

- FE: If we were to use the FE method in the useful regime we would requre $-2<h \lambda_{k}<0$

$$
\begin{aligned}
\lambda_{1}=-1 & \Rightarrow h<2 \\
\lambda_{2}=-100 & \Rightarrow h<1 / 50
\end{aligned}
$$

We do not particularly care about y since it decays to zero very rapidly but we are more interested in x which persists much longer. But to compute the system stably we woud need very small time-steps - bad news; it will take forever.

- What about using the Trapezoidal Rule so we don't have to worry about the timestep?

Say $\operatorname{Re}(\lambda) \rightarrow-\infty$ and let us look at $G(z)=\frac{1+z / 2}{1-z / 2}$ in the case $\operatorname{Re}(\lambda) \rightarrow-\infty$.
Let $z=\alpha+i \beta$ and let β be fixed.

$$
|G(z)|=\frac{|1+z / 2|}{|1-z / 2|}=\frac{\sqrt{(1+\alpha / 2)^{2}+(\beta / 2)^{2}}}{\sqrt{(1-\alpha / 2)^{2}+(\beta / 2)^{2}}} \quad \stackrel{\alpha \rightarrow-\infty}{\longrightarrow} 1
$$

solution will oscillate but will not decay!
But e^{z}, which $G(z)$ is supposed to approximate, is such that $e^{z} \rightarrow 0$ as $\operatorname{Re}(z) \rightarrow-\infty$.
L-Stability: A numerical method for which $G(z) \rightarrow 0$ as $\operatorname{Re}(z) \rightarrow-\infty$ is said to be L-stable or has strong decay.
-Example of an L-stable method: - the Backward Euler Scheme: (BE)

$$
Y_{n+1}=Y_{n}+h f\left(x_{n+1}, Y_{n+1}\right)
$$

For model problem:

$$
\begin{aligned}
& Y_{n+1}=Y_{n}+h \lambda Y_{n+1} \\
& Y_{n+1}=\frac{1}{(1-h \lambda)} Y_{n}=G(h \lambda) Y_{n} \\
& G(z)=\frac{1}{1-z} \\
& G(z) \rightarrow 0 \text { as } \\
& G e(z) \rightarrow-\infty
\end{aligned}
$$

so BE is L-stable.

3.2 Runge-Kutta methods: - Multistage one step methods

- Can use more than 1 function evaluation (i.e., of f) per timestep.
- Idea: Use weighted average for gradients over the interval $\left[x_{k}, x_{k+1}\right]$ to achieve a greater accuracy when stepping from x_{k} to x_{k+1}.

RK2: Runge-Kutta method for order 2
Assume

$$
\begin{aligned}
y_{k+1}= & y_{k}+a h f\left(x_{k}, y_{k}\right)+b h f\left(x_{k}+\alpha h, y_{k}+\beta h f\left(x_{k}, y_{k}\right)\right) \\
= & y_{k}+ \\
& (a+b) h f\left(x_{k}, y_{k}\right)+\left.b h^{2}\left(\alpha f_{x}+\beta f f_{y}\right)\right|_{k} \\
& +b h^{3}\left(\frac{\alpha^{2}}{2} f_{x x}+\alpha \beta f f_{x y}+\frac{\beta^{2}}{2} f^{2} f_{y y}\right)+O\left(h^{4}\right)
\end{aligned}
$$

Now TS:

$$
y_{k+1}=y_{k}+h f_{k}+\left.\frac{h^{2}}{2}\left(f_{x}+f f_{y}\right)\right|_{k}+\frac{h^{3}}{3!}\left(f_{x x}+2 f f_{x y}+f_{x} f_{y}+f f_{y}^{2}+f^{2} f_{y y}\right)+\ldots
$$

To agree with TS up to order 2 we have

$$
a+b=1, \alpha b=1 / 2=\beta b \quad T_{n}(h)=O\left(h^{2}\right)
$$

(I). $a=1 / 2 \Rightarrow b=1 / 2 \Rightarrow \alpha=\beta=1$ which is just the improved Euler method.

Convenient form:

$$
\begin{aligned}
m_{1} & =f\left(x_{k}, y_{k}\right) \quad m_{2}=f\left(x_{k+1}, y_{k}+h m_{1}\right) \\
y_{k+1} & =y_{k}+\frac{h}{2}\left(m_{1}+m_{2}\right) .
\end{aligned}
$$

(II).

$$
\begin{aligned}
a=0 & \rightarrow b=1, \quad \alpha=1 / 2=\beta \quad \text { The Modified Euler Method. } \\
y_{k+1} & =y_{k}+h f\left(x_{k}+\frac{1}{2} h, \quad y_{k}+\frac{1}{2} h f\left(x_{k}, y_{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Convenient form } & \\
m_{1} & =f\left(x_{k}, y_{k}\right) \\
m_{2} & =f\left(x_{k}+\frac{1}{2} h, y_{k}+\frac{h}{2} m_{1}\right) \\
y_{k+1} & =y_{k}+h m_{2}
\end{aligned}
$$

RK3: $Y_{k+1}=Y_{k}+\frac{h}{6}\left(m_{1}+4 m_{3}+m_{2}\right)+O\left(h^{4}\right)$

$$
\begin{aligned}
m_{1} & =f\left(x_{k}, Y_{k}\right) \\
m_{2} & =f\left(x_{k}+h, Y_{k}+h m_{1}\right) \\
m_{3} & =f\left(x_{k}+\frac{h}{2}, Y_{k}+\frac{h}{4}\left(m_{1}+m_{2}\right)\right)
\end{aligned}
$$

Demonstration that the method is $O\left(h^{3}\right)$ using the model problem. Consider $y^{\prime}=\lambda y$.

$$
\begin{aligned}
y_{k+1} & =y_{k}+\frac{h}{6}\left\{\lambda y_{k}+4 \lambda\left[y_{k}+\frac{h}{4}\left(\lambda y_{k}+\lambda\left(y_{k}+h \lambda y_{k}\right)\right)\right]+\lambda\left(y_{k}+h \lambda y_{k}\right)\right\} \\
& =y_{k}+\frac{h}{6}\left\{\left(\lambda y_{k}+4 \lambda y_{k}+\lambda y_{k}\right)+3 h^{2} \lambda^{2} y_{k}+(h \lambda)^{3} y_{k}\right\} \\
& =\left[1+(h \lambda)+\frac{(h \lambda)^{2}}{2}+\frac{(h \lambda)^{3}}{6}\right] y_{k}
\end{aligned}
$$

RK4: $y_{k+1}=y_{k}+\frac{h}{6}\left[m_{1}+2 m_{2}+2 m_{3}+m_{4}\right]+O\left(h^{5}\right)$
where

$$
\begin{aligned}
& m_{1}=f\left(x_{k}, y_{k}\right) \\
& m_{2}=f\left(x_{k}+\frac{h}{2}, y_{k}+\frac{m_{1}}{2} h\right) \\
& m_{3}=f\left(x_{k}+\frac{h}{2}, y_{k}+\frac{m_{2}}{2} h\right) \\
& m_{4}=f\left(x_{k}+h, y_{k}+h m_{3}\right)
\end{aligned}
$$

agrees with TS up to $O\left(h^{4}\right)$
$T_{n}(h)=O\left(h^{4}\right)$

Stability region for RK methods:

$$
\begin{aligned}
\lambda & =|\lambda| e^{i \phi} \\
y_{k+1} & =\left[1+h \lambda+\frac{(h \lambda)^{2}}{2}+\ldots+\frac{(h \lambda)^{P}}{P!}\right] y_{k} \\
\theta & =1+(h \lambda)+\ldots+\frac{(h \lambda)^{P}}{P!}
\end{aligned}
$$

$$
\begin{aligned}
\theta & =1+r e^{i \phi}+\frac{r^{2}}{2} e^{i 2 \phi}+\ldots+\frac{r^{P}}{P!} e^{i P \phi} \\
r & =h|\lambda|
\end{aligned}
$$

Note: For RK the order $\neq \#$ of function evaluations.
\# of Function Evaluations Order of Method

2	2
3	3
4	4
5	4
6	5
7	6
$n>8$	$n-2$

