
Initial Value ODE

Consider the system of nonlinear ODE with prescribed initial value.

y′ = f(x, y(x))
y(a) = y0 initial conditions

}
(1) y ∈ IRn

Note:

1. If f ∈ C1 then (1) has a unique solution

2. The behavior of errors in the numerical solution of (1) is related to the behavior of the
linearized eq: Let ȳ(x) be some nominal solution and δy a perturbation . Then

y(x) = ȳ(x) + δy(x)
y′ = (ȳ + δy)′ = f(x, ȳ + δy)

ȳ′ + δy′ = f(x, ȳ) +
∂f

∂y
(x, ȳ)δy

δy′ =
∂f

∂y
(x, ȳ)δy = A(x)δy (∗)

∂f

∂y
(x, ȳ) = the Jacobian matrix of f(x, y).

3. The Model Problem:

Assume A(x) = A (a constant in time) and that A has N distinct eigenvalues λj and N
independent eigenvectors. Then by making a change of variables

δy = Pz P = [v1|v2| . . . |vN ]

We can rewrite (*) in the form
z′ = Dz

where

D =

⎡
⎢⎣

λ1 0
. . .

0 λN

⎤
⎥⎦

So the equations for z are decoupled into the form

z′h = λjz j = 1, . . . , N

Scalar Model Problem:
We consider the scalar model problem
y′ = λy, y(0) = y0

with the exact solution y = y0e
λx.

Note: If Re(λ) > 0 solutions grow exponentially.

If Re(λ) < 0 solutions decay exponentially.
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Consequence for system of ODE:

• If
∂f

∂y
(x, y(x)) = A(x) has eigenvalues all of whose

real parts are negative then errors will decay exponentially with time.

• If any one eigenvalue of A(x) has a positive real part,
then errors will grow exponentially with time.

Schemes to solve the scalar initial value problem:

Consider

y′ = f(x, y) y ∈ R

y(0) = y0

1. The Taylor Series Method:

y(xn+1) = y(xn) + hy′(xn) + · · · + hr

r!
y(r)(xn) +

hr+1

(r + 1)!
y(r+1)(ξ)

Now y′ = f(x, y(x))
y′′ = fx(x, y) + fyy

′ = fx + ffy

Eg: y′ = λy, y(0) = y0

y′′ = λy′ = λ2y

y(r) = λy(r−1) = · · · = λry

∴ yn+1 = yn + hλyn + · · · + (hλ)r

r!
yn + · · ·

=
(

1 + (hλ) + · · · + (hλ)r

r!
+ · · ·

)
yn = eλhyn

yn+1

xn+1xn

yn

ξ

Note:

(1) By truncating the Taylor series at the rth term, we obtain an approximation of O(hr)–
derivative evaluation tedious.

(2) The accuracy of a numerical scheme is determined by the number of terms of agreement
with the Taylor Series when the exact solution of the ODE is substituted into the difference
equation.

(3) Many numerical schemes can be interpreted as giving different approximations to eλh when
they are applied to the model problem.
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2. The forward Euler Method – A prototype ODE solver:

Idea: Truncate the Taylor series after the linear term and avoid having to take higher derivatives.

yn+1 = yn + hy′n + O(h2)
= yn + hf(xn, yn) + O(h2)

Euler’s Method:
Yn+1 = Yn + hf(xn, Yn)

Y0 = y0

Where Yn � y(xn)
Difference equation

Alternative Derivation 1: Using the forward difference approx. to y′:

yi+1 − yi

h
= y′i + Mh

Yi+1 − Yi

h
= f(xi, Yi)

M depends on y′′.

xi xi+1

Yi+1

Yi

y(x)

h

Alternative Derivation 2:

y′ = f(x, y(x))

y(xn+1) = y(xn) +

xn+1∫
xn

f(s, y(s)) ds

Yn+1 = Yn + h f(xn, Yn)
Left hand approximate integration

f(x, y(x))

xn xn+1

x

NOTE:

1. The Forward Euler (FE) is explicit because all the information to proceed from the nth step
to the (n+1)th step is known. Contrast this with Yn+1 = Yn +h f(xn+1, Yn+1) which involves
solving a nonlinear equation at each time step.

2. The Euler method involves a difference equation that can be thought of as a model for
y′ = f(x, y).

Truncation error:

The Truncation Error is the term that remains when you plug the exact solution to y′ = f(x, y)
into the difference scheme.
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