

0.1.2 A systematic study of polynomial interpolation and extrapolation

- Was very important before the advent of calculators and computers when we had to interpolate between tabulated function values.
- Now it is more classical but still useful for theoretical studies of numerical approximation schemes.
- Has recently undergone a revitalization with the advent of computer graphics, image storage and reconstruction

Problem: Say we know f at n+1 distinct points x_0, x_1, \ldots, x_n . Then how can we determine good approximations to f at intermediate points.

Idea: Approximate f by a polynomial that passes through the points and evaluate the polynomial at the desired points.

Method 1: (Directly)

$$f(x) \approx p_n(x) = a_0 + a_1 x + \ldots + a_n x^n$$

$$\begin{bmatrix} 1 & x_0 & x_0^2 & x_0^n \\ \vdots & \vdots & & & \\ \vdots & \vdots & & & \\ 1 & x_n & x_n^2 & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_n) \end{bmatrix}$$

Very difficult matrix problem to solve numerically; roughly speaking 'neighboring points give roughly the same information about the coefficients' so the matrix is nearly singular.

Define the following polynomial basis functions $\ell_k(x)$ each of degree n such that

$$\ell_k(x_j) = \delta_{kj} = \begin{cases} 0 & k \neq j \\ 1 & k = j \end{cases}$$

$$\ell_k(x) = \frac{(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)} = \prod_{\substack{i=0 \ i \neq k}}^n \frac{(x - x_i)}{(x_k - x_i)}, \text{ note } \sum_{k=0}^N \ell_k(x) = 1.$$

 $l_2(x_2)$

Then we have the following representation

Eg.

Problem with Lagrange:

• it is expensive to evaluate the $\ell_k(x)$; requires $\{2(n+1)\}$ multiplications/divisions and (2n+1) additions after function values have been corrected for denominators} whereas a polynomial in a power form can be evaluated in n multiplications and n additions

$$p_{n}(x) = a_{0} + a_{1}x + \ldots + a_{n}x^{n}$$

$$= +(a_{n-2} + \underbrace{(a_{n-1} + a_{n}x)x}_{p_{1}})x$$

$$p_{0} = a_{n}$$

$$for \quad k = 1, \ldots, n \qquad n * \text{ and } n + 1$$

$$p_{k} = a_{n-k} + p_{k-1}x$$
Horner's Rule

• If we wanted a higher degree interpolant, then we would have to throw all the previous information away and recalculate a new interpolant.

6

Method 3: Newton's divided difference table:

Lagrange method for n=2

$$f(x) \approx f(x_0) \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + f(x_1) \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + f(x_2) \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

$$= f(x_0) \left\{ \frac{[(x-x_0)+x_0-x_1][(x-x_0)+(x_0-x_2)]}{(x_0-x_1)(x_0-x_2)} \right\} + f(x_1) \frac{(x-x_0)[(x-x_1)+(x_1-x_2)]}{(x_1-x_0)(x_1-x_2)}$$

$$+ f(x_2) \frac{(x-x_0)}{(x_2-x_0)} \frac{(x-x_1)}{(x_2-x_0)}$$

$$= f(x_0) + f(x_0) \frac{(x-x_0)}{(x_0-x_1)} + f(x_0) \frac{(x-x_0)(x-x_1)}{(x_0-x_1)(x_0-x_2)}$$

$$+ f(x_1) \frac{(x-x_0)}{(x_1-x_0)} + f(x_1) \frac{(x-x_0)(x-x_1)}{(x_1-x_0)(x_1-x_2)}$$

$$+ f(x_2) \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

$$= f(x_0) + f[x_0, x_1](x-x_0) + f[x_0, x_1, x_2](x-x_0)(x-x_1)$$
where $f[x_0, x_1] = \frac{f(x_0)}{(x_0-x_1)} + \frac{f(x_1)}{(x_1-x_0)} = \frac{f(x_1)-f(x_0)}{(x_1-x_0)} \approx f'(x_0)$
and $f[x_0, x_1, x_2] = \frac{f(x_0)}{(x_0-x_1)(x_0-x_2)} + \frac{f(x_1)}{(x_1-x_0)(x_1-x_2)} + \frac{f(x_2)}{(x_2-x_0)(x_2-x_1)}$

$$= \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2-x_0} \approx \frac{f''(x_0)}{2}.$$

Newton's divided difference interpolation formula:

In general:
$$p_n(x) = \sum_{i=0}^n f[x_0, x_1, \dots, x_i] \prod_{j=0}^{i-1} (x - x_j)$$
, where $f[x_0, \dots, x_i] = \frac{f[x_1, \dots, x_i] - f[x_0, \dots, x_{i-1}]}{x_i - x_0} = \sum_{j=0}^i \frac{f(x_j)}{\prod_{j \neq k} (x_j - x_k)}$

Eg. $i \mid x_i \mid f(x_i) \mid f[,] \mid f[,] \mid f[,], \mid$

$$p_3(x) = -5 + 6(x - 0) + 2(x - 0)(x - 1) + (x - 0)(x - 1)(x - 3)$$

= -5 + 6x + 2x² - 2x + x³ - 4x² + 3x = x³ - 2x² + 7x - 5

Note:
$$\frac{d}{dx}f[x_0,\dots,x_k,x] = \lim_{h\to 0} \frac{f[x_0,\dots,x_k,x+h]-f[x_0,\dots,x_k,x]}{h} = \lim_{h\to 0} f[x_0,\dots,x_k,x,x+h] = f[x_0,\dots,x_k,x,x]$$

Error Estimate: What is the error involved when we try to approximate f(x) by a polynomial of degree N?

Theorem: If $f \in C^{N+1}[a, b]$ then

$$f(x) = p_N(x) + \frac{f^{(N+1)}(\xi)}{(N+1)!}(x-x_0)(x-x_1)\dots(x-x_N) \qquad \xi \in (x_0, x_N).$$

Lemma 1: Divided difference expression for the error.

$$e_N(\bar{x}) = f(\bar{x}) - p_N(\bar{x}) = f[x_0, x_1, \dots, x_N, \bar{x}] \prod_{j=0}^N (\bar{x} - x_j)(*)$$
 for any $\bar{x} \in [x_0, x_N]$.

Proof: If $\bar{x} = x_i$ then the formula (*) holds.

If $\bar{x} \neq x_j$ j = 0, ..., N, then consider the polynomial $p_{N+1}(x)$ that passes through $f(x_0), ..., f(x_N)$ and $f(\bar{x})$. Then

$$f(\bar{x}) = p_{N+1}(\bar{x}) = p_N(\bar{x}) + f[x_0, \dots, x_N, \bar{x}] \prod_{j=0}^N (\bar{x} - x_j)$$

$$\therefore e_N(\bar{x}) = f(\bar{x}) - p_N(\bar{x}) = f[x_0, \dots, x_N, \bar{x}] \prod_{j=0}^N (\bar{x} - x_j)$$

Lemma 2: (Like the Mean Value Theorem)

If f is continuous on $[x_0, x_k]$ and k times differentiable on (x_0, x_k) then there exists a $\xi \in (x_0, x_k)$ such that

$$f[x_0, x_1, \dots, x_k] = f^{(k)}(\xi)/k!$$

Proof: $e_N(x) = f(x) - p_N(x)$ has N + 1 roots in $[x_0, x_N]$, namely x_0, x_1, \dots, x_N .

Rolle
$$\Rightarrow$$
 e'_n has N roots $\Rightarrow \ldots \Rightarrow e_N^{(N)}$ has 1 root in (x_0, x_N)
 $\therefore \exists \, \xi \in (x_0, x_N)$ such that $e_N^{(N)}(\xi) = f^{(N)}(\xi) - f[x_0, x_1, \ldots, x_N] n! = 0$
 $\exists \, \xi \in (x_0, x_N) : f[x_0, x_1, \ldots, x_N] = f^{(N)}(\xi)/N!$

Proof of Theorem:

By Lemma 1:
$$e_N(x) = f[x_0, \dots, x_N, x] \prod_{j=0}^{N} (x - x_j).$$

By Lemma 2: $\exists \xi \in (x_0, x_N) : e_N(x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \prod_{j=0}^{N} (x - x_j).$

$$g ext{ CONT ON } [x_1, x_2]$$

 $g ext{ DIFF ON } (x_1, x_2)$
 $\exists \xi \in (x_1, x_2) : g'(\xi) = 0$