Multistep Methods

- Idea: Use more previous timesteps to get a better approximation rather than more gradient evaluations per timestep.
- Because we are using more than one timestep we end up with higher order difference equation that we are using to model the first order ODE. $y^{\prime}=f(x, y)$. We have to be careful that the additional (sometimes spurious) solutions do not end up corrupting the numerical solution.
- General Multistep Method:

$$
\sum_{k=0}^{N} a_{k} y_{j+k}=h \sum_{k=0}^{N} b_{k} f_{j+k}
$$

and define the corresponding characteristic polynomials $P_{N}(\theta)$ and $Q_{N}(\theta)$ as follows: $P_{N}(\theta)=$ $\sum_{k=0}^{N} a_{k} \theta^{k}$ and $Q_{N}(\theta)=\sum_{k=0}^{N} b_{k} \theta^{k}$

- Consistency: It can be shown (exercise) that the method is consistent if and only if $P_{N}(1)=0$ and $P_{N}^{\prime}(1)=Q_{N}(1)$.
- 0-stability: The method is said to be 0 -stable provided the roots θ_{k} of $P_{N}(\theta)=0$ are either such that $\left|\theta_{k}\right|<1$ or $\left|\theta_{k}\right|=1$ in which case the roots are simple.

Eg: The Leapfrog Method:

Idea: Use central differences to approximate the first derivative rather than the forward/backward difference schemes used in Euler's methods and the multistage methods.

We obtain the leapfrog scheme:

$$
Y_{n+1}=Y_{n-1}+2 h f\left(x_{n}, Y_{n}\right), \quad Y_{0}=h_{0}
$$

As usual, a Taylor series expansion shows that the truncation error for this method is of $O\left(h^{2}\right)$.

Perturbation argument for Leapfrog:

$$
\begin{array}{rlrl}
y_{n+1} & =y_{n-1}+2 h f\left(x_{n}, y_{n}\right) \quad f=\lambda y \\
y_{n} & =G^{n} \\
G^{2} & -2(\lambda h) G-1=0 & \\
G^{2} & =1+2 \varepsilon G & \varepsilon=\lambda h & y_{n}=e^{i n \alpha} \\
G & = \pm(1+2 \varepsilon G)^{1 / 2} & e^{i(n+1) \alpha}-2 \lambda h e^{i n \alpha}-e^{i(n-1) \alpha} \\
& =\left[1+\varepsilon G-\frac{1}{2}(\varepsilon G)^{2}+\ldots\right] & e^{i \alpha}-2 \lambda h-e^{i \alpha}=0 \\
& \sim(1+\varepsilon G+\ldots) & \lambda h=\frac{e^{i \alpha}-e^{-i \alpha}}{2}=i \sin \alpha \\
G=G_{1}+\epsilon G_{2}+\ldots \Rightarrow & G_{1}= \pm 1, \quad G_{1}+\epsilon G_{2}= \pm\left(1+\varepsilon G_{1}\right)= \pm 1+\varepsilon
\end{array}
$$

$R e \lambda<0$
Unstable

$R e \lambda=0$
could be stable provided h is small enough

In fact $G_{1} G_{2}=-1 \Rightarrow$ for stability G_{1}, G_{2} must be on unit disk

$$
\begin{aligned}
\therefore G_{1} & =e^{i \alpha} \quad G_{2}=e^{-i \alpha} \\
G & =z \pm \sqrt{z^{2}+1} \quad z=\lambda h \\
G^{2} & -2 z G-1=0 \Rightarrow \quad z=\frac{G^{2}-1}{2 G}=\frac{1}{2}\left(G-G^{-1}\right) \\
\therefore z & =\frac{1}{2}\left(e^{i \alpha}-e^{-i \alpha}\right) \\
z & =i \sin \alpha
\end{aligned}
$$

Explicit Multistep Methods - Adams Bashforth

A-B2: $y_{n}=y_{n-1}+h \alpha f\left(x_{n-1}, y_{n-1}\right)+h \beta f\left(x_{n-2}, y_{n-2}\right)=y_{n-1}+h \alpha f_{n-1}+h \beta f_{n-2}$
Expand each of these terms in (1) about x_{n}, y_{n} in a Taylor Series.

$$
\begin{aligned}
y_{n} & =\left(y_{n}-h y_{n}^{\prime}+\frac{h^{2}}{2} y_{n}^{\prime \prime}+\ldots\right)+\alpha h\left\{f_{n}-h f_{n}^{\prime}+\ldots\right\}+\beta h\left\{f_{n}-2 h f_{n}^{\prime}+\ldots\right\} \\
& =y_{n}+h(-1+\alpha+\beta) y_{n}^{\prime}+h^{2} y_{n}^{\prime \prime}\left(\frac{1}{2}-\alpha-2 \beta\right)+O\left(h^{3}\right)
\end{aligned}
$$

In order for the terms up to $O\left(h^{2}\right)$ to vanish we require

$$
\left.\begin{array}{c}
-1+\alpha+\beta=0 \\
\frac{1}{2}-\alpha-2 \beta=0
\end{array}\right\} \Rightarrow \beta=-\frac{1}{2}, \quad \alpha=\frac{3}{2}
$$

We obtain the second order Adams-Bashforth Method AB2:

$$
Y_{n+1}=Y_{n}+\frac{3}{2} h f\left(x_{n}, Y_{n}\right)-\frac{1}{2} h f\left(x_{n-1}, Y_{n-1}\right)
$$

- Accuracy $O\left(h^{2}\right)$
- Need Y_{0} and Y_{1} to start the time-stepping - use RK4 to find Y_{1}
- Stability: Consider $y^{\prime}=\lambda y$

$$
Y_{n+1}=\left(1+\frac{3 h \lambda}{2}\right) Y_{n}-\frac{h \lambda}{2} Y_{n-1}-\mathrm{A} \text { second order DCE }
$$

Look for solutions of the form $Y_{n}=G^{n}$

$$
G^{2}-(1+3 z / 2) G+\frac{z}{2}=0
$$

As $z \rightarrow 0, G^{2}-G=0$ the Zero Stability Polynomial which has roots

$$
\begin{aligned}
& G_{1}=1 \quad \text { a root shared by all consistent methods } \\
& G_{2}=0 \quad \text { which is the spurious root in this case }- \text { under control } \\
& \text { For } z \text { small } \quad \begin{aligned}
G & =\left\{\left(1+\frac{3}{2} z\right) \pm \sqrt{(1+3 / 2 z)^{2}-4 z / 2}\right\} / 2
\end{aligned} \\
&=\left\{\begin{array}{l}
1+z+O\left(z^{2}\right) \\
\frac{z}{2}+O\left(z^{2}\right)
\end{array}\right.
\end{aligned}
$$

Stability Region:

Illustration of a perturbation method that can be used to derive an expression for the roots to the characteristic equation in the limit $z \rightarrow 0$.

$$
\begin{equation*}
z=0 \Rightarrow \quad G^{2}-\left(1+\frac{3 z}{2}\right) G+\frac{z}{2}=0 . \tag{*}
\end{equation*}
$$

Assume that G has a power series expansion in powers of z :

$$
G=G_{0}+G_{1} z+G_{2} z^{2}+\ldots
$$

Plug into $\left(^{*}\right):\left(G_{0}+G_{1} z+\ldots\right)^{2}-\left(1+\frac{3 z}{2}\right)\left(G_{0}+G_{1} z+\ldots\right)+\frac{z}{2}=0$
Expand and collect powers of z :

$$
\begin{array}{ll}
z^{0}> & G_{0}^{2}-G_{0}=0 \quad G_{0}=0,1 \\
z^{\prime}> & 2 G_{0} G_{1}-\frac{3}{2} G_{0}-G_{1}+\frac{1}{2}=0
\end{array} \quad \therefore G_{1}\left(2 G_{0}-1\right)=-\frac{1}{2}+\frac{3}{2} G_{0}, ~\left(G_{1}=\frac{-\frac{1}{2}+\frac{3}{2} G_{0}}{2 G_{0}-1} \Rightarrow \begin{array}{l}
G_{0}=0 \Rightarrow G_{1}=+1 / 2 \\
G_{0}=1 \Rightarrow G_{1}=\frac{1}{1}=1
\end{array} ~ ? ~ \therefore G=\left\{\begin{array}{l}
1+z+O\left(z^{2}\right) \\
0+\frac{z}{2}+O\left(z^{2}\right)
\end{array}\right.\right.
$$

- This method was not needed here because we could use the quadratic formula. However, for higher order methods this technique becomes extremely useful.
- Note that the zeroth order term is the zero-stability polynomial.

To derive higher order AB methods we use the integral form of the ODE and interpolate f over previous timesteps

But $\Delta f_{k-1}=\nabla f_{k}, \ldots, \nabla^{j} f_{i}=\Delta^{j} f_{i-j}$

$$
\begin{equation*}
\therefore f_{n+s}=\sum_{k=0}^{m}(-1)^{k}\binom{-s}{k} \Delta^{k} f_{n-k} \tag{2}
\end{equation*}
$$

$$
\text { where }\binom{y}{k}= \begin{cases}y(y-1) \ldots(y-k+1) / k! & k>0 \\ 1 & k=0\end{cases}
$$

Make the transformation of variables $s=\left(x-x_{n}\right) / h ; d x=h d s$

$$
\begin{aligned}
\therefore y_{n+1} & =y_{n}+h \int_{0}^{1} \sum_{k=0}^{m}(-1)^{k}\binom{-s}{k} \Delta^{k} f_{n-k} d s \\
& =y_{n}+h\left\{\gamma_{0} f_{n}+\gamma_{1} \Delta f_{n-1}+\ldots+\gamma_{m} \Delta^{m} f_{n-m}\right\} \\
\text { where } \gamma_{k} & =(-1)^{k} \int_{0}^{1}\binom{-s}{k} d s \\
\gamma_{0} & =1 \\
\gamma_{1} & =(-1) \int_{0}^{1} \frac{(-s)}{1} d s=\frac{1}{2} \\
\gamma_{2} & =(-1)^{2} \int_{0}^{1} \frac{(-s)(-s-1)}{2} d s=\frac{5}{12} \\
\gamma_{3} & =\frac{3}{8} \\
\gamma_{4} & =\frac{251}{720}
\end{aligned}
$$

