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Robust and practical analog-to-digital conversion
with exponential precision

Ingrid Daubechies and̈Ozgür Yılmaz

Abstract

Beta-encoders with error correction were introduced by Daubechies, DeVore, Güntürk and Vaishampayan as an
alternative to PCM for analog-to-digital conversion. A beta-encoder quantizes a real number by computing one of
its N -bit truncatedβ-expansions whereβ ∈ (1, 2) determines the base of expansion. These encoders have (almost)
optimal rate-distortion properties like PCM; furthermorethey exploit the redundancy of beta-expansions and thus
they are robust with respect to quantizer imperfections. However, these encoders have the shortcoming that the
decoder needs to know the value of the base of expansionβ, a gain factor in the circuit used by the encoder,
which is an impractical constraint. We present a method to implement beta-encoders so that they are also robust
with respect to uncertainties of the value ofβ. The method relies upon embedding the value ofβ in the encoded
bitstream. We show that this can be done without a priori knowledge ofβ by the transmitting party. Moreover the
algorithm still works if the value ofβ changes (slowly) during the implementation.

Index Terms

A/D conversion, beta-encoders, beta-expansions, quantization, sampling, sigma-delta

I. INTRODUCTION

Analog-to-digital (A/D) conversion consists of two steps:samplingand quantization. We shall assume thatf ,
the analog signal of interest, is a bandlimited function, i.e., its Fourier transform̂f vanishes outside a bounded
interval. In this case, the standard sampling theorem states that we can reconstruct the signal from its sample values
on a sufficiently dense grid. In particular, if the support off̂ is contained in[−Ω,Ω], the sequence{f(nπ/Ω)}n∈Z

determinesf via

f(t) =
∑

n

f(
nπ

Ω
) sinc (

Ωt

π
− n). (1)

In practice, (1) is not very useful because the “sinc kernel”decays slowly, and thus the reconstruction is not local.
However, we can overcome this problem by sampling on a densergrid, in which case we can replace the sinc in
(1) by a kernel with much faster decay. In particular, if instead of the sample sequence{f(nπ/Ω)}n∈Z the more
closely-spaced samples{f(nπ/(λΩ))}n∈Z (with λ > 1) are used, (1) can be replaced by

f(t) =
1

λ

∑

n

f(
nπ

λΩ
) ϕ(

Ωt

π
−

n

λ
), (2)

whereϕ is any function such that̂ϕ(ξ) = 1 for |ξ| ≤ Ω and ϕ̂(ξ) = 0 for |ξ| ≥ λΩ. If, in addition, we chooseϕ
such thatϕ̂ is smooth,ϕ will have the desired decay properties.

The second step in A/D conversion isquantization, which will be our focus in this paper. Quantization is the
replacement of the sample valuesf(nπ/(λΩ)) in the reconstruction formula (2) by numbers from a discrete(usually
finite) set. Unlike sampling, quantization is not an invertible operation. Therefore, aquantization schemeis usually
described by a pair of mappings, an encoderE and a decoderD. The encoderE maps functions of interest to
bitstreams; the decoderD aims to invertE as “closely” as possible. In general, however,D(Ef) 6= f .
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In this paper, we focus on quantization algorithms for functions in S(Ω,M), the class of functions inL2(R)
with L∞-norm bounded byM , and with Fourier transforms supported in[−Ω,Ω]. When considering functions in
S(Ω,M) we shall refer to any interval of lengthπ/Ω as aNyquist interval. In what follows we shall consider,
without loss of generality, only the caseΩ = π andM = 1, and denoteS(π, 1) by S. For any quantization scheme,
or, equivalently, for any encoder-decoder pair(E,D), we define thedistortion d by

d(S;E,D) := sup
f∈S

‖f − D(Ef)‖ (3)

where‖ · ‖ is the norm of interest. The performance of a quantization scheme onS is typically characterized by
the relation between the distortiond and the numberB of bits per Nyquist interval consumed (on average) by
the encoderE associated with the quantization scheme; we call this number the bit budgetof the quantization
scheme. A typical way of comparing the performances of two quantization schemes is to compare the bit budgets
they utilize to produce approximations with the same amountof distortion; if no other considerations prevail, the
quantization scheme with the smaller bit budget is superior, and is preferable. Equivalently, one might compare
the distortions associated with several quantization schemes for the same fixed bit budget; in this case, the scheme
with the smaller distortion is favored.

One widely used quantization scheme ispulse code modulation(PCM). Given a functionf in S, anN -bit PCM
algorithm simply replaces each sample valuef(n/λ) with N bits: one bit for its sign, followed by the firstN − 1
bits of the binary expansion of|f(n/λ)|. One can show that for signals inS this algorithm achieves a precision
of order O(2−N ); i.e., for f in S, the distortiond(f ;E,D) ≤ C2−N when (E,D) is the encoder-decoder pair
associated with anN -bit PCM, and when the norm‖ · ‖ to measure the distortion is either theL∞ norm onR, or
the limit, asT → ∞, of the normalizedL2-norm (2T )−1/2‖ · ‖L2(−T,T ). This can also be rephrased in terms of the
bit-budget: since the average number of bits per Nyquist interval isB := Nλ, we haved(f,E,D) ≤ Cλ2−B/λ for
f ∈ S, whereλ > 1 can be chosen arbitrarily, withCλ ≤ C ′(λ − 1)−1/2 tending to∞ asλ → 1.

On the other hand,sigma-delta modulation, another commonly implemented quantization algorithm forfunctions
in S, achieves a precision that decays like only an inverse polynomial in the bit budgetB. For example, akth-order
sigma-delta scheme produces an approximation where theL∞ approximation error (i.e., distortion) is of order
O(B−k).

Despite their clearly inferior performance in terms of distortion for a given bit budget, sigma-delta modulators
are oftenpreferredover PCM for A/D conversion of audio signals in practice. This must mean that other factors are
more important. A plausible explanation for the prevalenceof sigma-delta modulators is given by the robustness
properties of these schemes, when implemented in analog circuits. Every quantization scheme for analog-to-digital
conversion must contain (at least one) nonlinear “decisionelement” that “performs the quantization”, i.e., transforms
its real number input into an element of a (finite) alphabet; we shall call this nonlinear element thequantizer,
reserving this name for this use only. These quantizers are bound to be imprecise, i.e., the location of their “toggle
point(s)” is typically not known with high precision. Underthese circumstances, PCM performs poorly whereas
the distortion associated with a sigma-delta scheme is hardly affected at all [1]; more precisely, the error made by
a PCM quantization scheme with an imprecise quantizer is bounded below by a strictly positive constant (directly
related to the measure of imprecision of the quantizer), whereas the error made by akth order sigma-delta scheme
still decays likeB−k, and therefore can be made arbitrarily small despite the imprecision in the quantizer.

One of several reasons why sigma-delta schemes are robust isthat they quantize redundant expansions of the
original function. Since redundant expansions are not unique, any error caused by an imprecise quantizer can be
implicitly corrected later. This is clearly not the case forPCM, since the binary expansion of almost every real
number is unique, and therefore a bit flip in the expansion cannot be corrected by changes in the consecutive bits.
For a detailed discussion of robustness properties of sigma-delta schemes as well as a comparison with PCM, we
refer to [2], [3], [1], [4].

It is natural to wonder whether we can have the best of both worlds. In other words, can we construct a
quantization algorithm that utilizes the bit-budget efficiently, like PCM, but that is at the same time robust with
respect to unavoidable imprecision errors in the (analog) circuit implementation, like sigma-delta modulators? In
[1] two quantization schemes are discussed that show that the answer to this question is affirmative: a modified,
filtered sigma-delta scheme, first proposed in [5], and a scheme that is introduced in [1] for the first time (as far as
we know), called a “beta-encoder with error correction”. These beta-encoders are PCM-like in that they quantize
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each sample finely and achieve exponential precision for theresulting approximation; moreover they are robust,
like sigma-delta schemes, because this fine quantization isdone in a redundant way.

Although the encoders discussed in [1] are robust against quantizer imperfections, they nevertheless still have
certain robustness problems, at least from a practical point of view. Both of them use other parameters (the filter
parameters for the scheme of [5], the factorβ used in the beta-encoder) that need to be implemented with high
accuracy. In this paper, we shall discuss this issue furtherfor beta-encoders.

The beta-encoder of [1], which we outline in Section II, computes a “truncatedβ-ary expansion” for each sample
value, i.e., a series expansion in a baseβ, where1 < β < 2, and with binary coefficients. In order to reconstruct a
good approximation to the original signal value from these binary coefficients, it is crucial to know the value ofβ,
with a precision comparable to at least the one we hope the quantization scheme to achieve. However, measuring the
exact value ofβ as well as ensuring that it stays constant over a long stretchof time is difficult, if not impossible,
in an analog setting.

In this paper, we show how this obstacle can be circumvented.We present an algorithm that encodes and transmits
the value ofβ without in fact physically measuring its value. This is doneby embedding the value ofβ in the
encoded bitstream for each sample value separately. Thus weconstruct a beta-encoder that is not only robust to
quantizer imperfections, but also robust with respect toβ, as long as the value ofβ remains constant or varies
sufficiently slowly that it does not change by more than the desired precision range of the quantization scheme
over, say, twenty sampling intervals.

In Section II we outline the “beta-encoders with error correction”, introduced in [1]. In Section III we present our
“beta-robust” approach and prove that it has the robustnessproperties discussed above. In Section IV we present
numerical examples and consider some variations to our approach that address other robustness concerns.

II. REVIEW OF BETA-ENCODERS

In this section, we summarize certain properties of beta-encoders with error correction. See [1] for more details.
We start again from the observation that any functionf ∈ S can be reconstructed from its sample valuesf(n/λ)
via

f(t) = λ−1
∑

n

f(
n

λ
) ϕ(t −

n

λ
). (4)

whereλ > 1 andϕ ∈ C∞, such thatϕ̂(ξ) = 1 for |ξ| ≤ π and ϕ̂(ξ) = 0 for |ξ| ≥ λπ.

Proposition 1. Let f ∈ S, ǫ > 0 and consider any quantization scheme that producesqn such thatsup |f(n/λ)−
qn| ≤ ǫ. Then the approximatioñf , defined as

f̃(t) := λ−1
∑

n

qn ϕ(t −
n

λ
) (5)

satisfies
|f(t) − f̃(t)| ≤ λ−1

∑

n

ǫ |ϕ(t −
n

λ
)| ≤ Cϕ ǫ (6)

whereCϕ := ‖ϕ‖L1 + λ−1‖ϕ′‖L1

Proposition 1 shows, for example, that if theqn are produced by anN -bit PCM algorithm, then the functioñf
defined by (5) satisfies

‖f − f̃‖L∞ ≤ Cϕ2−N+1, (7)

because, by construction, anN -bit PCM generatesqn such that|f(n/λ) − qn| ≤ 2−N+1 for all n.
Next, we will consider, instead of truncated binary expansions, truncated 1-bitβ expansions of the sample values.

By a 1-bit β expansionwe mean an expansion with binary coefficients and baseβ ∈ (1, 2). For any real number
x ∈ [0, 1], and given1 < β ≤ 2, there exists a sequence(bj)j∈N, with bj ∈ {0, 1} such that

x =
∞
∑

j=1

bjβ
−j . (8)



4

Clearly, for β = 2, (8) corresponds to the binary expansion ofx; for 1 < β < 2, the expansion is said to be a
beta-expansion, and is not unique; in fact, for every1 < β < 2 and for almost everyx in (0, 1], the set of different
β expansions ofx has the cardinality of the continuum [6].

Given x ∈ [0, 1], one way to compute a binary sequence{bj} that satisfies (8) is to run the iteration

uj = β(uj−1 − bj−1)

bj = Q(uj) (9)

with u1 = βx, and

Q(u) :=

{

1 u > 1
0 u ≤ 1 .

(10)

The nonlinear operationQ in (10) is an idealized quantizer; in practice one has to dealwith quantizers that only
approximate this ideal behavior (see below). The samplesf(n/λ) of a functionf ∈ S will be real numbers in(−1, 1)
rather than(0, 1); we shall here perform a small “sleight of hand” and considerthe value-shifted and renormalized
function g = (f + 1)/2 instead, which does take values in(0, 1) only. Running (9)N times for each sample value
g(n/λ) = [1 + f(n/λ)]/2, wheref ∈ S, will yield an N -bit truncated beta-expansion{qn :=

∑N
j=1 bjβ

−j} that
will satisfy

|g(n/λ) − qn| < Cβ−N or |f(n/λ) − (2qn − 1)| < C ′β−N (11)

whereC ′ = 2C = 2/(β − 1). Thus, by Proposition 1, such a quantization scheme will yield an approximation to
f ∈ S with distortion of sizeO(β−N ).

Before defining the “beta-encoders with error correction” of [1], we want to repeat the key observation that is
used in [1] to construct these encoders.

Proposition 2. Let x ∈ (0, 1) and b1, b2, . . . , bJ be arbitrary such thatbj ∈ {0, 1}. If

0 ≤ x −
J

∑

j=1

bjβ
−j ≤

1

βJ(β − 1)
(12)

then there exists an extension{bj}
∞

j=J+1 such that

x =
∞
∑

j=1

bjβ
−j (13)

This is exactly where redundancy comes into play: Forβ = 2, the only way the bitsb1, . . . , bK can satisfy (12)
is by being the firstK bits of the binary expansion ofx. However, for1 < β < 2, this is not the case; one is
allowed to “undershoot” (i.e., put to0 some of the bitsbj = 1 in the beta-expansion produced by (9) ) as long as
(12) is satisfied. This means that the beta-encoder described by (9) is “semi-robust” in the sense that it can correct
quantizer errors that result from underestimating certainbit values in the expansion.

This feature has the following important consequence in practice. When the beta-encoder runs the iterative
algorithm (9) to quantize a real number, the specific form (10) for the quantizerQ is difficult to implement
precisely. A more realistic model is obtained by replacingQ in (9) with Q(· + δ) whereδ is a quantity that is
not known exactly, but over the magnitude of which we have some control, e.g.|δ| < ǫ for a knownǫ. We shall
call a quantization scheme “robust” if the worst approximation error it produces can be made arbitrarily small by
allowing a sufficiently large bit budget, even ifǫ > 0 is kept fixed. In the form described above, beta-encoders are
robust only for some rangeδcrit > δ ≥ 0 that is asymmetric with respect to0, which is the reason why we called
them semi-robust. (More precisely, later bitsbℓ, with ℓ > j, automatically rectify the error made by assigning a
value0 to a bj when the “ideal” value ofbj, according to (9), should have been1. The opposite error, in which
the value1 was erroneously assigned to abj that should have been0, does not get corrected by this scheme.)
In [1] a modified version of the algorithm described by the recursion in (9) is introduced, which remedies this
situation, i.e., it is robust for both positive and negativesmall δ. The basic strategy of [1] is to replaceQ in (9)
with Qµ := Q(· − µ), for some appropriateµ. This means that the quantizer prefers assigning 0 to assigning 1, in
those cases when perfect reconstruction with the remainingbits is not only possible but can even be done with a
comfortable margin . This way a range forδ can be determined, symmetric with respect to0, as specified below
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in Theorem 3, so that when the scheme is implemented withQµ(· − δ) instead ofQµ, one still has exponentially
precise reconstruction of the original sample value. More precisely,

Theorem 3. Let ǫ > 0 and x ∈ (0, 1). Suppose that in the beta-encoding ofx, the procedure(9) is followed, but
the quantizerQµ(· − δ) is used instead of the idealQ at each occurrence, with the values ofδ possibly varying
from onej to the next, but always satisfying|δ| < ǫ. Denote by(bj)j∈N the bit sequence produced by applying this
encoding to the numberx. If ǫ ≤ µ, andβ satisfies

1 < β <
2 + µ + ǫ

1 + µ + ǫ
, (14)

then for eachN ≥ 1,

|x −

N
∑

j=1

bjβ
−j | ≤ Cβ−N (15)

with C = 1 + µ + ǫ.

Theorem 3 is a slightly rephrased version of Theorem 4.1 in [1]; it shows that the “beta-encoder with offsetµ”
has the desired robustness properties with respect to the quantizer functionQµ. However, there isstill one parameter
in the iteration that must be known precisely to implement the “beta-encoder with offsetµ” and to reconstruct the
original signal from the encoded bitstream, namely the baseβ of the expansion. If we were to implement the
encoder in an analog setting, it seems that we would have two choices: either make sureβ has a precise value,
known to the decoding as well as the encoding party, or measure and transmitβ before sending the encoded bits.
Neither is feasible in practice: measuring the value ofβ physically and transmitting it separately is another potential
source for errors; moreover it would be very hard, if not impossible, to measureβ with great precision. On the
other hand, implementing the beta-encoder with offsetµ in hardware with aprecise and fixedβ would be as costly
as implementing a high-precision PCM. In the next section wepropose a way to circumvent this problem.

III. T HE APPROACH

In this section we present a way of implementing the beta-encoder with offsetµ in such a way that it is robust
with respect to the parameterβ. In particular, we shall construct an algorithm for which weshall prove that it is
possible to recover the value ofγ := β−1 from the encoded bitstream with exponential precision. An outline of
our algorithm is sketched in Figure 1.

Beta Encoder 

       with 

  unknown β

x

1-x

b1,b2,...,bN

c1,c2,...,cN

Beta Decoder

   with β=β
∼

 Beta Estimator

with exponential

     precision

β
∼

>

>

>

>

> >

>

∼
xN

>

Fig. 1. The algorithm. Using the bitstreams obtained by beta-encoding bothx ∈ (0, 1) and 1 − x, we estimate the value ofβ with
exponential precision. This estimated valueβ̃ is then used to decode. The resultingx̃N is an exponentially precise approximation ofx.
Here we assume thatβ remains constant during the encoding ofx and1− x, approximately on each sampling interval when quantizing the
samples of a bandlimited function.

A. Description of the Algorithm

DefineEµ
γ,δ as the mapping that maps eachx ∈ (0, 1) to the binary sequence(bj)

∞

j=1 generated by encodingx
using a beta-encoder withβ = γ−1 and with offsetµ that is implemented with an imperfect quantizerQµ(· − δ),
as described above. Our main lemma reads then as follows.
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Lemma 4. Let x ∈ (0, 1) and letγ = β−1 ∈ (1/2, 1) be such that(14) is satisfied, with0 < ǫ ≤ µ. Suppose|δ| < ǫ,
and define the sequencesb := Eµ

γ,δ(x) and c := Eµ
γ,δ(1 − x). Let N be such thatmax{bj , cj : j = 1, . . . , N} > 0.

Then, for anỹγ that satisfies

0 ≤ 1 −
N

∑

j=1

(bj + cj) γ̃j ≤ 2 C γ̃N , (16)

with C = 1 + µ + ǫ, we have
|γ − γ̃| ≤ C ′γN , (17)

whereC ′ = max{2C, 2C/(k0γ
(k0−1))} with k0 =

log( 1−γ

2
)

logγ .

We shall prove this lemma in several steps below. Before proceeding, we show that knowing the value ofγ with
exponential precision yields exponentially precise approximations.

Theorem 5. Let x ∈ (0, 1), γ ∈ (1/2, 1) and (bj)j∈N ∈ {0, 1} be such thatx =
∑

∞

j=1 bjγ
j. Supposẽγ is such that

|γ − γ̃| ≤ C1γ
N for some fixedC1 > 0. DefineN0 := log[(1−γ)/C1]

log γ , and η := C1γ
N0+1. Thenx̃N :=

∑N
j=1 bj γ̃

j

satisfies the inequalities

|x − x̃N | ≤

{

C1γ
N 1

1−(γ+η)2 , N ≥ N0 + 1

C1γ
NN2

0 (γ + C1γ)N0−1, 1 ≤ N ≤ N0.
(18)

Proof: We want to estimate

|x − x̃N | =

∣

∣

∣

∣

∣

∣

N
∑

j=1

bj(γ
j − γ̃j)

∣

∣

∣

∣

∣

∣

≤

N
∑

j=1

|γj − γ̃j | (19)

where we have used thatbj ∈ {0, 1}. Define nowfj(γ̃) := γ̃j − γj . Clearly, fj(γ) = 0; moreover the derivative
satisfies|f ′

j(γ̃)| = |jγ̃j−1| ≤ j(γ + ∆)j−1 for all γ − ∆ ≤ γ̃ ≤ γ + ∆, whereγ ∈ (1/2, 1) and∆ > 0. Therefore,

|fj(γ̃)| = |γ̃j − γj| ≤ ∆j(γ + ∆)j−1. (20)

We will now estimate the right hand side of (19) separately for the cases whenN is large and whenN is small:
1) Setting∆ = C1γ

N , and substituting (20) in (19), we get

|x − x̃N | ≤ C1γ
N

N
∑

j=1

j(γ + C1γ
N )j−1 (21)

=C1γ
N 1 − (γ + C1γ

N )N (1 + N(1 − (γ + C1γ
N )))

(1 − (γ + C1γN ))2
.

(22)

For N ≥ N0 + 1, C1γ
N ≤ C1γ

N0+1 = η; by its definitionη satisfiesη < 1 − γ, so that(γ + C1γ
N ) < 1.

We then rewrite (22) as

|x − x̃N | ≤ C1γ
N 1

(1 − (γ + C1γN ))2

≤ C1γ
N 1

(1 − (γ + η))2
,

which provides us with the desired bound.
2) Suppose that1 ≤ N ≤ N0, which means(γ + C1γ

N ) ≥ 1. Set again∆ = C1γ
N . For eachj = 1, . . . , N ,

we clearly have

|γ̃j − γj| ≤ C1γ
Nj(γ + C1γ

N )j−1

≤ C1γ
NN0(γ + C1γ)N0−1 (23)

where the second inequality holds becausej ≤ N ≤ N0 andN ≥ 1. Substituting (23) in (19), and using that
N ≤ N0 yields the desired estimate, i.e.,

|x − x̃N | ≤ γNC1N
2
0 (γ + C1γ)N0−1.
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Remarks:
1) Combining Lemma 4 and Theorem 5, we see that one can recoverthe encoded numberx ∈ (0, 1) from the

first N bits of Eµ
γ,δ(x) andEµ

γ,δ(1 − x), with a distortion that decreases exponentially asN increases.
2) Given N -bit truncated bitstreamsEµ

γ,δ(x) and Eµ
γ,δ(1 − x), one way to estimatẽγ is doing an exhaustive

search. Clearly this is computationally intensive. Note, however, that the search will be done in the digital
domain, where computational constraints are not heavy, andcomputation speed is high.

3) In Section IV-B we introduce a fast algorithm that can replace exhaustive search; moreover its performance
is as good as exhaustive search.

B. Proof of the Main Lemma

In what follows, we shall present several observations thatlead us to a proof of Lemma 4 at the end of the
section.

Proposition 6. Let β ∈ (1, 2), γ := 1/β, and x ∈ (0, 1). Supposeµ, ǫ, and δ are such that the conditions of
Theorem 3 are satisfied. Letb := Eµ

γ,δ(x) and c := Eµ
γ,δ(1 − x). Then

0 ≤ 1 −
N

∑

j=1

(bj + cj)γ
j ≤ 2CγN , (24)

whereC = 1 + µ + ǫ with |δ| < ǫ ≤ µ.

Proof: By Theorem 3, we know that

0 ≤ x −
N

∑

j=1

bjγ
j ≤ CγN , (25)

and

0 ≤ 1 − x −

N
∑

j=1

cjγ
j ≤ CγN (26)

hold. Combining (25) and (26) yields the result.

Note thatdj := bj +cj ∈ {0, 1, 2}. Moreover, the index of the first non-zero entry of{dj}
∞

j=1 cannot be arbitrarily
large; more precisely

Proposition 7. Let k := min{j : j ∈ N and dj 6= 0}. Then

k ≤
log(1−γ

2 )

log γ
. (27)

Proof: Let k be as defined above. Clearly, withdj = bj + cj as above,
∞
∑

j=k

djγ
j = 1. On the other hand, since

dj ∈ {0, 1, 2},
∞
∑

j=k

djγ
j ≤ 2

∞
∑

j=k

γj =
2γk

1 − γ
. (28)

Therefore, we have
2γk

1 − γ
≥ 1, (29)

which yields the desired result.
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Fig. 2. A sketch of the graph ofFn along withGn(t) = 2C(γ + t)n. Heren = 5, andFn was computed via (30) from the firstn bits of
the sequenceEµ

γ,δ(x) with x = 0.7, γ = 0.75, µ = 0.2, and |δ| < 0.1.

We now define

Fn(t) := 1 −

n
∑

j=k

dj(γ + t)j (30)

on [−γ,∞) for n = k, k + 1, . . . .

Proposition 8. Fn has the following properties:

(i) 0 ≤ Fn(0) ≤ 2Cγn.
(ii) Fn is monotonically decreasing. Moreover, the graph ofFn is concave for alln ∈ {2, 3, . . . }.

Proof:

(i) This is Proposition 6 restated.

(ii) First, note thatF ′

n(t) = −

n
∑

j=k

jdj(γ + t)j−1. Thus, sincedj ≥ 0 for all j, F ′

n(t) < 0 for t > −γ. Moreover,

a similar calculation shows that the second derivative ofFn is also negative. Therefore the graph ofFn is
concave.

Figure 2 shows a sketch of the graph ofFn. Define, as shown in Figure 2,t0 as the point at whichFn(t0) = 0.
Similarly, let t1 be such thatF (−t1) = 2C(γ − t1)

n. We will show that botht0 andt1 are at most of sizeO(γn),
which will lead us to our main result.

Lemma 9. Let Fn be as in (30) wheren ≥ k is a positive integer. Thent0, as defined above, satisfies

0 ≤ t0 ≤ C1γ
n, (31)

with C1 = 2C
kγk−1 whereC is as in Theorem3 and k is as in Proposition7.

Proof: SinceFn is deceasing andFn(0) ≥ 0, it follows that t0 ≥ 0. MoreoverFn(0) = Fn(0) − Fn(t0) =
|F ′

n(ξ)|t0 for someξ ∈ (0, t0), so that

t0 ≤ Fn(0)

[

inf
ξ∈(0,t0)

|F ′

n(ξ)|

]

−1

≤ 2Cγn|F ′

n(0)|−1 . (32)

Finally, sinceF ′

n(0) = −

n
∑

j=k

jdjγ
j−1 and sincedj ≥ 0, we have

|F ′

n(0)| ≥ kγk−1, (33)

wherek is as in Proposition 7. Combining (33) with (32) above yieldsthe result.
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Lemma 10. Let Fn be as in(30) wheren ≥ k is a positive integer. Thent1, as defined above, satisfies

0 ≤ t1 ≤ C1γ
n, (34)

with C1 = 2C
kγk−1 as in Lemma 9.

Proof: Let Gn(t) := 2C(γ+ t)n and recall thatFn(−t1) = Gn(−t1). Note, by Proposition 8,Fn(0) ≤ Gn(0).
Also, we haveFn(−γ) = 1 > Gn(−γ) = 0. Therefore, sinceFn is decreasing andGn is increasing on[−γ,∞),
we have−γ < −t1 ≤ 0, i.e., the first inequality in (34).

Next, note that becauseFn(−t1) = 2C(γ − t1)
n andFn(0) ≥ 0, we have

2C(γ − t1)
n = Fn(−t1) ≥ Fn(−t1) − Fn(0) = |F ′

n(ζ)|t1

for someζ ∈ (−t1, 0), so that

2C(γ − t1)
n ≥ t1 inf

ζ∈(−t1,0)
|F ′

n(ζ)|

= t1|F
′

n(−t1)| = t1

n
∑

j=k

jdj(γ − t1)
j−1

≥ t1k(γ − t1)
k−1. (35)

Now, sinceγ − t1 > 0, (35) implies

t1 ≤
2C

k
(γ − t1)

n−k+1. (36)

Finally, we conclude

t1 ≤
2C

kγk−1
γn (37)

since0 < γ − t1 ≤ γ andn ≥ k.

We are now ready to prove Lemma 4.

Proof: [Proof of Lemma 4] Letx, γ, µ, ǫ, b, c, andN be as in the statement of the Lemma. LetFN be as in
(30), and supposẽγ > 0 satisfies (16), which can be rewritten as

0 ≤ FN (γ̃ − γ) ≤ 2C(γ + (γ̃ − γ))N . (38)

By the monotonicity ofFN , proved in Proposition 8, this implies that

−t1 ≤ γ̃ − γ ≤ t0, (39)

wheret0 and t1 are as in Lemma 9 and Lemma 10, respectively. Thus, we have

|γ − γ̃| ≤ C1γ
N (40)

whereC1 = (2C)/(kγk−1) with k ≤
log( 1−γ

2
)

log γ =: k0 as in Proposition 7. Finally, since the functiong(x) := xγx−1

attains its only local maximum atx = 1/ log(γ−1) > 1, we conclude thatC1 ≤ max{2C, 2C/(k0γ
k0−1)} =: C ′.

IV. A LGORITHMS TO APPROXIMATEβ AND NUMERICAL EXPERIMENTS

In the previous section we showed that even whenβ is unknown (but fixed), it is possible to recover it with
exponential precision, and thus to reconstruct the samplesx, from their encoding, with exponential precision as
well. We did not yet address how to estimateβ, or ratherγ, in practice; this is the subject of the present section.
The first approach we present computesγ by carrying out an exhaustive search for the value(s)γ̃ that satisfy (16).
We carry out numerical experiments illustrating the discussion and touch upon some other robustness issues.
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Fig. 3. The performance of the algorithm when implemented using a precise beta-encoder with offsetµ = 0.2. (a) shows the error|γ− γ̃N |
whereγ̃N was computed from N-bit beta-expansions ofx = π/10 and1−x via an exhaustive search algorithm. (b) shows the approximation
error |x − x̃N | where x̃N was computed using the estimatedγ̃N along with the N-bit beta-expansion ofx.In both (a) and (b), the vertical
axes are logarithmic, and the straight lines are the graph of2CγN with C = 1 + µ.
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Fig. 4. The experiment of Figure 3 repeated; however this time an imperfect beta-encoder with offsetµ = 0.2 andǫ = 0.15 was used.(See
text.)

A. Exhaustive search, several robustness issues and numerical experiments

The algorithm that we presented in the previous section relies on the fact that the two transmitted bitstreams are
produced by quantizing bothx ∈ (0, 1) and1 − x using a beta-encoder with offsetµ with a fixed value ofβ. In
order to decode this information, so as to recoverx, it is clear that the decoder must evaluateγ or β (and probably
re-evaluate it every so often as the encoded samples are received). In this subsection, we assume this is done by
an exhaustive search for̃γN that satisfy (16). We show the results of numerical experiments for x = π/10 and
γ = 0.75 (unless otherwise noted). We denote byx̃N the approximation ofx produced by combining the original
N-bit truncated beta-expansion coefficientsbn of x with powers of the estimated valuẽγN of γ, as in Theorem 5.
We use these numerical examples to illustrate several robustness issues:

1) Our algorithm is robust with respect to the quantizer imperfections in the sense of Theorem 3. That is, if
the scheme described in (9) is implemented withQµ(· − δ) instead ofQ, we can still estimate the value of
γ with exponential precision with respect to the bit rate. In fact, our results in the previous section are for
these imperfect quantizers. In Figures 3a and 3b, we plot|γ̃N − γ| and |x̃N − x| versusN , respectively, in
the case of a precise beta-encoder (δ = 0) with offset µ = 0.2. Figures 4a and 4b, on the other hand, show
the same quantities, respectively, when the approximations are obtained via an imperfect beta-encoder with
µ = 0.2 andǫ = 0.15 (recall thatǫ is the bound onδ; Figure 4 used a simulation where theδj did not even
remain constant from one sample to the next; they were pickedrandomly, uniformly in(−ǫ, ǫ)).

2) We can still recover the value ofγ with the same precision if instead ofx and 1 − x, the transmitted
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Fig. 5. The performance of the algorithm when implemented with x = π/10 and1+ ρ−x. Here the “uncertainty’ρ was taken to beγN/2
(when the number of bits used to computeγ̃N is N ).
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Fig. 6. The performance of the algorithm when implemented with x = π/10 anda − x with a = 0.9. Here the value ofa wasknownby
the decoder.

bitstreams correspond tox and1 + ρ − x as long as|ρ| ≤ ǫ0 for some sufficiently smallǫ0. More precisely,
if 0 ≤ 2ǫ0 ≤ 2CγN , whereC is as in Theorem 3, we can replace (16) in Theorem 4 with the more stringent
condition onγ̃

ǫ0 ≤ 1 −
N

∑

j=1

(bj + cj)γ̃
j ≤ 2Cγ̃N − ǫ0, (41)

and the theorem remains valid, i.e., it follows that|γ − γ̃| ≤ C ′γN . Figure 5a and Figure 5b show|γ̃N − γ|
and|x̃N −x| versusN , respectively, in this case withρ = γN/2. This observation means that if the reference
level can be kept fixed within a precision ofǫ0, then the scheme still works up toN0 ∼ log ǫ0/ log γ.

3) If we use the pairx anda−x instead ofx and1−x for somea ∈ (0, 1), our approach still works, provided
that0 ≤ x ≤ a and that weknowthe value ofa, at least with a precision ofǫ0 that satisfies0 ≤ 2ǫ0 ≤ 2CγN ,
as above. In Figures 6a and 6b, we plot|γ̃N − γ| and |x̃N − x| versusN , respectively, when the algorithm
is implemented using the pairx anda − x with a = 0.9.

4) Our algorithm requires that the value ofγ remain constant during the quantization of the numbersx and
1 − x, approximately on each sampling interval when quantizing samples of a bandlimited function. On the
other hand, the algorithm still works ifγ changes, however drastically, from one sampling interval to another.

As already alluded to in point 2) above, our approach has introduced anewrobustness issue: typically, we cannot
ensure that the reference level (1 in the case where we encodethe pairx and1−x, 1+ρ in point 2)) is known with
high precision, which is a new practical hurdle. More generally, in practice we would face a situation where pairs
of values(x, a−x) are encoded, wherea is not known with great precision. If (as is reasonable) we can ensure that
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Fig. 7. (a) The graph ofp30(λ) for several(x, y) pairs. The dashed curves are graphs of±2Cλn, corresponding to the constraint of (42).
We observe that (42) is satisfied for valuesγ̃ close to 1 as well as close to the trueγ. (b) A zoomed-in version of (a) toλ ∈ [0.6, 0.8]. In
this interval and for these(x, y) pairs, (42) is satisfied in only a small neighborhood of the true γ value (γ = 0.700067 in this case).

the unknown reference levela remains constant or varies very slowly only, then we still can estimateγ as follows.
Suppose the beta-encoding ofx, a − x, y, a − y leads to the bit sequences(bj)j∈N, (cj)j∈N, (b̃j)j∈N, (c̃j)j∈N,

respectively. Definedj = bj +cj, andd̃j = b̃j + c̃j . Then
∞
∑

j=1

djγ
j =

∞
∑

j=1

d̃jγ
j ; if we putk = min{j ∈ N : dj 6= d̃j},

then

dk − d̃k =

∞
∑

j=1

(d̃k+j − dk+j)γ
j ;

clearly this puts some constraint on the possible values ofγ. However, because thedj = d̃j−dj ∈ {−2,−1, 0, 1, 2}
can now take negative values as well, the arguments used in the proofs in Section 3 no longer hold. We have therefore
no guarantee that we will obtain an estimate forγ with precision of sizeO(γN ) if we know the firstN entries of
the sequencesb, c, b̃, c̃; similarly, we can not put an upper bound,a priori, on k = min{j ∈ N : dj 6= d̃j}. More
precisely, arguments similar to those in Proposition 6 showthat

−2CγN ≤

N
∑

j=k

djγ
j−k ≤ 2CγN ,

with C as in Proposition 6. This suggests we replace the constraint(16) of Lemma 4 with

−2Cγ̃N ≤

N
∑

j=k

dj γ̃
j−k ≤ 2Cγ̃N (42)

and expect anỹγ that satisfies (42) will be an exponentially precise estimate of γ. But since in this case the
polynomialpN (λ) :=

∑N
j=k djλ

j−k is not strictly decreasing, we face two major difficulties:

a) The constraint (42) may be satisfied for valuesγ̃ close to 1, regardless of what the value ofγ is because
the constraint gets quite weak whenγ̃ is close to 1, andpN (γ̃) can be small enough to satisfy this weak
constraint. Figure 7a shows samples of suchpN , obtained by encodingx, a − x, y, a − y as described above
with γ = 0.700067 for severalx andy that cause the above mentioned difficulty. One could overcome the
problem outlined above by restricting the values ofγ to a narrower interval that is known a priori. Indeed,
if we were given thatγ ∈ [0.6, 0.8], then, as observed in Figure 7b, the constraint (42) is satisfied only in a
small neighborhood of the true value ofγ. Another way of dealing with this problem is to aim directly for
the root(s) of the polynomialpN in (1/2, 1) (instead of searching for somẽγ that satisfies (42)). This will
be discussed further in Section IV-B.

b) Another problem arises because the polynomialpN (λ) :=
∑N

j=k djλ
j−k canhave several roots in the interval

(0.5, 1) (as well as in the narrower interval which we know, a priori, to containγ). This would in turn mean



13

0.6 0.65 0.7 0.75 0.8
−0.04

0

0.04

0.08

λ 

p
30

(x) 
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(42). We observe that for these pairs,p30 has multiple roots in[0.6, 0.8] in small neighborhoods of which (42) is satisfied.
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Fig. 9. The plot of|γ − γ̃N,I | whereγ = 0.700067 and γ̃N,I was estimated as described in point b) of Section IV-A. In (a)I=2, and
in (b) I=20. In both cases, the experiment was repeated 100 times with different{(xi, yi)}

I
i=1; each graph shows the results for 3 typical

experiments; dashed curves show the worst case error among the 100 experiments.

that (42) is satisfied in sufficiently small neighborhoods ofeach of these roots (note thatpN is a polynomial,
and thus smooth). Figure 8 shows examples of suchpN that are obtained by encodingx, a−x, y, a− y as
described above for severalx andy. (Note that the examples in Figure 7 and Figure 8, although they may
seem contrived, stem from actual coding simulations – theseproblemscan occur in practice.) In this case,
clearly, computing the root(s) ofpN in (1/2, 1) will not help as we have several roots. Moreover, these roots
may be very close to each other so that even if we know a priori that γ lies in some restricted interval, this
might not suffice to exclude all but one root. On the other hand, we know that one of the roots ofpN is always
approximately at the rightγ value independently of what(x, y) pair is used (this follows from (42) because
pN is smooth), and it is reasonable to expect the other root(s) to be located at different points in the interval
(0.5, 1) depending on the(x, y) pair that was used to obtainpN . This motivates us to compute the polynomials
pN,i corresponding to several(xi, yi) pairs as above, and consider the polynomialPN,I :=

∑I
i=1 ǫipN,i where

we chooseǫi ∈ {−1, 1} in a way that would guarantee (or increase the probability) that PN,I has only one
root in the interval(0.5, 1). In this case we replace the constraint (42) with

−2CIγ̃N ≤ PN,I(γ̃) ≤ 2CIγ̃N , (43)

and search for̃γ values that satisfy (43) with the hope that (43) is satisfied only for γ̃ that approximatesγ.
In Figures 9a and 9b, we show the plots of|γ − γ̃N,I | vs. N with I = 2 and I = 20 respectively. In these
numerical experiments(xi, yi) pairs were randomly chosen,a = 0.9 was used in the encoding only (i.e., the
value of a was unknown to the decoder), andγ = 0.700067. Moreover we choseǫi such that the leading
coefficients of polynomialspN,i have the same sign, and̃γN,I was taken to be the median of all the values
that satisfy (42). This experiment was done forI = 2, I = 5, I = 10, andI = 20, 100 times in each case with



14

10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

N

|γ−
γ N

,I|
~

I=2

I=5

I=10

I=20

Fig. 10. The worst case error|γ − γ̃N,I | for I = 2, 5, 10, 20, among 100 numerical experiments conducted in each case.

different sets of(xi, yi) pairs. Figure 10 shows the worst case approximation error,maxℓ |γ− γ̃
(ℓ)
N,I |, versusN

in each case(I = 2, 3, 5, 10, 20). Here γ̃
(ℓ)
N,I is the approximation obtained as above from theℓth experiment

(ℓ = 1, . . . , 100). We observe that the worst case error can be very large whenI is small, i.e., when we use
a small number of(x, y) pairs (although in individual examples, one can have very good estimates as seen
in Figure 9a). On the other hand, using a large number of(x, y) pairs makes the estimates significantly more
reliable: we observe that the worst case error decreases exponentially fast asN increases.

Remark: Note that robustness remark 4) above has to be adapted in thiscase:γ would no longer be allowed to
vary from one sampling interval to the next, since we would most likely obtain our different pairs from consecutive
samples. Some change ofγ would still be allowed without hurting the algorithm if it were sufficiently slow.

A different approach to determiningγ approximately from encoded sequences(bn) and (cn) is proposed in the
next subsection.

B. An alternative to exhaustive search

In this section, we present a fast algorithm to estimateγ using the sequencesb := Eµ
γ,δ(x) andc := Eµ

γ,δ(1− x)

wherex ∈ (0, 1) andEµ
γ,δ is defined as before. First, we defined := b + c, and rewrite (16), the constraint of the

main lemma, as
0 ≤ PN (γ̃) ≤ 2Cγ̃N (44)

wherePN (λ) := 1 −
∑N

j=1 djλ
j andN ≥ k = min{j : j ∈ N anddj 6= 0}. We then have the following.

Proposition 11. Let k be as above. ForN ≥ k, PN has exactly one rootγN in [γ, 1]. Moreover,γN satisfies
|γ − γN | ≤ C ′γN whereC ′ is as defined in Lemma 4.

Proof: First, note thatPk(λ) = 1 − dkλ
k has a root atγk := (1/dk)1/k which satisfies0 < γ ≤ γk ≤ 1.

(Recall that, by Proposition 7,k cannot be arbitrarily large.) Moreover, forN ≥ k, PN (λ) ≤ Pk(λ) for all λ > 0
(since eachdj is non-negative). Thus,PN (γk) ≤ 0 for all N ≥ k.

On the other hand, for any positive integerN , we havePN (γ) ≥ 1 −
∑

∞

j=1 djγ
j = 0. SincePN is continuous

on [γ, γk], by the intermediate value theoremPn has a root in[γ, γk] ⊆ [γ, 1]. Also, sincePN is strictly decreasing
for N ≥ k, this root is the only root ofPN in [γ, 1]; we denote it byγN . Finally, Lemma 4 implies that|γ−γN | ≤
C ′γN .

Proposition 11 shows that if we can approximateγN , the root ofPN in [γ, 1], by γ̃N with a precision ofO(γN ),
then |γ − γ̃N | will also be of orderγN . SincePN is a ’nice’ polynomial in that it is strictly decreasing on[0, 1]
with a strictly decreasing derivative, we can computeγN with an arbitrary precision using Newton’s method. As a
matter of fact,
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Proposition 12. Let k be as in Proposition 7, and supposeN > k. Chooseγ < γ
(0)
N < 1, and compute(γ(l)

N )Ll=0
via

γ
(l+1)
N = γ

(l)
N −

PN (γ
(l)
N )

P ′

N (γ
(l)
N )

(45)

Then,
γ

(l+1)
N − γN ≤ (γ

(l)
N − γN )(1 − C), (46)

with C := k
k+2γk−1(1 − γ

(0)
N )2.

Remark: We have implicitly assumed that, even thoughγ is not known, it is bounded above, away from 1, by a
knownupper bound.Note that this is a very reasonable assumption in any practical setting. (Ifdk = 2, we can of
course takeγ(0)

N = γk; if dk = 1, γk = 1 however.)

Proof: For λ > γN we havePN (λ) < 0, P ′

N (λ) < 0, andP ′′

N (λ) < 0, so that

0 = PN (γN ) = PN (λ) + P ′

N (λ)(γN − λ) +
1

2
P ′′

N (ξ)(γN − λ)2

≤ PN (λ) + P ′

N (λ)(γN − λ), (47)

which implies
|PN (λ)|

|P ′

N (λ)|
≤ λ − γN ,

for all λ > γN . An easy induction argument then shows that theγ
(l)
N , computed iteratively from the starting point

γ
(0)
N > γN satisfy, for all l,

γ
(l)
N − γN ≥

∣

∣

∣

∣

∣

PN (γ
(l)
N )

P ′

N (γ
(l)
N )

∣

∣

∣

∣

∣

=
PN (γ

(l)
N )

P ′

N (γ
(l)
N )

= γ
(l)
N − γ

(l+1)
N , (48)

so that
0 ≤ γ

(l+1)
N − γN ≤ γ

(l)
N − γN . (49)

On the other hand:

1) We have

PN (γ
(l)
N ) = PN (γN ) + P ′

N (γN )(γ
(l)
N − γN )

+
1

2
P ′′

N (ξ)(γ
(l)
N − γN )2

≤ P ′

N (γN )(γ
(l)
N − γN ) (50)

which, asP ′

N (γN ) < 0, implies
∣

∣

∣

∣

∣

PN (γ
(l)
N )

P ′

N (γN )

∣

∣

∣

∣

∣

≥ γ
(l)
N − γN . (51)

2) Note thatP ′

N (λ) = −

N
∑

j=k

jdjλ
j−1. Then we have the following.

(a) As dk ∈ {1, 2} (see Proposition 7) andγN ≥ γ, we get

|P ′

N (γN )| ≥ kγk−1. (52)
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(b) Noting thatdj ∈ {0, 1, 2} for all j, we obtain

|P ′

N (γ
(l)
N )| ≤ 2

N
∑

j=k

jλj−1 ≤ 2
∞
∑

j=k

jλj−1

= 2
d

dλ
(λk

∞
∑

j=0

λj)

= 2λk−1 k(1 − λ) + 1

(1 − λ)2

for all 1 > λ ≥ γ
(l)
N . In particular, as1 > γ

(0)
N ≥ γ

(l)
N > 1

2 , we get

|P ′

N (γ
(l)
N )| ≤ 2

1
2k + 1

(1 − γ
(0)
N )2

(53)

Combining (51), (52), and (53), we conclude
∣

∣

∣

∣

∣

PN (γ
(l)
N )

P ′

N (γ
(l)
N )

∣

∣

∣

∣

∣

=
PN (γ

(l)
N )

P ′

N (γ
(l)
N )

≥ C(γ
(l)
N − γN ), (54)

whereC := k
k+2γk−1(1 − γ

(0)
N )2. Then (45) implies

γ
(l+1)
N − γN = γ

(l)
N − γN −

PN (γ
(l)
N )

P ′

N (γ
(l)
N )

≤ (γ
(l)
N − γN )(1 − C). (55)

Corollary 13. Let γN , γ
(l)
N , andC be as in Proposition 12. Then

γ
(l)
N − γN ≤ (1 − C)l(γ

(0)
N − γN ). (56)

Therefore, forl ≥ 1
log(1−C)(N log γ + log(γ

(0)
N − γN )−1), we have

0 ≤ γ
(l)
N − γN ≤ γN . (57)

Remark: Corollary 13 shows that Newton’s method will compute an approximation with the desired precision
after O(N) iterations. In practice, however, we observe that the convergence is much faster. Figure 11 summarizes
the outcome of a numerical experiment we conducted: We chosex ∈ (0, 1) randomly, and computed̃γN by
approximating the root of the polynomialPN via Newton’s method with 10 iterations. We repeated this for100
different x values. In Figure 11, we plot|γ − γ̃N | versusN . As one observes from the figure, the estimates are
satisfactory. Moreover, the computation is much faster compared to exhaustive search.

The case of unknowna

Finally, we return to the case when the value ofa is unknown to the decoder. We define the polynomialPN,I as
in point b) of Section IV-A, and try to approximateγ by finding a root in(0.5, 1). Recall that, our goal in defining
PN,I was the expectation that it has a single root in[0.5, 1], and this root is located at approximately the right
value. Clearly, this is not guaranteed, however our numerical experiments suggest thatPN,I indeed satisfies this
expectation whenI is large (e.g. 20 in our numerical examples outlined in pointb) of Section IV-A. Also, note
thatPN,I satisfies the constraint (43) at any of its roots. So, computing its root(s) shall not give us any estimate of
γ that is worse off than the estimate that we would have obtained via exhaustive search using the constraint (43).
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Fig. 11. 100 experiments, conducted with randomly chosenx and plotted together. Hereγ = 0.700067, and the dashed line is the theoretical
upper bound.̃γN was computed by estimating the root ofPN via Newton’s method with 10 steps.
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(b)

Fig. 12. 100 experiments in the case of unknowna with γ = 0.700067. γ̃N,I was computed by estimating the root ofPN,I to which a
10 step Newton’s method algorithm converges. In (a) we setI = 2, and in (b)I = 20. The dashed curves in both (a) and (b) are the worst
case errors among 100 experiments for each case.

Motivated by the discussion above, we repeat the numerical experiment of point b) of Section IV-A, only this
time we estimate the value ofγ by computing the root ofPN,I via Newton’s method. In Figures 12a and 12b, we
show the plots of|γ− γ̃N,I | vs.N with I = 2 andI = 20 respectively. In these numerical experiments{(xi, yi)}

I
i=1

were randomly chosen,a = 0.9 was used in the encoding only (i.e., the value ofa was unknown to the decoder),
γ = 0.700067 (again only used in the encoding). Moreover we choseǫi such that the leading coefficient of each
polynomial pN,i have the same sign. We computedγ̃N,I by estimating the root ofPN,I via a 10 step iteration
Newton’s method with the starting pointγ0 = 0.8. This experiment was done forI = 2, I = 5, I = 10, and
I = 20, 100 times in each case with different sets of{(xi, yi)}

I
i=1. Figure 13 shows the worst case approximation

error, maxk |γ − γ̃k
N,I |, versusN in each case(I = 2, 3, 5, 10, 20). Here γ̃k

N,I is the approximation obtained, as
above, from thekth experiment(k = 1, . . . , 100). We observe that the worst case error can be very large whenI is
small, i.e., when we use a small number of(x, y) pairs (although in individual examples, one can have very good
estimates). On the other hand, using a large number of(x, y) pairs makes the estimates significantly more reliable
so that the worst case error decreases exponentially fast asN increases.
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