$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -100 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{array}{c} x = e^{-t}x_0 \\ y = e^{-100t}y_0 \end{array}$$

 $y_0 x_0$ e^{-t} e^{-100t}

• FE: If we were to use the FE method in the useful regime we would requre $-2 < h\lambda_k < 0$

$$\begin{array}{rcl} \lambda_1 = -1 & \Rightarrow & h < 2 \\ \lambda_2 = -100 & \Rightarrow & h < 1/50 \end{array}$$

We do not particularly care about y since it decays to zero very rapidly but we are more interested in x which persists much longer. But to compute the system stably we woud need very small time-steps – bad news; it will take forever.

• What about using the **Trapezoidal Rule** so we don't have to worry about the timestep?

Say $Re(\lambda) \to -\infty$ and let us look at $G(z) = \frac{1+z/2}{1-z/2}$ in the case $Re(\lambda) \to -\infty$.

Let $z = \alpha + i\beta$ and let β be fixed.

$$|G(z)| = \frac{|1+z/2|}{|1-z/2|} = \frac{\sqrt{(1+\alpha/2)^2 + (\beta/2)^2}}{\sqrt{(1-\alpha/2)^2 + (\beta/2)^2}} \xrightarrow{\alpha \to -\infty} 1$$

solution will oscillate but will not decay!

But e^z , which G(z) is supposed to approximate, is such that $e^z \to 0$ as $Re(z) \to -\infty$.

L-Stability: A numerical method for which $G(z) \to 0$ as $Re(z) \to -\infty$ is said to be L-stable or has strong decay.

•Example of an L-stable method: - the Backward Euler Scheme: (BE)

$$Y_{n+1} = Y_n + hf(x_{n+1}, Y_{n+1})$$

For model problem:

$$\begin{array}{lcl} Y_{n+1} &=& Y_n + h\lambda Y_{n+1} \\ Y_{n+1} &=& \displaystyle \frac{1}{(1-h\lambda)}Y_n = G(h\lambda)Y_n \\ G(z) = \displaystyle \frac{1}{1-z} & z = 1 - \displaystyle \frac{1}{G} \\ G(z) \to 0 & \mathrm{as} & \operatorname{Re}(z) \to -\infty \end{array}$$

so BE is L-stable.

3.2 Runge-Kutta methods: – Multistage one step methods

- Can use more than 1 function evaluation (i.e., of f) per timestep.
- Idea: Use weighted average for gradients over the interval $[x_k, x_{k+1}]$ to achieve a greater accuracy when stepping from x_k to x_{k+1} .

RK2: Runge-Kutta method for order 2

Assume

$$y_{k+1} = y_k + ahf(x_k, y_k) + bhf(x_k + \alpha h, y_k + \beta hf(x_k, y_k))$$

= $y_k + (a + b)hf(x_k, y_k) + bh^2(\alpha f_x + \beta f f_y)\Big|_k$
 $+bh^3\left(\frac{\alpha^2}{2}f_{xx} + \alpha\beta f f_{xy} + \frac{\beta^2}{2}f^2 f_{yy}\right) + O(h^4)$

Now TS:

$$y_{k+1} = y_k + hf_k + \frac{h^2}{2} \left(f_x + f_y \right) \Big|_k + \frac{h^3}{3!} \left(f_{xx} + 2f f_{xy} + f_x f_y + f_y^2 + f^2 f_{yy} \right) + \dots$$

To agree with TS up to order 2 we have

$$\boxed{a+b=1,\,\alpha b=1/2=\beta b}\qquad T_n(h)=O(h^2)$$

(I). $a = 1/2 \Rightarrow b = 1/2 \Rightarrow \alpha = \beta = 1$ which is just the improved Euler method.

Convenient form:

$$m_1 = f(x_k, y_k) \qquad m_2 = f(x_{k+1}, y_k + hm_1)$$

$$y_{k+1} = y_k + \frac{h}{2}(m_1 + m_2).$$

(II).

$$a = 0 \rightarrow b = 1, \quad \alpha = 1/2 = \beta$$
 The Modified Euler Method.
 $y_{k+1} = y_k + hf(x_k + \frac{1}{2}h, \quad y_k + \frac{1}{2}hf(x_k, y_k))$

RK3: $Y_{k+1} = Y_k + \frac{h}{6}(m_1 + 4m_3 + m_2) + O(h^4)$

$$m_1 = f(x_k, Y_k)$$

$$m_2 = f(x_k + h, Y_k + hm_1)$$

$$m_3 = f(x_k + \frac{h}{2}, Y_k + \frac{h}{4}(m_1 + m_2))$$

Demonstration that the method is $O(h^3)$ using the model problem. Consider $y' = \lambda y$.

$$y_{k+1} = y_k + \frac{h}{6} \left\{ \lambda y_k + 4\lambda \left[y_k + \frac{h}{4} \left(\lambda y_k + \lambda \left(y_k + h\lambda y_k \right) \right) \right] + \lambda \left(y_k + h\lambda y_k \right) \right\}$$

$$= y_k + \frac{h}{6} \left\{ \left(\lambda y_k + 4\lambda y_k + \lambda y_k \right) + 3h^2 \lambda^2 y_k + (h\lambda)^3 y_k \right\}$$

$$= \left[1 + (h\lambda) + \frac{(h\lambda)^2}{2} + \frac{(h\lambda)^3}{6} \right] y_k.$$

RK4:
$$y_{k+1} = y_k + \frac{h}{6} [m_1 + 2m_2 + 2m_3 + m_4] + O(h^5)$$

where

$$m_{1} = f(x_{k}, y_{k})$$

$$m_{2} = f\left(x_{k} + \frac{h}{2}, y_{k} + \frac{m_{1}}{2}h\right)$$

$$m_{3} = f\left(x_{k} + \frac{h}{2}, y_{k} + \frac{m_{2}}{2}h\right)$$

$$m_{4} = f\left(x_{k} + h, y_{k} + hm_{3}\right)$$

agrees with TS up to ${\cal O}(h^4)$

$$T_n(h) = O(h^4)$$

Note: For RK the order $\neq \#$ of function evaluations.

# of Function Evaluations	Order of Method
2	2
3	3
4	4
5	4
6	5
7	6
n > 8	n-2