) = (z — ;) (v — 2iy1) = a? — (25 + Tip1)T + T340

w'(r)=22r— (z; +241) =0=> =

(i + xit1) & w (557, +$i+1> _ (wz‘ﬂ —£C¢> (fb‘z — Tiy1
2
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2. Piecewise quadratic interpolation:

f
P ()

To 1 T2 N
Degree of freedom analysis:

N Subintervals 3 coefficients for quadratic

3N DOF
Constraints
Continuity at interior points .
1 2(N —1
(1) Continuity of derivative at interior points =2 ) constraints

Remaining DOF =3N -2(N-1)=N+2 = (N+1)+1
= function values at N 4 1 nodes
and 1 extra condition (?)

(2) Continuity at interior nodes = N — 1

Remaining DOF =3N - (N—-1)=2N+1 = (N+1)+N
= function values at (N + 1) nodes

+1 function value within each interval

These are called quadratic Lagrange interpolants.

Basis functions representation for quadratic Lagrange

N2 N3 N3
3
1 2 1 1
T1 T2 Z3

On Canonical Interval

18



s ) () i
2 _ (z—m) (z— ) 2
N2 (‘T) - (952—.’171) (372_553) NQ(&) =1 5

N () () 1
Niw) = o Ny(€) = (€ +1)

Note

(1)  NZ(zj) = 0 e On a canonical interval [—1,1].
N 1 1 1 1

@) X Ni(@)=1 Ni+No+ Ny =372 — 3¢ +1—¢% + 547 +5p=1
1=

Must be true as we must be able to represent a constant function exactly. We can now obtain
a global representation of the interpolants by numbering all the basis functions:

. Piecewise cubic interpolants: p3 y(x)
DOF Analysis: FIGURE

N intervals N + 1 nodes N — 1 internal nodes
4 unknown coefficients for interval

Schemes of constraint:
(1) psn(z) and p \(x) are continuous at interior nodes.

= DOF :4N —-2(N—-1) = 2(N+1)
= specify function value and

its derivative at all N + 1 nodes

= Piecewise Cubic Hermite polynomials
e Have to specify f & f’ at all N + 1 nodes!

(2) psN(2), p3 y(2), P3 y(2) are all continuous at interior.

= DOF 4N -3(N—-1)=N+3 = N+1+42
——
= specify f at all N 4+ 1 nodes
and impose 2 EXTRA CONDITIONS

This is a cubic spline. The extra conditions are up to the user to prescribe depending
on the application, e.g. p§(xo) = 0 = p4(xx) which is called the natural spline.

19



Piecewise cubic interpolation:

=a == L
Piecewise cubic Hermite polynomials:

DOF: 4N —2(N — 1) = 2(N + 1) = prescribe f(z;) and f'(x;) at i =0,..., N.

Presentation of f in terms of Hermite basis functions hl(.o) (x) and hl(l)(x):

N N
f@) = h@) =Y S @) + 3 f @ihi (@)
i=0 i=0
where . .
ho(eg) =85 and b (a;) =0 } O
iwhi (x5) =0 hi (xj) =0
Constructing basis functions on the canonical interval [—1,1]:
We use the linear La- hy” h{?
grange basis functions
1
No(§) = 5(146€) : Na(&) = apy  &ap = 1 m
-1 0 1
Let '/h'gl/)/
MOE) = (g +BINIE: 1y (€) = (az€ + B)INF (O

R = e+ )TV (€) = (o€ + 62) [N (6))?

To find o4, G;, 1 and
d; we impose the conditions (1):

(=1

1
2

1= W1 =p—-a; 0=hY (1) =1+ (B - al);(l (1) =20, - B

a1 = 1 and ﬂl =2
= W% =12+ -¢)

Similarly | h{”(¢) = 12— €)(1 +¢)?
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For the derivative basis func-
tions
0=nh{"(=1)
1=hY (1) =2y —61)

B

(&) =11 +&(1-¢)?

Similarly

Expression of basis functions on an arbitrary interval [z;, z;1].

Use the linear transformation z(¢)

The inverse transformation is: £(x)

xz’Nl(l)(ﬁ) +$¢+1N2(1)(5)
1 1

9615(1 —&)+ $i+1§(1 +&)
T + Tit (i1 — i)

<2>+2§

2x — (xl + l'i+1) _ 2x — (xz + 1'1'_:,_1)

(Tiy1 — 3) Az
e = XTigl — Ti + 2 — 1 — Tiyy _ 2(x — x;) Loti= Az + 2(x — ;)
Tit1 — T (g1 — x4) Az;
1—¢ = M :>(2_§)_A37i+2A(37i‘+1_$)
Li+l — Ly €T;
Az + 2 (x — x;)] (zip1 — )2
) = Bt 2 sl
0 [Az; +2 (i1 — 2)] (z — 2;)°
hgﬁl(x) = (Axi)?’
2
X — X))\ Ty — T
W) = =)
(1) (@i )@ - m)?
hii(z) = — (Ax;)?
Note: Ax; = x40 — x4
(€)= u(e(a) - %
= dd};i (€(x)) - %

Error involved:
For function values the error is given by:

while for derivatives the error is :

x4
f () = h(z)] < [|f@]]o0 5L
$3
B ()] < | 1] 0 Y3

/() =
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Piecewise cubic spline interpolation:

NDOF: 4N — 3(N —1) = N + 1+ 2 = specify f(z;) at zg,...,TN.
+ 2 extra conditions

Since we have similar piecewise cubic polynomials to the PWCH polynomials on each subinterval
but with additional continuity required at the N —1 interior nodes, our starting point is the Hermite
cubic basis expansion. We then impose additional conditions to make up for the derivatives f'(z;)
which are not known (or required) in the case of splines.

On [zg, Tg+1] Th—1 Tk

[Azp + 2 (2 — zp)] (Thy1 — )2 [Azy + 2 (2511 — 2)] (. — 21)?

s(x) = fi (Bzy)? + fr+1 (Azn)?
(e —ap)(epy —2)® |, (2 —apg) (2 — xp)?
o (Axk;r; T Sk (Emk)Z

where the f; and fj, 41 from the Hermite expansion have been replaced by the unknown quantities S},
and s}, which are to be determined by a system of equations which ensure that s”(z) is continuous
at internal nodes.

The first and second derivatives of s(z) must be continuous at the points x;. Continuity of the
first derivative is already obtained by our choice of basis functions. So we apply continuity of s”(z)
to get equations for the coefficients sj. That is, we calculate s”(x) on the two intervals [zg_1, x]
and [zg, xr4+1] and require continuity at xp. After some algebra.

Azpsy_y 4+ 2(Az, + Azp_1)s), + Azgp_184q = 3(f[@k, Tpr1) Azp—1 + flrg—1, zp] Azy)
We have N — 1 equations and (N + 1) unknowns sj, s}, ..., s’y so we need 2 more conditions.
Say we specify

(L) fo = sp and sy = f then on a uniform mesh Az, = Ax:

4 1 0 01T s ] [ flz1, ] + flxo, 21] 1 [ sp ]
1 410 0 s flwa, 23] + flz1, 2]
01 4 1
0 _3
0
1
L 0 01 4] [ sy | flan—v,on] + flan—2,an—a] | [ sy

A tridiagonal system of equations — easy to solve!
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