Interpolation and approximation

0.1 Interpolation and approximation

0.1.1 Approximating functions

A geometric view of representing arbitrary functions in terms of some basis functions:

Vector Algebra:

Representation:
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Can represent v exactly in terms of by.
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Approximation:
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e Cannot represent v precisely in terms
of by, by since v & span{by, ba}.

e In this case we try to find the vector
v € span{by, ba} which is ‘closest’ to v.
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Then we choose «; so that v is as close to v
in some sense.
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A ‘circle’ in the different measures of distance

Example 2:
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e A function is like an oo dimensional vector—to describe a function numerically you would
like to specify all its values—which requires an infinite number of points.

Examples of representations of functions in terms of basis functions:

o - 2+§ (252 by sin (P22 s vectors are {cos (222 sin (Z22) ).
= £(0)+ f(0)z + f”(O)‘j +... basis vectors are {1,z,2%,...}.
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so the integral acts like an inner-product for functions—not surprising in view of the definition
of the Riemann integral
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The ay’s are determined by imposing different criteria of ‘closeness’ between the function f and
the approximation.



Examples: (1) Say we know f and n of its derivatives at a single point £(0), /(0), ..., f™(0) then

Qy, = % yields the Taylor polynomial

(2) Say we know f at n + 1 distinct points xg, x1, ..., 2, then

f(xy) = ao + a1xp + ... + apx} k=0,....n

or
Interpolation
1 oz a2 ... ap ao f(zo)
. ay
Ly, x% Ty, ln f(xn)

The van der Monde matrix — notoriously difficult to solve numerically.

(3) Say we know f at m > n points x1,...,z,
where some of the f(z}) may be noisy so we
do not wish to place too much weight on
individual points—then we perform a least

™~ curve fitting
squares fit.




Eg. 1 Fitting a straight line — linear regression

Fit p,(z) = ax + b to the points (xg, f(xy)) kE=1,...,m.

NE

pen [F(@x) = (azg + ) =[] = (az + )3
k=1
835] - 2 Z [f(z1) — (azp +b)] (—zx) =0
k=1
OF m
o 2;[f(33)—(axk+b)] (1) =0
S S a M
[5? S;}{b}:[M;}
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Eg. 2 Fitting a trig poly of degree N to a function f on an
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interval [—L, L]. Let f(z) ~ Ty(x) = % cnel( )
n=—N

and choose ¢, so that T, is as close as possible in the
least square sense.
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the Fourier coefficient does the best job in the Ly norm



