$$m = 1: Y_{n+1} = Y_n + h \left\{ f_n + \frac{1}{2} \Delta f_{n-1} \right\} = Y_n + \frac{h}{2} \left\{ 3f_n - f_{n-1} \right\}$$

$$m = 2: Y_{n+1} = Y_n + h \left\{ f_n + \frac{1}{2} \Delta f_{n-1} + \frac{5}{12} \Delta^2 f_{n-2} \right\}$$

$$= Y_n + \frac{h}{12} \left\{ 23f_n - 16f_{n-1} + 5f_{n-2} \right\}$$

$$: O(h^4)$$

Note: For an n-step scheme we have n roots. If the method is consistent 1 will be a root. For stability a method has to control the behavior of the remaining n-1 roots

- If $|G_j| > 1$ for some j the method is zero-unstable
- If $|G_j| = 1$ for more than one root then the method is weakly zero stable
- This 'useful stability' region in this case is the set of all z such that $|G_j(z)| < 1$ for all j.

A family of implicit multistep methods - Adams Moulton Methods

• By analogy with the trapezoidal scheme we derive a family of methods that use a polynomial to interpolate f(x, y(x)) at $x_{n-m}, x_{n-m+1}, \ldots, x_n$ and x_{n+1} . Including x_{n+1} makes this family of methods implicit.

Using the interpolation formula derived above

$$f_{n+1+r} = E^r f_{n+1} = \sum_{k=0}^{m+1} (-1)^k {r \choose k} \Delta^k f_{n+1-k}$$

or letting s = 1 + r

$$f_{n+s} = E^{(s-1)} f_{n+1} = \sum_{k=0}^{m+1} (-1)^k {1-s \choose k} \Delta^k f_{n+1-k}$$

Substituting into the integral form of y' = f(x, y):

$$y_{n+1} = y_n + \int_{x_n}^{x_{n+1}} f(x, y(x)) dx$$

we obtain

$$y_{n+1} = y_n + h \left\{ \beta_0 f_{n+1} + \beta_1 \Delta f_n + \dots + \beta_{m+1} \Delta^{m+1} f_{n-m} \right\}$$

where $\beta_k = (-1)^k \int_0^1 {1-s \choose k} ds$ $k = 0, 1, \dots, m+1$

$$\beta_0 = 1,$$
 $\beta_1 = -\frac{1}{2}$ $\beta_2 = -\frac{1}{12},$ $\beta_3 = \frac{-1}{24},$ $\beta_4 = \frac{-19}{720}$ LTE

Eg: AM 1
$$(m=-1)$$
: $Y_{n+1} = Y_n + hf_{n+1}$: Backward Euler $O(h^2)$

AM 2
$$(m=0)$$
: $Y_{n+1} = Y_n + h \left[f_{n+1} - \frac{1}{2} (f_{n+1} - f_n) \right] = Y_n + \frac{h}{2} [f_{n+1} + f_n]$: TR $O(h^3)$

AM 3
$$(m = 1)$$
: $Y_{n+1} = Y_n + h \left[f_{n+1} - \frac{1}{2} (f_{n+1} - f_n) - \frac{1}{12} (f_{n+1} - 2f_n + f_{n-1}) \right]$
= $Y_n + \frac{h}{12} [5f_{n+1} + 8f_n - f_{n-1}]$

$$= Y_n + \frac{n}{12} \left[5f_{n+1} + 8f_n - f_{n-1} \right]$$

$$= O(h^4)$$

AM 4
$$(m=2)$$
: $Y_{n+1} = Y_n + \frac{h}{24} [9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2}]$ $O(h^5)$

 \uparrow unknown term – need to solve a nonlinear eq.

Stability properties of AM4 – using the perturbation approach.

$$\text{AM2: } \left(1 - \frac{9\lambda h}{24}\right)Y_{n+1} - \left(1 + \frac{19\lambda h}{24}\right)Y_n + \frac{5\lambda h}{24}Y_{n-1} - \frac{\lambda h}{24}Y_{n-2} = 0$$

Let $r = (\lambda h/24)$

$$(1 - 9r)Y_{n+1} - (1 + 19r)Y_n + 5rY_{n-1} - rY_{n-2} = 0$$

Look for solutions of the form $Y_n = G^n$

$$(1 - 9r)G^3 - (1 + 19r)G^2 + 5rG - r = 0$$

Now consider the limit $h \ll 1$ so that $r \ll 1$. The $r \to 0$ limit yields the following equation:

$$G_0^3 - G_0^2 = 0$$

which implies that $G_0 = 1, 0, 0$ are the leading terms in the asymptotic expansion for G. Separating the small from the large terms we have

$$G^{2}(G-1) = r \left\{ 1 - 5G + 19G^{2} + 9G^{3} \right\}$$

To generate the series exp for the root $G_0 = 1$ we use the recursion

$$G = 1 + r(1 - 5G + 19G^2 + 9G^3)/G^2$$

 $G_0 = 1, G_1 = 1 + 24r, ...$

To generate the series exp for the roots $G_0 = 0$ we use the recursion

$$G^{2} = r(1 - 5G + 19G^{2} + 9G^{3})/(G - 1)$$

$$G_{0} = 0; G_{1} = \pm ir^{1/2}; G_{2} = \pm ir^{1/2} + 3r + \dots$$

$$\therefore G = \begin{cases} 1 + 24r + O(r^{2}) \\ \pm ir^{1/2} + 3r + O(r^{3/2}) \end{cases}$$

are the appropriate expansions for G.

$$Y_n \sim C_1(1+24r+\ldots)^n + C_2(ir^{1/2}+3r+\ldots)^n + C^3(-ir^{1/2}+3r+\ldots)^n$$
Tracks
$$e^{\lambda x_n}$$
Parasitic solutions – decay

BDF Methods – Good for stiff problems:

- Extension of Backward Euler
- Only evaluate f(x,y) once at the end of the timestep
- Use high order backward difference approximations to y'.

Recall:

$$y_{n+1} = Ey_n = (1 + hD + \frac{hD^2}{2!} + \dots)y_n = e^{hD}$$

$$hD = \ln E \qquad E = (1 - \nabla)^{-1}$$

$$= -\ln(1 - \nabla)$$

$$= \sum_{j=1}^{\infty} \frac{\nabla^j}{j}$$

$$y' \simeq \frac{1}{h} \sum_{k=1}^{P} \frac{\nabla^k}{k} y_n = f(x_n, y_n) \qquad \text{A pth order method (LTE } O(h^{p+1}) \to \text{ GTE } O(h^p))$$
or
$$\sum_{i=0}^{P} \alpha_i Y_{n-i} = h\beta_0 f_n$$
BDF1:
$$\nabla y_n = hf_n \Rightarrow Y_n = Y_{n-1} + hf_n \quad \text{Backward Euler } O(h)$$
BDF2:
$$\frac{1}{2} \nabla^2 y_n + \nabla y_n = \frac{1}{2} (y_n - 2y_{n-1} + y_{n-2}) + (y_n - y_{n-1}) = hf_n$$

$$\frac{3}{2} y_n - 2y_{n-1} + \frac{1}{2} y_{n-2} = hf_n$$

$$Y_n - \frac{4}{3} Y_{n-1} + \frac{1}{3} Y_{n-2} = \frac{2}{3} hf_n$$

3.5 Predictor Correct Methods

Split ME into two steps

(1)
$$y_{i+1}^{(0)} = y_i + hf(x_i, y_i)$$
 predictor

(2)
$$y_{i+1}^{(k+1)} = y_i + \frac{h}{2} \left[f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(k)}) \right]$$
 $k = 0, \dots,$ corrector loop

Stop when $\frac{|y_i^{(k)} - y_i^{(k-1)}|}{|y_i^{(k)}|} < \varepsilon$

The first step in functional iteration x = g(x) $|g'(x_0)| < 1$.

The Milne-Simpson Method: – More accurate is not always better.

Predictor: (Explicit)

$$y_{k+1} = y_{k-3} + \int_{x_{k-3}}^{x_{k+1}} f(t, y(t)) dt$$

$$|| P_3$$

$$= y_{k-3} + \frac{4h}{3} (2f_{k-2} - f_{k-1} + 2f_k) + O(h^5)$$

Corrector: (Implicit)

$$y_{k+1} = y_{k-1} + \int_{x_{k-1}}^{x_{k+1}} f(t, y(t)) dt$$
$$= y_{k-1} + \frac{h}{3} (f_{k-1} + 4f_k + f_{k+1}) + O(h^5)$$

Stability of correctors: $y' = \lambda y$ y(0) = 1

MILNE: $y_{n+1} = y_{n-1} + \frac{h}{3} (\lambda y_{n+1} + 4\lambda y_n + \lambda y_{n-1})$

$$\left(1 - \frac{h\lambda}{3} \right) y_{n+1} - \frac{4\lambda h}{3} y_n - \left(1 + \frac{h\lambda}{3} \right) y_{n-1} = 0$$

$$(1 - r) y_{n+1} - 4r y_n - (1 + r) y_{n-1} = 0$$

Looking for solutions of the form:

$$y = G^n$$

which gives a second order polynomial for G in terms of $h\lambda$. Although it is easy to write down the roots $\theta_{1,2}$ of this polynomial it is sufficient to study stability for small λh , which can be done using a Taylor series expansion.

28

Tables of Multistep methods and their stencils Adams-Bashforth: – Explicit

Number of Steps	Order	b_s	b_{s-1}	b_{s-2}	b_{s-3}	b_{s-4}
1	1	0	1	(Euler)		
2	2	0	$\frac{3}{2}$	$-\frac{1}{2}$		
3	3	0	$\frac{23}{12}$	$-\frac{16}{12}$	$\frac{5}{12}$	
4	4	0	$\frac{55}{24}$	$-\frac{59}{24}$	$\frac{37}{24}$	$-\frac{9}{24}$

$$n+s$$
 $n+s-1$ n

Stencil: a_j : \circ

 b_j :

 $\circ =$ yet to be determined $\bullet =$ known values.

Adams-Moulton: - Implicit

Number of Steps Order b_s b_{s-1} b_{s-2} b_{s-3} b_{s-4} 1 1 1 Backward Euler 1 Trapezoidal Method $\frac{5}{12}$ $\frac{8}{12}$ 2 3 3 4 4 5

$$n+s$$
 $n+s-1$

Stencil: a_j : \circ

 b_j : \circ \bullet

Backward Difference Formulae

n+s n+s-1 n+s-2

Stencil: a_j : \circ • •

 $b_j:$ \circ

Folklore

RK vs. Adams Methods

	RK	Adams	Implicit
• Function Evaluations Expensive	Poor	Preferred	
• Function Evaluations Inexpensive & Moderate Accuracy	More Efficient	Less Efficient	
• If Storage is at a Premium	Better	Worse	
• Accuracy over a wide range of Tolerances	Not Suitable	Preferred	
• Problem Stiff -Widely varying time scales present in the problem -Stability is more of a constraint than accuracy -Explicit Methods don't work.			BDF2

A perspective on second order methods

Method	Explicit/ Implicit	Function Evaluations Per Step	Error Const	Storage	Stability
RK2	Explicit	2	1/6	2N	FIGURE
TR	Implicit	-	1/12	2N	A-Stable Weak Decay
AB2	Explicit	1	5/12	3N	FIGURE
2BDF	Implicit	-	1/6	3N	A-Stable L-Stable

Notes:

- For PDE problems storage is a big concern. Since the spatial discretization introduces errors there is no point using high order time stepping schemes so second order is usually OK.
- If the problem is very stiff 2BDF is recommended otherwise AB2 (possibly with a predictor corrector to control error).
- For simpler problems for which storage is not a problem and in which the system is not stiff, use RK4 (or RKF45 for error control) if minimizing computational time is not a priority. Or use AB4 (or APC4 with error control) otherwise.