Interpolation and approximation

0.1 Interpolation and approximation

0.1.1 Approximating functions

A geometric view of representing arbitrary functions in terms of some basis functions:

Vector Algebra:

Representation:

b_3 v b_2 b_1

$$\mathbf{v} = \sum_{i=1}^{3} \alpha_{i} \mathbf{b}_{i} \qquad (\cdot, \cdot) = \begin{array}{c} \text{dot product} \\ \text{or inner product} \end{array}$$

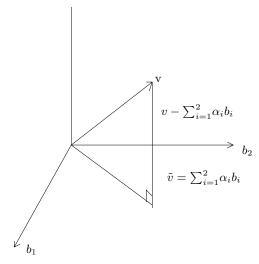
$$(\mathbf{v}, \mathbf{b}_{k}) = \sum_{i=1}^{3} \alpha_{i} (\mathbf{b}_{i}, \mathbf{b}_{k})$$

$$\begin{bmatrix} (b_{1}, b_{1})(b_{1}, b_{2})(b_{1}, b_{3}) \\ (b_{1}, b_{2})(b_{2}, b_{2})(b_{2}, b_{3}) \\ (b_{1}, b_{3})(b_{2}, b_{3})(b_{3}, b_{3}) \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix} = \begin{bmatrix} (\mathbf{v}, b_{1}) \\ (\mathbf{v}, b_{2}) \\ (\mathbf{v}, b_{3}) \end{bmatrix}$$

$$b_{i} \perp b_{j} \Rightarrow \alpha_{k} = (\mathbf{v}, b_{k})/(b_{k}, b_{k}).$$

Can represent \mathbf{v} exactly in terms of \mathbf{b}_k .

Approximation:



- Cannot represent \mathbf{v} precisely in terms of $\mathbf{b}_1, \mathbf{b}_2$ since $\mathbf{v} \notin \text{span}\{\mathbf{b}_1, \mathbf{b}_2\}$.
- In this case we try to find the vector $\tilde{\mathbf{v}} \in \operatorname{span}\{\mathbf{b}_1, \mathbf{b}_2\}$ which is 'closest' to \mathbf{v} .

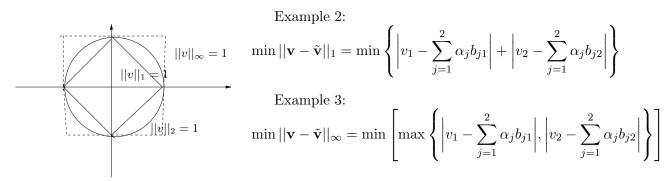
Let
$$\tilde{\mathbf{v}} = \sum_{i=1}^{2} \alpha_i b_i$$
.

Then we choose α_i so that $\tilde{\mathbf{v}}$ is as close to \mathbf{v} in some sense.

Example 1:

$$\begin{aligned} & \text{minimize} ||\mathbf{v} - \tilde{\mathbf{v}}||_2^2 &= (\mathbf{v} - \sum \alpha_i \mathbf{b}_i) \cdot (\mathbf{v} - \sum \alpha_j \mathbf{b}_j) \\ &= ||\mathbf{v}||^2 - 2 \sum \alpha_i (\mathbf{b}_i, \mathbf{v}) + \sum_i \sum_j \alpha_i \alpha_j (\mathbf{b}_i, \mathbf{b}_j) \\ & \frac{\partial E}{\partial \alpha_k} = -2(\mathbf{b}_k, \mathbf{v}) + 2 \sum_{i=1}^2 \alpha_i (\mathbf{b}_i, \mathbf{b}_k) = 0 \qquad k = 1, 2. \\ &\Rightarrow \left(\mathbf{v} - \sum_{i=1}^2 \alpha_i \mathbf{b}_i, \mathbf{b}_k\right) = 0 \qquad \text{orthogonal projection} \end{aligned}$$

A 'circle' in the different measures of distance



• A function is like an ∞ dimensional vector—to describe a function numerically you would like to specify all its values—which requires an infinite number of points.

Examples of representations of functions in terms of basis functions:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \text{ basis vectors are } \left\{\cos\left(\frac{n\pi x}{L}\right), \sin\left(\frac{n\pi x}{L}\right)\right\}.$$

$$= f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots \qquad \text{basis vectors are } \left\{1, x, x^2, \dots\right\}.$$

$$= \sum_{n=0}^{\infty} \alpha_n \phi_n(x) \qquad \text{basis vectors are } \left\{\phi_n\right\}.$$

$$\text{Recall } a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{\left(f, \cos\left(\frac{n\pi x}{L}\right)\right)}{\left(\cos\left(\frac{n\pi x}{L}\right), \cos\left(\frac{n\pi x}{L}\right)\right)}$$

so the integral acts like an inner-product for functions—not surprising in view of the definition of the Riemann integral

$$\int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx \approx \frac{2L}{N} \sum_{m=0}^{N} f(x_m) \cos\left(\frac{n\pi x_m}{L}\right).$$

Examples of approximate representation of functions:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{N} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) = \sum_{n=-N}^{N} c_n e^{i\frac{m\pi x}{L}} \qquad \text{APPROX BY TRIG POLYNOMIALS}$$

$$= a_0 + a_1 x + \ldots + a_n x^n = p_n(x) \qquad \text{Polynomial approximation.}$$

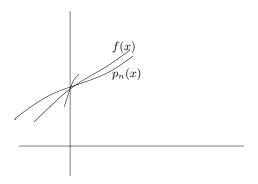
$$= \sum_{n=0}^{N} a_n \phi_n(x).$$

The a_k 's are determined by imposing different criteria of 'closeness' between the function f and the approximation.

2

Examples: (1) Say we know f and n of its derivatives at a single point $f(0), f'(0), \ldots, f^{(n)}(0)$ then

 $a_n = \frac{f^{(n)}(0)}{n!}$ yields the Taylor polynomial

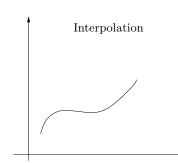


(2) Say we know f at n+1 distinct points x_0, x_1, \ldots, x_n then $f(x_k) = a_0 + a_1 x_k + \ldots + a_n x_k^n \qquad k = 0, \ldots, n$

$$f(x_k) = a_0 + a_1 x_k + \ldots + a_n x_k^n$$
 $k = 0, \ldots, n$

or

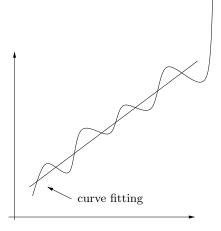
$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ \vdots & \vdots & & & & \\ \vdots & \vdots & & & & \\ 1 & x_n & x_n^2 & & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ \vdots \\ \vdots \\ f(x_n) \end{bmatrix}$$



The van der Monde matrix – notoriously difficult to solve numerically.

3

(3) Say we know f at $m \gg n$ points x_1, \ldots, x_n where some of the $f(x_k)$ may be noisy so we do not wish to place too much weight on individual points—then we perform a least squares fit.



Eg. 1 Fitting a straight line — linear regression

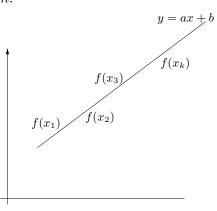
Fit
$$p_n(x) = ax + b$$
 to the points $(x_k, f(x_k))$ $k = 1, ..., m$

$$E(a,b) = \sum_{k=1}^{m} [f(x_k) - (ax_k + b)]^2 = ||f - (ax + b)||_2^2$$

$$\frac{\partial E}{\partial a} = 2\sum_{k=1}^{m} [f(x_k) - (ax_k + b)] (-x_k) = 0$$

$$\frac{\partial E}{\partial b} = 2\sum_{k=1}^{m} [f(x) - (ax_k + b)] (-1) = 0$$

$$\therefore \begin{bmatrix} S_2 & S_1 \\ S_1 & S_0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} M_1 \\ M_0 \end{bmatrix}$$
where $S_r = \sum_{k=1}^{m} x_k^r$, $M_r = \sum_{k=1}^{m} f(x_k) x_k^r$.



Eg. 2 Fitting a trig poly of degree N to a function f on an interval [-L, L]. Let $f(x) \sim T_N(x) = \sum_{n=-N}^N c_n e^{i\left(\frac{n\pi x}{L}\right)}$ and choose c_n so that T_n is as close as possible in the least square sense.

$$E(c_{n}) = \int_{-L}^{L} \left[f(x) - \sum_{r=-N}^{N} c_{r} e^{i\left(\frac{r\pi x}{L}\right)} \right] \left[f(x) - \sum_{n=-N}^{N} c_{n} e^{i\left(\frac{n\pi x}{L}\right)} \right]^{*} dx$$

$$0 = \frac{\partial E}{\partial c_{n}} = \int_{-L}^{L} e^{i\frac{n\pi x}{L}} \left[f(x) - \sum_{n=-N}^{N} c_{n}^{*} e^{-i\left(\frac{n\pi x}{L}\right)} \right] dx$$

$$\therefore 0 = \int_{-L}^{L} e^{i\left(\frac{r\pi x}{L}\right)} f(x) dx - \sum_{n=-N}^{N} c_{n}^{*} \int_{-L}^{L} e^{+i\frac{\pi x}{L}(r-n)} dx$$
but
$$\int_{-L}^{L} e^{i\frac{\pi x}{L}(r-n)} dx = \left| \frac{Le^{i\frac{\pi x}{L}(r-n)}}{i\pi(r-n)} \right|_{-L}^{L} = \frac{L}{ir(r-n)} \left[e^{i\pi(r-n)} - e^{-ir(r-n)} \right] = 0, \quad r \neq n$$

$$= 2L \qquad r = n$$

$$\therefore c_n = \frac{1}{2L} \int_{-L}^{L} e^{-i\left(\frac{r\pi x}{L}\right)} f(x) dx \quad \text{which is just the Fourier coefficient}$$

 \therefore the Fourier coefficient does the best job in the L_2 norm