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Robust and practical analog-to-digital conversion
with exponential precision

Ingrid Daubechies an®zgiir Yilmaz

Abstract

Beta-encoders with error correction were introduced bytdeahies, DeVore, Guntiirk and Vaishampayan as an
alternative to PCM for analog-to-digital conversion. A &encoder quantizes a real number by computing one of
its N-bit truncateds-expansions wherg € (1,2) determines the base of expansion. These encoders haves{almo
optimal rate-distortion properties like PCM; furthermdhey exploit the redundancy of beta-expansions and thus
they are robust with respect to quantizer imperfectionswvél@r, these encoders have the shortcoming that the
decoder needs to know the value of the base of expansjam gain factor in the circuit used by the encoder,
which is an impractical constraint. We present a method tpléement beta-encoders so that they are also robust
with respect to uncertainties of the value @f The method relies upon embedding the valugidh the encoded
bitstream. We show that this can be done without a priori Kedge of 3 by the transmitting party. Moreover the
algorithm still works if the value of3 changes (slowly) during the implementation.

Index Terms

A/D conversion, beta-encoders, beta-expansions, guiotiz sampling, sigma-delta

. INTRODUCTION

Analog-to-digital (A/D) conversion consists of two stegsmplingand quantization We shall assume thaf,
the analog signal of interest, is a bandlimited functios,, iits Fourier transforny vanishes outside a bounded
interval. In this case, the standard sampling theoremsstht¢ we can reconstruct the signal from its sample values
on a sufficiently dense grid. In particular, if the supportfa contained if—, ©2], the sequencéf (nm/Q) hnez
determinesf via

£ty =30 £ sinc (2 ) )

In practice, (1) is not very useful because the “sinc kerdeltays slowly, and thus the reconstruction is not local.
However, we can overcome this problem by sampling on a degr&rin which case we can replace the sinc in
(1) by a kernel with much faster decay. In particular, if @ed of the sample sequenté(nm/Q)},cz the more
closely-spaced sampldg (n7/(AQ2)) }nez (With A > 1) are used, (1) can be replaced by

10 =3 S IG5 @
wherey is any function such thap(¢) = 1 for [£] < Q and@(£) = 0 for [£] > AQ2. If, in addition, we choose
such thatp is smooth,p will have the desired decay properties.

The second step in A/D conversion gsiantizatior which will be our focus in this paper. Quantization is the
replacement of the sample valuggr/(AQ2)) in the reconstruction formula (2) by numbers from a disc(esually
finite) set. Unlike sampling, quantization is not an invalgioperation. Therefore, guantization schemis usually
described by a pair of mappings, an encodeand a decodeD. The encodel maps functions of interest to
bitstreams; the decodd? aims to invertE as “closely” as possible. In general, howevB(,E f) # f.

Ingrid Daubechies is with the Department of Mathematics wittl the Program in Applied and Computational Mathematfsnceton
University

Ozgirr Yilmaz is with the Department of Mathematics, Theversity of British Columbia.

Ingrid Daubechies was partially suported by NSF Grant DN2$9233 and by AFOSR Grant F49620-01-0002giir Yilmaz was partially
supported by the Natural Science and Engineering Reseaghadl of Canada.



In this paper, we focus on quantization algorithms for fioret in S(2, M), the class of functions ii.?(R)
with L*°-norm bounded by/, and with Fourier transforms supported[in€2, ©2]. When considering functions in
S(92, M) we shall refer to any interval of length/Q2 as aNyquist interval In what follows we shall consider,
without loss of generality, only the ca$e= 7= and M = 1, and denote(x, 1) by S. For any quantization scheme,
or, equivalently, for any encoder-decoder pdir, D), we define thelistortion d by

d(S; E, D) := sup||f — D(Ef)|| ®3)
fes

where]|| - || is the norm of interest. The performance of a quantizatidrest onS is typically characterized by
the relation between the distortiahand the numbeB of bits per Nyquist interval consumed (on average) by
the encoderFE associated with the quantization scheme; we call this nurttiebit budgetof the quantization
scheme. A typical way of comparing the performances of twangj@ation schemes is to compare the bit budgets
they utilize to produce approximations with the same amaiirdistortion; if no other considerations prevail, the
guantization scheme with the smaller bit budget is supednd is preferable. Equivalently, one might compare
the distortions associated with several quantizationregsefor the same fixed bit budget; in this case, the scheme
with the smaller distortion is favored.

One widely used quantization schemeidse code modulatio(PCM). Given a functiory in S, an N-bit PCM
algorithm simply replaces each sample vafue/)\) with N bits: one bit for its sign, followed by the first — 1
bits of the binary expansion dff (n/A)|. One can show that for signals # this algorithm achieves a precision
of orderO(2=%); i.e., for f in S, the distortiond(f; E, D) < C2~Y when (E, D) is the encoder-decoder pair
associated with aiw-bit PCM, and when the norr- || to measure the distortion is either thé€° norm onR, or
the limit, asT — oo, of the normalized.?-norm (27°)~ /2| - | z2(—7,)- This can also be rephrased in terms of the
bit-budget: since the average number of bits per Nyquisirvat is B := N\, we haved(f, E, D) < C\2~5/* for
f € S, whereX > 1 can be chosen arbitrarily, with’y, < C’(A — 1)~1/2 tending toco as\ — 1.

On the other handsigma-delta modulatigranother commonly implemented quantization algorithmfdioictions
in S, achieves a precision that decays like only an inverse pofyal in the bit budgeB. For example, &th-order
sigma-delta scheme produces an approximation wherel theapproximation error (i.e., distortion) is of order
O(B7F).

Despite their clearly inferior performance in terms of ditibn for a given bit budget, sigma-delta modulators
are oftenpreferredover PCM for A/D conversion of audio signals in practice.S'fiust mean that other factors are
more important. A plausible explanation for the prevalentsigma-delta modulators is given by the robustness
properties of these schemes, when implemented in analogjtsir Every quantization scheme for analog-to-digital
conversion must contain (at least one) nonlinear “decislement” that “performs the quantization”, i.e., transfsr
its real number input into an element of a (finite) alphabes; shall call this nonlinear element tlgantizer
reserving this name for this use only. These quantizers @uadto be imprecise, i.e., the location of their “toggle
point(s)” is typically not known with high precision. Undétese circumstances, PCM performs poorly whereas
the distortion associated with a sigma-delta scheme ishhaffécted at all [1]; more precisely, the error made by
a PCM quantization scheme with an imprecise quantizer isthed below by a strictly positive constant (directly
related to the measure of imprecision of the quantizer),redmthe error made bydh order sigma-delta scheme
still decays likeB—*, and therefore can be made arbitrarily small despite theednigion in the quantizer.

One of several reasons why sigma-delta schemes are robtttishey quantize redundant expansions of the
original function. Since redundant expansions are notumigny error caused by an imprecise quantizer can be
implicitly corrected later. This is clearly not the case €M, since the binary expansion of almost every real
number is unique, and therefore a bit flip in the expansiomeothe corrected by changes in the consecutive bits.
For a detailed discussion of robustness properties of sigita schemes as well as a comparison with PCM, we
refer to [2], [3], [1], [4].

It is natural to wonder whether we can have the best of bothdsoin other words, can we construct a
guantization algorithm that utilizes the bit-budget effidly, like PCM, but that is at the same time robust with
respect to unavoidable imprecision errors in the (analagyit implementation, like sigma-delta modulators? In
[1] two quantization schemes are discussed that show tleaaniswer to this question is affirmative: a modified,
filtered sigma-delta scheme, first proposed in [5], and arsehihat is introduced in [1] for the first time (as far as
we know), called a “beta-encoder with error correction”e$ beta-encoders are PCM-like in that they quantize



each sample finely and achieve exponential precision fordélalting approximation; moreover they are robust,
like sigma-delta schemes, because this fine quantizatidorig in a redundant way.

Although the encoders discussed in [1] are robust agairesntqer imperfections, they nevertheless still have
certain robustness problems, at least from a practicalt pdimiew. Both of them use other parameters (the filter
parameters for the scheme of [5], the factbused in the beta-encoder) that need to be implemented wgth hi
accuracy. In this paper, we shall discuss this issue fuffitrebeta-encoders.

The beta-encoder of [1], which we outline in Section Il, cangs a “truncate@-ary expansion” for each sample
value, i.e., a series expansion in a basavherel < § < 2, and with binary coefficients. In order to reconstruct a
good approximation to the original signal value from thesmly coefficients, it is crucial to know the value 6f
with a precision comparable to at least the one we hope thetigation scheme to achieve. However, measuring the
exact value of3 as well as ensuring that it stays constant over a long stidttime is difficult, if not impossible,
in an analog setting.

In this paper, we show how this obstacle can be circumvehtedoresent an algorithm that encodes and transmits
the value of without in fact physically measuring its value. This is ddme embedding the value of in the
encoded bitstream for each sample value separately. Thusongruct a beta-encoder that is not only robust to
guantizer imperfections, but also robust with respecBias long as the value gf remains constant or varies
sufficiently slowly that it does not change by more than theirde precision range of the quantization scheme
over, say, twenty sampling intervals.

In Section Il we outline the “beta-encoders with error coti@”, introduced in [1]. In Section Il we present our
“beta-robust” approach and prove that it has the robustpasserties discussed above. In Section IV we present
numerical examples and consider some variations to ouapprthat address other robustness concerns.

[I. REVIEW OF BETA-ENCODERS

In this section, we summarize certain properties of betaders with error correction. See [1] for more details.
We start again from the observation that any functjoa S can be reconstructed from its sample valyé¢s/\)
via

FO =AY plt = 3. ()
whereX > 1 andy € C*, such thatp(¢) =1 for |[¢| < 7 and@(§) = 0 for || > Ax.

Proposition 1. Let f € S, e > 0 and consider any quantization scheme that produgesuch thatsup |f(n/)) —
qn| < e. Then the approximatiof, defined as

Fly = A S ol ) ®)

satisfies

O = FOI AT Y e lplt— I < Cp e ©)

whereC,, == ||o||r + A7 @]

Proposition 1 shows, for example, that if the are produced by aiV-bit PCM algorithm, then the functiof
defined by (5) satisfies )
If = Flle < Cp27 N, (1)

because, by construction, a-bit PCM generates,, such that| f(n/)\) — g,| < 2~V*! for all n.

Next, we will consider, instead of truncated binary expansj truncated 1-bj# expansions of the sample values.
By a 1bit g expansionwve mean an expansion with binary coefficients and hase(1,2). For any real number
x € [0,1], and givenl < g8 < 2, there exists a sequen¢®) jen, With b; € {0,1} such that

T = ijﬁ_j. (8)
j=1



Clearly, for 8 = 2, (8) corresponds to the binary expansionwffor 1 < 5 < 2, the expansion is said to be a
beta-expansion, and is not unique; in fact, for every 5 < 2 and for almost every in (0, 1], the set of different
0 expansions ofc has the cardinality of the continuum [6].

Givenz € [0,1], one way to compute a binary sequerodg} that satisfies (8) is to run the iteration

uj = Bluj—1—bj-1)

b = Q) ©)
with u, = gz, and
Q(u) :={ o uzl (10)

The nonlinear operatioy in (10) is an idealized quantizer; in practice one has to dél quantizers that only
approximate this ideal behavior (see below). The samfileg)\) of a functionf € S will be real numbersirf—1,1)
rather than(0, 1); we shall here perform a small “sleight of hand” and consitiervalue-shifted and renormalized
functiong = (f + 1)/2 instead, which does take values(in 1) only. Running (9)N times for each sample value
g(n/A) =[1+ f(n/N)]/2, where f € S, will yield an N-bit truncated beta-expansidmw,, := Z;V:l b;3~7} that
will satisfy

9(n/A) —aal <CB™N  or  [f(n/A) — (2q, — 1) < C'5N (11)

whereC’ = 2C = 2/(3 — 1). Thus, by Proposition 1, such a quantization scheme wildyan approximation to
f € S with distortion of sizeO(3~).

Before defining the “beta-encoders with error correctioh’[1d, we want to repeat the key observation that is
used in [1] to construct these encoders.

Proposition 2. Letz € (0,1) and by, bs, ..., by be arbitrary such thab; € {0,1}. If

J
» 1

0<z—-) b7 < 5 (12)

>0 < )

then there exists an extensigh; }3 ; ., such that
v=2 bs (13)
j=1

This is exactly where redundancy comes into play: Fet 2, the only way the bit$q, ..., by can satisfy (12)

is by being the firstK bits of the binary expansion af. However, forl < § < 2, this is not the case; one is
allowed to “undershoot” (i.e., put to some of the bitd; = 1 in the beta-expansion produced by (9) ) as long as
(12) is satisfied. This means that the beta-encoder deddop€9) is “semi-robust” in the sense that it can correct
guantizer errors that result from underestimating cendirvalues in the expansion.

This feature has the following important consequence irctima When the beta-encoder runs the iterative
algorithm (9) to quantize a real number, the specific form) (i@ the quantizer is difficult to implement
precisely. A more realistic model is obtained by replacipgn (9) with Q(- + §) where is a quantity that is
not known exactly, but over the magnitude of which we have es@ontrol, e.g/d| < e for a knowne. We shall
call a quantization scheme “robust” if the worst approximaterror it produces can be made arbitrarily small by
allowing a sufficiently large bit budget, evendf> 0 is kept fixed. In the form described above, beta-encoders are
robust only for some rang&,, > ¢ > 0 that is asymmetric with respect t which is the reason why we called
them semi-robust. (More precisely, later bi{s with ¢ > j, automatically rectify the error made by assigning a
value 0 to ab; when the “ideal” value ob;, according to (9), should have beénThe opposite error, in which
the valuel was erroneously assigned toba that should have beed, does not get corrected by this scheme.)
In [1] a modified version of the algorithm described by theurs®n in (9) is introduced, which remedies this
situation, i.e., it is robust for both positive and negatireall 5. The basic strategy of [1] is to replacg in (9)
with @, := Q(- — i), for some appropriatg. This means that the quantizer prefers assigning 0 to dsgign in
those cases when perfect reconstruction with the remainitsgis not only possible but can even be done with a
comfortable margin . This way a range fércan be determined, symmetric with respecbias specified below



in Theorem 3, so that when the scheme is implemented @jth — J) instead of@),, one still has exponentially
precise reconstruction of the original sample value. Maezigely,

Theorem 3. Lete > 0 andx € (0,1). Suppose that in the beta-encodingzgfthe procedurg?9) is followed, but
the quantizerQ,(- — J) is used instead of the ided) at each occurrence, with the values ®possibly varying
from onej to the next, but always satisfyingj < e. Denote by(b;),cn the bit sequence produced by applying this
encoding to the number. If ¢ < i, and 8 satisfies

2+ p+e
1<f<———o, 14
b 1+p+e (14)
then for eachV > 1,
N
o= bg < cp (15)
j=1

withC =14 p+e.

Theorem 3 is a slightly rephrased version of Theorem 4.1 Jinifshows that the “beta-encoder with offset
has the desired robustness properties with respect to tgiger function?),,. However, there istill one parameter
in the iteration that must be known precisely to implemeset ‘theta-encoder with offset” and to reconstruct the
original signal from the encoded bitstream, namely the bas# the expansion. If we were to implement the
encoder in an analog setting, it seems that we would have heices: either make surg has a precise value,
known to the decoding as well as the encoding party, or measud transmify before sending the encoded bits.
Neither is feasible in practice: measuring the valug @hysically and transmitting it separately is another ptigén
source for errors; moreover it would be very hard, if not imgible, to measurg with great precision. On the
other hand, implementing the beta-encoder with offset hardware with grecise and fixed would be as costly
as implementing a high-precision PCM. In the next sectionpnapose a way to circumvent this problem.

1. THE APPROACH

In this section we present a way of implementing the beta@ecwith offsety in such a way that it is robust
with respect to the parametgr In particular, we shall construct an algorithm for which sleall prove that it is
possible to recover the value gf:= 5~! from the encoded bitstream with exponential precision. Atiime of
our algorithm is sketched in Figure 1.

X by,by,....by
Beta Encoder Beta Decoder Xy

with o N
1x unknown B €1,C21-n.Cn with B=p

B

Beta Estimator
with exponential
precision

Fig. 1. The algorithm. Using the bitstreams obtained by +eetzoding bothz € (0,1) and 1 — x, we estimate the value of with
exponential precision. This estimated valdes then used to decode. The resultiig is an exponentially precise approximation of
Here we assume thak remains constant during the encodingzoénd1 — z, approximately on each sampling interval when quantizivey t
samples of a bandlimited function.

A. Description of the Algorithm

DefineEid as the mapping that maps eacte (0,1) to the binary sequendg;);2, generated by encoding
using a beta-encoder with = y~! and with offsetu that is implemented with an imperfect quantizgy (- — §),

as described above. Our main lemma reads then as follows.



Lemma 4. Letz € (0,1) and lety = 8~ € (1/2,1) be such tha{14) s satisfied, with) < ¢ < u. Supposéd| < e,
and define the sequences= E/ ;(x) and c := E! 5(1 — x). Let N be such thainax{b;,c; : j =1,..., N} > 0.
Then, for anyy that satisfies

N
0<1=) (bj+e¢) ¥ <203, (16)
j=1
with C =1+ p+ ¢, we have
Y =4l < 'Y, a7

whereC” = max{2C, 2C/(koy* =)} with ko = logl(olg?).

We shall prove this lemma in several steps below. Beforeqading, we show that knowing the value-pfvith
exponential precision yields exponentially precise apipnations.

Theorem 5. Letz € (0,1), v € (1/2,1) and (b;)jen € {0,1} be such that: = 772, b;77. Supposeé is such that

|y — 7| < C1+N for some fixed®; > 0. Define Ny := W, andn := C1y™Mt, Theniy = Z;—V:l b5
satisfies the inequalities

o~ @l < { Colrpme, o N zho+d (18)
CiyVNg (v + Ciy)™™, 1< N < No.
Proof: We want to estimate
N N
v —anl = Db =) < DI =] (19)
j=1 Jj=1

where we have used thaf € {0,1}. Define nowf;(5) := 4/ —+7. Clearly, f;() = 0; moreover the derivative
satisfies| f{(7)| = |75/ < j(y + A) "' forall y — A <5 < v+ A, wherey € (1/2,1) andA > 0. Therefore,

IFi) =17 =+ < Aj(y + Ay~ (20)
We will now estimate the right hand side of (19) separatelytii® cases wheiV is large and wherV is small:
1) SettingA = C1+", and substituting (20) in (19), we get

N
z—2n| < CyN ) Gty Gy (21)
j=1
N1=(+CyMNA NI = (v +CyY)))

=G T-(+ )P

(22)

For N > Ny + 1, C17Y < C1yNet! = p; by its definitions satisfiesn < 1 — v, so that(y + C17V) < 1.
We then rewrite (22) as

1
r—2 < oV
S (e Tl
1
e —
EECECENn)E

which provides us with the desired bound.
2) Suppose that < N < Ny, which meangy + C17") > 1. Set againA = C1+". For eachj = 1,..., N,
we clearly have
5 =7 < oMty + ey
< OV No(y + Cry)™ ! (23)
where the second inequality holds becagise N < Ny and N > 1. Substituting (23) in (19), and using that
N < N, yields the desired estimate, i.e.,

|z — x| < ANOING (v + Cry)No L,



Remarks:

1) Combining Lemma 4 and Theorem 5, we see that one can rettevencoded number € (0,1) from the
first N bits of E“ s(x) and E“ s(1 — ), with a distortion that decreases exponentiallyNasncreases.

2) Given N-bit truncated bltstreamE“ s(z) and Efj’(s(l — x), one way to estimaté is doing an exhaustive
search. Clearly this is computatlonally intensive. Notewaver, that the search will be done in the digital
domain, where computational constraints are not heavycantputation speed is high.

3) In Section IV-B we introduce a fast algorithm that can aegl exhaustive search; moreover its performance
is as good as exhaustive search.

B. Proof of the Main Lemma
In what follows, we shall present several observations ksad us to a proof of Lemma 4 at the end of the
section.

Proposition 6. Let 5 € (1,2), v := 1/3, andz € (0,1). Supposeu, ¢, and ¢ are such that the conditions of
Theorem 3 are satisfied. Lét= E! ;(v) and ¢ := EI 5(1 — z). Then

Z bj +¢j)y’ <2077, (24)
whereC' =1+ p + € with |§] < e < p.
Proof: By Theorem 3, we know that
N .
0<z—Y byl <CyV, (25)
j=1
and
N .
Ogl—x—ch’ngC’yN (26)
j=1
hold. Combining (25) and (26) yields the result. O

Note thatd; := b;+c¢; € {0,1,2}. Moreover, the index of the first non-zero entry{af; } 72, cannot be arbitrarily
large; more precisely

Proposition 7. Let k& := min{j : j € N andd; # 0}. Then

1—
< IOg(Ty).

(27)
log v

Proof: Let %k be as defined above. Clearly, with = b; +c; as aboveZ d;j’ = 1. On the other hand, since

j=k
d; € {0,1,2},
id.,yj<2§:,yj:ﬁ_ (28)
A 1—7
j=k i=k
Therefore, we have
27’“
> 1, (29)
L=y

which yields the desired result. O
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Fig. 2. A sketch of the graph af’, along withG,(¢t) = 2C(v + t)". Heren = 5, and F;, was computed via (30) from the first bits of
the sequencé!’ ;(z) with = 0.7, v = 0.75, = 0.2, and 4| < 0.1.

We now define
Fp(t) = 1= dj(y +1t) (30)

on[—vy,00) forn =k k+1,....

Proposition 8. F,, has the following properties:
(i) 0 < F,(0) <2CH™.
(i) F, is monotonically decreasing. Moreover, the graphFyfis concave for alln € {2,3,... }.

Proof:
(i) This is Proposition 6 restated.

(ii) First, note thatF(t) = — Zjdj(’y +t)?~%. Thus, sincel; > 0 for all j, F/.(t) < 0 for t > —. Moreover,

i=k
a similar calculation shows that the second derivativeFpfis also negative. Therefore the graph i6f is
concave.

O

Figure 2 shows a sketch of the graphof. Define, as shown in Figure 2; as the point at whiclF,,(tp) = 0.

Similarly, lett; be such that’'(—t;) = 2C(y — t1)™. We will show that botht, and¢;, are at most of siz&(y"),
which will lead us to our main result.

Lemma 9. Let F,, be as in (30) wherex > k is a positive integer. Thety, as defined above, satisfies
0<to < C1Y", (31)
with C1 = #ﬁl whereC' is as in Theoren8 and k is as in Proposition?.
Proof: Since F,, is deceasing and’,(0) > 0, it follows thatt, > 0. MoreoverF,,(0) = F,,(0) — F,(ty) =
|F), (&)|to for some¢ € (0,tp), so that

1
mgfwm{im wuo@ < 204" [ELO)" . (32)
£€(0,to)

Finally, sinceF),(0) = —  _jd;»/~" and sinced; > 0, we have
j=k
|F}(0)] > ky" (33)
wherek is as in Proposition 7. Combining (33) with (32) above yiellds result. O



Lemma 10. Let F;,, be as in(30) wheren > k is a positive integer. Thety, as defined above, satisfies
0 <t <C1y", (34)
with ¢ = #ﬁl as in Lemma 9.

Proof: Let G, (t) := 2C(y+t)™ and recall that,(—t1) = G,(—t1). Note, by Proposition 8F,(0) < G,,(0).
Also, we haveF, (—v) = 1 > G,(—v) = 0. Therefore, sincd’, is decreasing andr,, is increasing orfj—, co),
we have—y < —t; <0, i.e., the first inequality in (34).

Next, note that becausg,(—t;) = 2C(y — t;)™ and F,,(0) > 0, we have

2C(y — t1)" = Fo(—t1) > Fp(—t1) — Fu(0) = |FL(O)|ta
for some(¢ € (—t1,0), so that

2C(y —t))" > t; inf )!FZL(C)!

CE(—thO
= tlF(—t)| =t > _jdi(y—t1))"
j=k
k—1
> hk(y—t)". (35)
Now, sincey —t; > 0, (35) implies c
2
t1 < ?(7 —tg)" ML (36)
Finally, we conclude
2,
1 < W’Y (37)
since0 < v —t; <~y andn > k. O

We are now ready to prove Lemma 4.

Proof: [Proof of Lemma 4] Letz, v, u, €, b, ¢, and N be as in the statement of the Lemma. it be as in
(30), and supposé > 0 satisfies (16), which can be rewritten as

0< Fn(i—7) <2C(v+ (G- Y. (38)
By the monotonicity ofFy, proved in Proposition 8, this implies that

wherety andt; are as in Lemma 9 and Lemma 10, respectively. Thus, we have

=7l < Y (40)
whereC; = (2C)/(k~*=1) with k < % =: ko as in Proposition 7. Finally, since the functigfr) := zy*~!
attains its only local maximum at = 1/log(y~!) > 1, we conclude thaC; < max{2C,2C/(koy 1)} =: C".

O

IV. ALGORITHMS TO APPROXIMATE 3 AND NUMERICAL EXPERIMENTS

In the previous section we showed that even wigeis unknown (but fixed), it is possible to recover it with
exponential precision, and thus to reconstruct the samplésom their encoding, with exponential precision as
well. We did not yet address how to estimgteor rathery, in practice; this is the subject of the present section.
The first approach we present computeBy carrying out an exhaustive search for the valug(f)at satisfy (16).
We carry out numerical experiments illustrating the disoms and touch upon some other robustness issues.
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Fig. 3. The performance of the algorithm when implementedgua precise beta-encoder with offget= 0.2. (a) shows the errdry — x|
whereyx was computed from N-bit beta-expansionscof /10 and1 —z via an exhaustive search algorithm. (b) shows the apprdioma
error |z — Zn| WhereZx was computed using the estimatgg along with the N-bit beta-expansion efin both (a) and (b), the vertical
axes are logarithmic, and the straight lines are the gragtCof with C' =1+ .
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Fig. 4. The experiment of Figure 3 repeated; however thig @m imperfect beta-encoder with offget= 0.2 ande = 0.15 was used.(See
text.)

A. Exhaustive search, several robustness issues and rntaherperiments

The algorithm that we presented in the previous sectiorgaln the fact that the two transmitted bitstreams are
produced by quantizing both € (0,1) and1 — = using a beta-encoder with offsgtwith a fixed value ofg. In
order to decode this information, so as to recaveit is clear that the decoder must evaluater 5 (and probably
re-evaluate it every so often as the encoded samples arwadgen this subsection, we assume this is done by
an exhaustive search fopy that satisfy (16). We show the results of numerical expentsdor x = 7/10 and
~ = 0.75 (unless otherwise noted). We denote dy the approximation of: produced by combining the original
N-bit truncated beta-expansion coefficiehisof = with powers of the estimated valde; of +, as in Theorem 5.
We use these numerical examples to illustrate several todss issues:

1) Our algorithm is robust with respect to the quantizer irfgmtions in the sense of Theorem 3. That is, if
the scheme described in (9) is implemented v@th(- — ) instead of@, we can still estimate the value of
~ with exponential precision with respect to the bit rate. detf our results in the previous section are for
these imperfect quantizers. In Figures 3a and 3b, we |plpt— | and |y — z| versusN, respectively, in
the case of a precise beta-encode#(0) with offset = 0.2. Figures 4a and 4b, on the other hand, show
the same quantities, respectively, when the approximatewe obtained via an imperfect beta-encoder with
1= 0.2 ande = 0.15 (recall thate is the bound or¥; Figure 4 used a simulation where thedid not even
remain constant from one sample to the next; they were pickadomly, uniformly in(—e, ¢)).

2) We can still recover the value of with the same precision if instead aof and 1 — z, the transmitted
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Fig. 5. The performance of the algorithm when implementeith wi= 7/10 and1 + p — z. Here the “uncertainty; was taken to be/" /2
(when the number of bits used to compdgte is N).
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30

Fig. 6. The performance of the algorithm when implementetth wi= 7 /10 anda — = with a = 0.9. Here the value of. wasknownby
the decoder.

3)

4)

bitstreams correspond toand1 + p — x as long agp| < ¢, for some sufficiently smakdy. More precisely,
if 0 <2eq <2CY, whereC is as in Theorem 3, we can replace (16) in Theorem 4 with theeratsingent
condition on#

N
e <1-) (b +¢)7 <205 — e, (41)
j=1

and the theorem remains valid, i.e., it follows that- 5| < C’v". Figure 5a and Figure 5b shoy — 7|
and|#y — x| versusN, respectively, in this case with = vV /2. This observation means that if the reference
level can be kept fixed within a precision &f, then the scheme still works up f¥y ~ log €/ log 7.

If we use the pair: anda — z instead ofr and1 — = for somea € (0, 1), our approach still works, provided
that0 < = < a and that weknowthe value ofa, at least with a precision af, that satisfie® < 2¢y < 20~Y,

as above. In Figures 6a and 6b, we gt — +| and |z — z| versusN, respectively, when the algorithm
is implemented using the pairanda — x with a = 0.9.

Our algorithm requires that the value ofremain constant during the quantization of the numbeend

1 — x, approximately on each sampling interval when quantizimg@es of a bandlimited function. On the
other hand, the algorithm still works if changes, however drastically, from one sampling intervalrtother.

As already alluded to in point 2) above, our approach haediuited anewrobustness issue: typically, we cannot
ensure that the reference level (1 in the case where we eticegairz and1 —z, 1+ p in point 2)) is known with
high precision, which is a new practical hurdle. More getgra practice we would face a situation where pairs
of values(z,a — ) are encoded, whekeis not known with great precision. If (as is reasonable) we can enthat
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Fig. 7. (&) The graph opso(A) for several(x, y) pairs. The dashed curves are graphst@C'\", corresponding to the constraint of (42).
We observe that (42) is satisfied for valug€lose to 1 as well as close to the tryye(b) A zoomed-in version of (a) ta € [0.6,0.8]. In
this interval and for thesér, y) pairs, (42) is satisfied in only a small neighborhood of thee ty value ¢y = 0.700067 in this case).

the unknown reference levelremains constant or varies very slowly only, then we stiti eatimatey as follows.
Suppose the beta-encodingof a — z, vy, a — y Ieads to the bit sequencé&zj jeNs (€5)iens (b5)jens (G5)jens

respectively. Defind; = b;+c;, andd; = b; +¢;. Thenz diy? = Zdj
7j=1 7j=1

; if we putk = min{j € N : d; # d;},

then

e}

dp —di = (dirj — dpas)y
=1

clearly this puts some constraint on the possible values sfowever, because the; = ch —d; € {-2,-1,0,1,2}

can now take negative values as well, the arguments used preiofs in Section 3 no longer hold. We have therefore
no guarantee that we will obtain an estimate fowith precision of sizeD(y") if we know the firstN entries of
the sequences ¢, b, ¢ similarly, we can not put an upper bouralpriori, on k = min{j € N : d; # Jj}. More
precisely, arguments similar to those in Proposition 6 stiuat

N
209N <) " djyh < 20N
=k

with C' as in Proposition 6. This suggests we replace the cons{Etof Lemma 4 with

N
—2CAN <Y " dA TR < 205N (42)
j=k
and expect anyy that satisfies (42) will be an exponentially precise estimalt~. But since in this case the
polynomial py () := Ej-v:k d; M ~* is not strictly decreasing, we face two major difficulties:

a) The constraint (42) may be satisfied for valgeslose to 1, regardless of what the value~ofs because
the constraint gets quite weak whénis close to 1, angy (%) can be small enough to satisfy this weak
constraint. Figure 7a shows samples of spgh obtained by encoding, « — x,y,a — y as described above
with + = 0.700067 for severalz andy that cause the above mentioned difficulty. One could oveectim
problem outlined above by restricting the valuesyofo a narrower interval that is known a priori. Indeed,
if we were given thaty € [0.6,0.8], then, as observed in Figure 7b, the constraint (42) isfeationly in a
small neighborhood of the true value of Another way of dealing with this problem is to aim directhyrf
the root(s) of the polynomigby in (1/2,1) (instead of searching for somgthat satisfies (42)). This will
be discussed further in Section IV-B.

b) Another problem arises because the polynomigl\) := ij:k dej—’f canhave several roots in the interval
(0.5,1) (as well as in the narrower interval which we know, a priowicontainy). This would in turn mean
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Fig. 8. The graph opso()) for several otherz,y) pairs. The dashed curves are graphst@iCA\®0, corresponding to the constraint of
(42). We observe that for these pairso has multiple roots irff0.6, 0.8] in small neighborhoods of which (42) is satisfied.

- 1=2 1 ‘ _ =20

(a) (b)

Fig. 9. The plot of|y — 4n,7| where~y = 0.700067 and4y,; was estimated as described in point b) of Section IV-A. Inl€&®), and
in (b) 1=20. In both cases, the experiment was repeated t@stiwith different{(z;, y:)}/_,; each graph shows the results for 3 typical
experiments; dashed curves show the worst case error arhentP0 experiments.

that (42) is satisfied in sufficiently small neighborhood®ath of these roots (note that is a polynomial,
and thus smooth). Figure 8 shows examples of gyg¢lthat are obtained by encoding a — x, y, a—y as
described above for severalandy. (Note that the examples in Figure 7 and Figure 8, althougly thay
seem contrived, stem from actual coding simulations — tipeeblemscan occur in practice.) In this case,
clearly, computing the root(s) afy in (1/2,1) will not help as we have several roots. Moreover, these roots
may be very close to each other so that even if we know a phati-t lies in some restricted interval, this
might not suffice to exclude all but one root. On the other harelknow that one of the roots pfy is always
approximately at the right value independently of whdt:, y) pair is used (this follows from (42) because
pn is smooth), and it is reasonable to expect the other roai(betlocated at different points in the interval
(0.5,1) depending on thér, y) pair that was used to obtajny. This motivates us to compute the polynomials
pN,; corresponding to severét;, y;) pairs as above, and consider the polynontigl; := Zle e;pn,i Where
we choose:; € {—1,1} in a way that would guarantee (or increase the probabilitg} Py ; has only one
root in the interval(0.5,1). In this case we replace the constraint (42) with

—2CT5N < Py 1(7) < 2CT3Y, (43)

and search fofy values that satisfy (43) with the hope that (43) is satisfiely éor 4 that approximates.

In Figures 9a and 9b, we show the plots|of— 4 ;| vs. N with I = 2 and I = 20 respectively. In these
numerical experimentge;, y;) pairs were randomly chosea,= 0.9 was used in the encoding only (i.e., the
value ofa was unknown to the decoder), and= 0.700067. Moreover we chose; such that the leading
coefficients of polynomialgy ; have the same sign, andy; was taken to be the median of all the values
that satisfy (42). This experiment was done foe 2, I = 5, [ = 10, andl = 20, 100 times in each case with
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Fig. 10. The worst case errdy — 4n,7| for I = 2,5,10,20, among 100 numerical experiments conducted in each case.

_ 0

different sets of z;, y;)

in each casél = 2,3, 5,10, 20). Hereﬁ](\?l is the approximation obtained as above from ftre experiment
(¢ =1,...,100). We observe that the worst case error can be very large Whersmall, i.e., when we use
a small number ofz,y) pairs (although in individual examples, one can have verydgestimates as seen
in Figure 9a). On the other hand, using a large numbér:0f) pairs makes the estimates significantly more
reliable: we observe that the worst case error decreasemerpally fast agV increases.
Remark: Note that robustness remark 4) above has to be adapted inabésy would no longer be allowed to
vary from one sampling interval to the next, since we wouldstiiikely obtain our different pairs from consecutive
samples. Some change ofwould still be allowed without hurting the algorithm if it we sufficiently slow.
A different approach to determining approximately from encoded sequenc¢gs) and(c,) is proposed in the
next subsection.

B. An alternative to exhaustive search

In this section, we present a fast algorithm to estimatesing the sequencés= E“ s(x) andc:= E" s1—2x)
wherez € (0,1) and E“5 is defined as before. First, we defide= b + ¢, and rewrlte (16), the constralnt of the
main lemma, as

0< Py(3) <207V (44)

where Py (\) :==1— E;-V:l djM andN >k =min{j : j € N andd; # 0}. We then have the following.

Proposition 11. Let k£ be as above. FotN > k, Py has exactly one root in [y,1]. Moreover,vy satisfies
|y —yn| < C'vN where(’ is as defined in Lemma 4.

Proof: First, note thatP,(\) = 1 — dx\* has a root aty, := (1/d)"/* which satisfiesd < v < v, < 1.
(Recall that, by Proposition % cannot be arbitrarily large.) Moreover, fo&f > k, Py () < Pi(A) for all A > 0
(since eachi; is non-negative). ThusPy () < 0 for all N > k.

On the other hand, for any positive integst, we havePy(v) > 1 — Z;‘;l ;79 = 0. Since Py is continuous
on [y, k], by the intermediate value theoreR) has a root invy,vx] C [, 1]. Also, sincePy is strictly decreasing
for N > k, this root is the only root oPy in [y, 1]; we denote it byyy. Finally, Lemma 4 implies thaty — yy| <

C'yN. O

Proposition 11 shows that if we can approximaig the root of Py in [y, 1], by 4 with a precision ofO(yV),
then |y — 4| will also be of ordery’V. Since Py is a 'nice’ polynomial in that it is strictly decreasing @, 1]
with a strictly decreasing derivative, we can compytewith an arbitrary precision using Newton’s method. As a
matter of fact,
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Proposition 12. Let k£ be as in Proposition 7, and suppo$é > k. Choosey < 71(8) <1, and compute(yj(\l,))f:0
via
!
LD 0 PN(W%))

_ 0 45
" NP “o

Then,

A _yn < (0 — ) (1 = 0), (46)

with C = k—f—z'yk_l(l _ 75\?))2_

Remark: We have implicitly assumed that, even thouglis not known, it is bounded above, away from 1, by a
knownupper bound.Note that this is a very reasonable assumptiamy practical setting. (Ifl; = 2, we can of
course takey](\?) =, if di. =1, v, = 1 however.)

Proof: For A > vy we havePy()\) <0, Py (A) <0, and Py (\) < 0, so that
1
0="Prx(w) = Px(N)+PrN)(w = A) + 5 PR(E(vw = 1)

< Pyv(A)+Py(N)(w — ), (47)

which implies
[Pn (M)

[P (M)

SA—VM

for all A > vx. An easy induction argument then shows thatﬂf{é, computed iteratively from the starting point
7](3) > vy satisfy, for alll,

0] 0]
! Py(vw) | Pn(Oy) I I+1
PN(’YN ) PN(’YN )
so that - z
0 <A\ = < — . (49)

On the other hand:
1) We have

Pv(vY) = Pyiw) + Ph(n) (7Y — )

1
+§PJ,\II(§)(’Y%) —n)?

< Ph(ww)(ry — ) (50)
which, asPy (yn) < 0, implies
PN(%(\Z/)) )
> — YN 51

N
2) Note thatPy () = — Y _jd;X~'. Then we have the following.
j=k
(@) Asdy € {1,2} (see Proposition 7) angly > v, we get

|Py (vw)] > koL (52)
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(b) Noting thatd; € {0,1,2} for all j, we obtain
PRI < 22%* §2Zw—1
: —
= 2— A’“EAJ

INF— 1@

(1-2)
forall 1> \> 7](\,) In particular, asl > 7(0) ](\l,) > 5, we get
k41
|PJ/V(71(\Z/))| < 227(0)2 (53)
(1=
Combining (51), (52), and (53), we conclude
Py(7¥ Pr(7Y
/ ( ](\l[)) =, ( ](\l[)) > 0(7%) —N), (54)
Py(vy) Py(vw)
whereC' := 2595 71(1 - 42, Then (45) implies
P ’Y(l)
W = = Y - 717( ](f))
Py(vw)
< (W - (-0 (55)
O

Corollary 13. Let 7N,7(l) and C be as in Proposition 12. Then

Nl
W~y < (1= O — ). (56)

Therefore, forl > ; (1 o) (Nlog7+10g(7](\,) yn)~h), we have

0< Y — v <AV (57)

Remark: Corollary 13 shows that Newton’s method will compute an agpnation with the desired precision
after O(N) iterations. In practice, however, we observe that the cg@ree is much faster. Figure 11 summarizes
the outcome of a numerical experiment we conducted: We chose (0,1) randomly, and computedy by
approximating the root of the polynomidty via Newton’s method with 10 iterations. We repeated this 100
different x values. In Figure 11, we pldty — 45| versusN. As one observes from the figure, the estimates are
satisfactory. Moreover, the computation is much faster gan@d to exhaustive search.

The case of unknowm

Finally, we return to the case when the valuezaé unknown to the decoder. We define the polynoniigl; as
in point b) of Section IV-A, and try to approximateby finding a root in(0.5, 1). Recall that, our goal in defining
Py 1 was the expectation that it has a single roof{(rb, 1], and this root is located at approximately the right
value. Clearly, this is not guaranteed, however our nurakegperiments suggest thaty ; indeed satisfies this
expectation wher is large (e.g. 20 in our numerical examples outlined in pb)nbf Section IV-A. Also, note
that Py ; satisfies the constraint (43) at any of its roots. So, compuits root(s) shall not give us any estimate of
~ that is worse off than the estimate that we would have obdthiri@ exhaustive search using the constraint (43).
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Fig. 11. 100 experiments, conducted with randomly chasand plotted together. Here= 0.700067, and the dashed line is the theoretical
upper boundiyn was computed by estimating the root Bf; via Newton’s method with 10 steps.
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Fig. 12. 100 experiments in the case of unknowmith v = 0.700067. 4,7 was computed by estimating the root By, ; to which a
10 step Newton’s method algorithm converges. In (a) welset2, and in (b)I = 20. The dashed curves in both (a) and (b) are the worst
case errors among 100 experiments for each case.

Motivated by the discussion above, we repeat the numeriqarament of point b) of Section IV-A, only this
time we estimate the value of by computing the root of’y ; via Newton’s method. In Figures 12a and 12b, we
show the plots ofy— 4y /| vs. N with I = 2 andI = 20 respectively. In these numerical experimefts;, vi)}._;
were randomly chosem, = 0.9 was used in the encoding only (i.e., the valuenoias unknown to the decoder),
~ = 0.700067 (again only used in the encoding). Moreover we chgssuch that the leading coefficient of each
polynomial px; have the same sign. We computgg ; by estimating the root o’y ; via a 10 step iteration
Newton’s method with the starting poiny = 0.8. This experiment was done fdr= 2, I = 5, I = 10, and
I =20, 100 times in each case with different sets{@f;,v;)}._,. Figure 13 shows the worst case approximation
error, maxy, [y — 7% ;|, versusN in each casél = 2, 3,5, 10,20). Here 7Y% ; is the approximation obtained, as
above, from thekth experimen(k: =1,...,100). We observe that the worst case error can be very large When
small, i.e., when we use a small number(ofy) pairs (although in individual examples, one can have verydgo
estimates). On the other hand, using a large numbéz of) pairs makes the estimates significantly more reliable
so that the worst case error decreases exponentially fast iasreases.
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