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0.1.2 A systematic study of polynomial interpolation and extrapolation

e Was very important before the advent of calculators and computers when we had to interpo-
late between tabulated function values.

e Now it is more classical but still useful for theoretical studies of numerical approximation
schemes.

e Has recently undergone a revitalization with the advent of computer graphics, image storage
and reconstruction

Problem: Say we know f at n + 1 distinct points zg,z1,...,z,. Then how can we determine
good approximations to f at intermediate points.

Idea: Approximate f by a polynomial that passes through the points and evaluate the polynomial
at the desired points.

Method 1: (Directly)
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Very difficult matrix problem to solve numerically; roughly speaking ‘neighboring points give
roughly the same information about the coefficients’ so the matrix is nearly singular.



Method 2: Lagrange interpolation of degree n.

Define the following polynomial basis functions ¢x(x) each of degree n such that
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Then we have the following repre-
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Problem with Lagrange:

e it is expensive to evaluate the ¢ (z); requires {2(n + 1)} multiplications/divisions and
(2n + 1) additions after function values have been corrected for denominators}

whereas a polynomial in a power form can be evaluated in n multiplications and n

additions
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e If we wanted a higher degree interpolant, then we would have to throw all the previous
information away and recalculate a new interpolant.



Method 3: Newton’s divided difference table:
Lagrange method for n = 2
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Newton’s divided difference interpolation formula:
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Error Estimate: What is the error involved when we try to approximate f(x) by a polynomial
of degree N7

Theorem: If f € CV*'[a,b] then
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Lemma 1: Divided difference expression for the error.
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Proof: If = x; then the formula (x) holds.
Ifz #x; j=0,...,N,then consider the polynomial px () that passes through f(xo),..., f(zN)
and f(z). Then
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Lemma 2: (Like the Mean Value Theorem)
If f is continuous on [zg, zx] and k times differentiable on (xg, zj) then there exists a £ € (xo, zk)
such that
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Proof: ex(z) = f(x) — py(z) has N + 1 roots in [xg, 2], namely zg, z1,...,2zxN.
Rolle = ¢}, has Nroots = ... = e%\r) has 1 root in (zg, zy)
S.3¢ € (mo,zyn) such that e%v)(f) = f<N)(§) — flzo,z1,...,xnn! =0
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Proof of Theorem: N
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