LTE

m=1: Yn+1 = Y,+h {fn + ;Afnl} =Y, + g {3fn - fnfl} : O(hB)

1 )
m=2: Yn+1 = Yn +h {fn + §Afn—1 + 12A2fn—2}
h
- Yn + E {23fn - 16fn—1 + 5fn—2} : O(h’4)

Note: For an n-step scheme we have n roots. If the method is consistent 1 will be a root. For
stability a method has to control the behavior of the remaining n — 1 roots

e If |G| > 1 for some j the method is zero-unstable
e If |G;| = 1 for more than one root then the method is weakly zero stable

e This ‘useful stability’ region in this case is the set of all z such that |G;(z)| < 1 for all j.

A family of implicit multistep methods — Adams Moulton Methods

e By analogy with the trapezoidal scheme we derive a family of methods that use a polynomial
to interpolate f(x,y(x)) at Tn—m, Tn-m-+1, -

..y and xp41. Including x,41 makes this family
of methods implicit.

Tn—m Tn—m+1 Tn :L'n+1|

Using the interpolation formula derived above

m+1

foprir = B fupr =Y _(-1)F <_kr> A forig

k=0

or letting s=1+r
m—+1

fn+s = E(S_l)fn+1 = Z(_l)k <1és) Akfn—i—l—k

k=0
Substituting into the integral form of v/ = f(z,y):

Tn+1

=+ [ fey@)ds
we obtain
Yn+l = Yn T+ h {ﬁ()fn—i—l + BlAfn +...+ ﬂm+lAm+1fn—m}

1
1-s
where 8, = (1)k/<k>ds k=0,1,...,m+1
0
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1 1 -1 —-19
= ]_ = —— = — = —_— = —_—
Bo =1, 51 B2 B3 21" Ba 0

2 12°
Eg: AM1 (m=-1): Y,41 = Y,+hfnt1 : Backward Euler

AM 2 (’ITL:O)Z Yn+1 = Yn+h|:fn+1_;(fn+1_fn) :Yn'i‘g[fn—i-l_'_fn}: TR

AM3 (m=1): Yp1 = Yo+h|for1— % (fr+1— fn) — 1—12 (fn+1 = 2fn + fa-1)

h
= Y,+ E [5fn+1 + an - fn—l}

h
AM 4 (m:2) . Yn+1 = Yn+ﬁ[9fn+l+19fn_5fn—1+fn—2]

T unknown term — need to solve a nonlinear eq.
Stability properties of AM4 — using the perturbation approach.

9\h 19M\h AR Ah
AM2: (]. — 24) Yn+1 - (1 + 24) Yn + ﬂynfl - ﬂYnfg =0

Let r = (\h/24)
(1-9r)Ypt1 — (1+19)Y, +5rY,—1 —rY,2=0

Look for solutions of the form Y,, = G™
(1-9rG® - (14+197)G?* +5rG—r =0
Now consider the limit A~ < 1 so that » < 1. The r — 0 limit yields the following equation:
Gy—Gi=0

which implies that Gg = 1,0, 0 are the leading terms in the asymptotic expansion for G. Separating
the small from the large terms we have

G*(G —1) =r{1-5G +19G* + 9G*}
To generate the series exp for the root Gy = 1 we use the recursion
G = 1+7(1—-5G+19G*+9G?)/G?
Go = 1, Gi=1+24r,...
To generate the series exp for the roots Gg = 0 we use the recursion

G? = r(1-5G+19G*+9G%)/(G —1)

Go = 0, Gi=+ir’2,  Go=H4ir'/24+3r+...
G - { 1+ 24r + O(r?)
o o +irl/2 4+ 3r + O(r3/?)

are the appropriate expansions for G.

A<O0
Tracks

A

A>0

Exp. decay exp. growth
. / of solution
T

&J \y -
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Yy~ Oy (14247 + )" + Co(ir'? + 3r + .. )" + C3(—ir 2+ 3r + .. )"

Tracks . .
An Parasitic solutions — decay

BDF Methods — Good for stiff problems:

e Extension of Backward Euler
e Only evaluate f(x,y) once at the end of the timestep

e Use high order backward difference approximations to 7/’

Recall :
hD?
hD = mE E=(1-V)"!
= —In(1-V)
=
P
. Zk _ A pth order method
y = 3 ; i Yn = f(@nyn) (LTE O(h"*!) — GTE O(hP))
P
or Z aiYn—i = hﬂ()fn
i=0
BDF1: Vyn = hfn = ’Yn =Y,-1+hf,| Backward Euler O(h)
1 1
BDF2: oV + Vi = 5 (40 = 21+ ¥n-2) + (U —Yn1) = hfn

3 1
iyn - 2yn—1 + §yn—2 = hfn

Yn - %Yn—l + %Yn—2 = %hfn
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3.5 Predictor Correct Methods
Split ME into two steps

(1) yz(% =y + hf(xi,y) predictor

h
(2) yﬁ_{l) =y + 5 [f (zi,y:) + f (miﬂ, yfﬂ)} k=0,..., corrector loop
(k) _ (k=1)
Stop when M <e
(k)
The first step in functional iteration z = g(z) lg' (z0)| < 1.

The Milne-Simpson Method: — More accurate is not always better.
Predictor: (Explicit)

Th41

Ykl = Yr—3+ / f(t,y(t))dt

Tk—3
I

Py k-3 k-2 k-1 & k+1
= Y3+ 5 (2fe-2 = fr-1 +2fu) + O(R7)
Corrector: (Implicit)
Th+1
Yk+1 = Yk—1+ / f(ty(t))dt 7‘/
Th—1
h 5
= yk71+§(fk71+4fk+fk+l)+0(h) F—1 Kk k+1

Stability of correctors: 3’ = \y y(0)=1
MILNE: Y41 = Yn-1+ 5 \ns1 + 400 + Ayn—1)
(1 - ?) Yntl — %yn - (1 + ?) Yn—1 =10
(I=7)Ynt1 — 4ryn —(L+7)yp—1=0
Looking for solutions of the form:
y=G"

which gives a second order polynomial for G in terms of hA. Although it is easy to write down the
roots 61 2 of this polynomial it is sufficient to study stability for small Ak, which can be done using
a Taylor series expansion.
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Tables of Multistep methods and their stencils
Adams-Bashforth: — Explicit

Number of Steps Order by bs_1 bs_o bs—3 bs_4

1 1 0 1 (Euler)
2 2 0 3 :
; s 0 B -8 &
i ¢ 08 -8B % -4
n+s n+s—1 n
Stencil: a; : o .
bj : . . .

o = yet to be determined e = known values.
Adams-Moulton: — Implicit

Number of Steps Order by bs_1 bs_o bs_3
1 1 1 Backward Euler
1 2 % % Trapezoidal Method
2 5% & -k
3 4 294 % _% 214
4 5 % 720
n+s n+s—1 n
Stencil: a;: o .
b; o ° ° °

29
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Backward Difference Formulae

Number of Steps Order as; as—1 as—9 as—3 as_4 by
1 1 1 -1 Backward Euler 1
2 2 1 —% % %
: R &
’ + 1808 -8 4 B
n+s n+s—1 n+s—2 n
Stencil: a; : o ° ° °
b : o
Folklore
RK vs. Adams Methods
RK Adams Implicit
e Function Evaluations Expensive Poor Preferred

e Function Evaluations Inexpensive
& Moderate Accuracy

More Efficient

Less Efficient

o If Storage is at a Premium

Better

Worse

e Accuracy over a wide range
of Tolerances

Not Suitable

Preferred

e Problem Stiff

-Widely varying time scales
present in the problem
-Stability is more of a
constraint than accuracy
-Explicit Methods don’t
work.

BDF2
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A perspective on second order methods

Notes:

Function
Explicit/ | Evaluations
Method | Implicit Per Step Error Const | Storage Stability
RK2 Explicit 2 1/6 2N FIGURE
TR Implicit - 1/12 2N A-Stable
Weak Decay
AB2 Explicit 1 5/12 3N FIGURE
2BDF | Implicit - 1/6 3N A-Stable
L-Stable

e For PDE problems storage is a big concern. Since the spatial discretization introduces errors
there is no point using high order time stepping schemes so second order is usually OK.

e If the problem is very stiff 2BDF is recommended otherwise AB2 (possibly with a predictor
corrector to control error).

e For simpler problems for which storage is not a problem and in which the system is not stiff,
use RK4 (or RKF45 for error control) if minimizing computational time is not a priority. Or
use AB4 (or APC4 with error control) otherwise.
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