Stability Region of the Improved Euler - RK2:

Consider the model problem $y^{\prime}=\lambda y, y(0)=1, y=e^{\lambda x}$.

$$
\begin{aligned}
& Y_{n+1}=Y_{n}+\frac{h}{2}\left[\lambda Y_{n}+\lambda\left\{Y_{n}+h \lambda Y_{n}\right\}\right] \\
& Y_{n+1}=\left[1+h \lambda+\frac{(h \lambda)^{2}}{2}\right] Y_{n} \approx e^{h \lambda} Y_{n}
\end{aligned}
$$

(Note: With Taylor Series up to $\mathrm{O}\left((h \lambda)^{n}\right)$ - Be careful if you try to infer the error by looking at $G(z)=1+z+z^{2} / 2$ since we would be ignoring the time stepping part.)

The growth factor is $G(\lambda h)=1+h \lambda+\frac{(h \lambda)^{2}}{2}$
For stability we require $|G(\lambda h)|<1$
Stability region by a conformal map:
Let $G=1+z+\frac{z^{2}}{2} \quad z=\lambda h$
$\therefore z=-1 \pm \sqrt{2 G-1}$

Stability Region of the Trapezoidal Scheme: $Y_{k+1}=Y_{k}+\frac{h}{2}\left[f\left(x_{n}, Y_{n}\right)+f\left(x_{n+1}, Y_{n+1}\right)\right]$
Consider the model problem $y^{\prime}=\lambda y \quad y(0)=y_{0}$.

$$
\begin{aligned}
Y_{k+1} & =Y_{k}+\frac{h}{2}\left[\lambda Y_{k}+\lambda Y_{k+1}\right] \\
& \therefore\left(1-\frac{h \lambda}{2}\right) Y_{k+1}=\left(1+\frac{h \lambda}{2}\right) Y_{k} \\
Y_{k+1} & =\frac{(1+h \lambda / 2)}{(1-h \lambda / 2)} Y_{k}=G(h \lambda) Y_{k} \text { where } G(h \lambda)=\frac{1+h \lambda / 2}{1-h \lambda / 2}
\end{aligned}
$$

- Note: $e^{z} \simeq G(z)=\frac{1+z / 2}{1-z / 2}$ is the $(1,1)$ Padé Approximation of e^{z}.

$$
e^{z}=\frac{1+a_{1} z+\ldots+a_{n} z^{m}}{1+b_{1} z+\ldots+b_{n} z^{n}} \text { is the }(m, n) \text { Padé approximant. }
$$

Stability: For stability we require that $|G(h \lambda)|<1$.

$$
\begin{aligned}
G(z) & =\frac{1+z / 2}{1-z / 2}=\frac{2+z}{2-z} \\
1>|G(z)| & =\frac{|z+2|}{|z-2|} \Rightarrow|z-2|>|z+2|
\end{aligned}
$$

- The Trapezium Rule is A-stable but it is more expensive to compute with it since it is implicit.

Alternatively using a conformal map:

$$
G=\frac{2+z}{2-z} \Rightarrow(2-z) G=2+z \Rightarrow 2(G-1)=z(1+G) \Rightarrow z=2 \frac{(G-1)}{(G+1)}
$$

General Implicit Method - θ method

$$
Y_{n+1}=Y_{n}+h\left[(1-\theta) f\left(x_{n}, Y_{n}\right)+\theta f\left(x_{n+1}, Y_{n+1}\right)\right]
$$

$\theta=0:$	Forward Euler / Explicit Euler	$G=1+z$	$(1,0)$ Padé approx. to $e^{z / 2}$
$\theta=1 / 2:$	Trapezoidal Rule	$G=\frac{1+z / 2}{1-z / 2}$	$(1,1)$ Padé approx. to $e^{z / 2}$
$\theta=1:$	Backward Euler /Implicit Euler	$G=\frac{1}{1-z}$	$(0,1)$ Padé approx. to $e^{z / 2}$.

Truncation Error: Let $y_{n}^{\prime}=f\left(x_{n}, y_{n}\right)$

$$
\begin{aligned}
T_{n}(h) & =\frac{y_{n+1}-y_{n}}{h}-\left[(1-\theta) f\left(x_{n}, y_{n}\right)+\theta f\left(x_{n+1}, y_{n+1}\right)\right] \\
& =\frac{y_{n}+h y_{n}^{\prime}+\frac{h^{2}}{2} y_{n}^{\prime \prime}+\frac{h^{3}}{3!} y_{n}^{\prime \prime \prime}+\ldots-y_{n}}{h}-\left[(1-\theta) f_{n}+\theta\left[f_{n}+\left.h\left(f_{x}+f f_{y}\right)\right|_{x_{n}}+O\left(h^{2}\right)\right]\right] \\
& =\left(y_{n}^{\prime}-f_{n}\right)+\frac{h}{2}\left(y_{n}^{\prime \prime}-\left.2 \theta\left(f_{x}+f f_{y}\right)\right|_{x_{n}}\right)+O\left(h^{2}\right) \\
& = \begin{cases}O(h) & \theta \neq 1 / 2 \\
O\left(h^{2}\right) & \theta=1 / 2 .\end{cases}
\end{aligned}
$$

Note:

- An explicit method cannot be A-stable.
- The order of an A-stable implicit method cannot exceed 2.
- The second order A-stable implicit method with the smallest error constant is the trapezoidal rule.
- Looks like the TR is a winner but there is an important class of problems for which TR gives poor results - stiff systems.

Stiff Systems:

Example:

- FE: If we were to use the FE method in the useful regime we would requre $-2<h \lambda_{k}<0$

$$
\begin{aligned}
\lambda_{1}=-1 & \Rightarrow h<2 \\
\lambda_{2}=-100 & \Rightarrow h<1 / 50
\end{aligned}
$$

We do not particularly care about y since it decays to zero very rapidly but we are more interested in x which persists much longer. But to compute the system stably we woud need very small time-steps - bad news; it will take forever.

- What about using the Trapezoidal Rule so we don't have to worry about the timestep?

Say $\operatorname{Re}(\lambda) \rightarrow-\infty$ and let us look at $G(z)=\frac{1+z / 2}{1-z / 2}$ in the case $\operatorname{Re}(\lambda) \rightarrow-\infty$.
Let $z=\alpha+i \beta$ and let β be fixed.

$$
|G(z)|=\frac{|1+z / 2|}{|1-z / 2|}=\frac{\sqrt{(1+\alpha / 2)^{2}+(\beta / 2)^{2}}}{\sqrt{(1-\alpha / 2)^{2}+(\beta / 2)^{2}}} \quad \stackrel{\alpha \rightarrow-\infty}{\longrightarrow} 1
$$

solution will oscillate but will not decay!
But e^{z}, which $G(z)$ is supposed to approximate, is such that $e^{z} \rightarrow 0$ as $\operatorname{Re}(z) \rightarrow-\infty$.
L-Stability: A numerical method for which $G(z) \rightarrow 0$ as $\operatorname{Re}(z) \rightarrow-\infty$ is said to be L-stable or has strong decay.
-Example of an L-stable method: - the Backward Euler Scheme: (BE)

$$
Y_{n+1}=Y_{n}+h f\left(x_{n+1}, Y_{n+1}\right)
$$

For model problem:

$$
\begin{aligned}
& Y_{n+1}=Y_{n}+h \lambda Y_{n+1} \\
& Y_{n+1}=\frac{1}{(1-h \lambda)} Y_{n}=G(h \lambda) Y_{n} \\
& G(z)=\frac{1}{1-z} \\
& G(z) \rightarrow 0 \text { as } \\
& \operatorname{Re}(z) \rightarrow-\infty
\end{aligned}
$$

so BE is L-stable.

