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Abstract—A constrained system is presented by a finite-state
labeled graph. For such systems, we focus on block-type-decodable
encoders, comprising three classes known as block, block-decod-
able, and deterministic encoders. Franaszek gives a sufficient
condition which guarantees the equality of the optimal rates of
block-decodable and deterministic encoders for the same block
length. In this paper, we introduce another sufficient condition,
called the straight-line condition, which yields the same result.
Run-length limited RLL( ) and maximum transition run
MTR( ) constraints are shown to satisfy both conditions.
In general, block-type-decodable encoders are constructed by
choosing a subset of states of the graph to be used as encoder
states. Such a subset is known as a set of principal states. For each
type of encoder and each block length, a natural problem is to find
a set of principal states which maximizes the code rate. We show
how to compute the asymptotically optimal sets of principal states
for deterministic encoders and how they are related to the case
of large but finite block lengths. We give optimal sets of principal
states for MTR( )-block-type-decodable encoders for all code-
word lengths. Finally we compare the code rate of nonreturn to
zero inverted (NRZI) encoders to that of corresponding nonreturn
to zero (NRZ) and signed NRZI encoders.

Index Terms—Constrained system, maximum transition run
system, precoding, principal states, run-length-limited (RLL)
system.

I. INTRODUCTION

I N modulation coding, one encodes arbitrary user data into
sequences that satisfy some constraint that improves the per-

formance of a communications or recording channel—in partic-
ular, a magnetic or optical recording channel. The best known
constraint is the run-length-limited (RLL( )) constraint on
binary sequences, in which runs of zeros are bounded below by

and bounded above by. Sequences satisfying the RLL( )
constraint correspond to consecutive edge labels in the finite-
state machine shown in Fig. 1.

Run-length constraints help to mitigate problems of inter-
symbol interference and inaccurate clocking (the-constraint
for the former and the -constraint for the latter). These con-
straints have been used in recording channels since the inception
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Fig. 1. RLL(d; k) constraint.

Fig. 2. MTR(j; k) constraint.

of the disk drive. They are still used today in some recording sys-
tems—in particular, those which rely on relatively simple detec-
tion methods, such as peak detection. This includes some mag-
netic tape drives and optical disk drives.

Of particular importance for today’s high-density disk drives
are constraints that enhance the performance of more complex
detection methods, such as partial response maximum likeli-
hood (PRML). One important example is the class of maximum
transition run (MTR( )) constraints [13], in which runs of
zeros are bounded above byand runs of ones are bounded
above by (see Fig. 2). The-constraint plays the same role for
clocking as mentioned above. The-constraint is imposed in
order to increase the minimum distance between distinct code-
words and therefore provide error-correction coding gain. This
constraint also helps the recording head to switch polarity suffi-
ciently fast and yet still saturate the recording medium. Typical
values of and can be roughly and , but a wide range of
values have been considered.

Other important constraints include asymmetrical RLL
and multiple-spaced run-length constraints used in optical
recording, charge constraints used in both recording and com-
munications channels, and constraints for timing
recovery and reduction of path memory in PRML.

It is well known that for any constraint, there exist encoders
at any rate up to capacity. However, the corresponding decoder
may propagate errors. For this reason, there has been much at-
tention focused on block encoders. While block encoders are
conceptually simplest, it may be possible to achieve higher rates
using block-decodable codes (which still limits error propaga-
tion to one block) instead.

In general, for a given block length, determining the optimal
rate of a block-decodable encoder can be very difficult. How-
ever, this problem is considerably more tractable for the class of
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deterministic encoders (see Section III for definitions of these
encoders). While deterministic encoders do not necessarily have
good error propagation properties, it turns out that for some nat-
ural constraints, including RLL( ) and MTR( ), the op-
timal rates of deterministic and block-decodable encoders coin-
cide for every block length.

For some well-known families of constrained systems,
optimal encoders have been completely characterized. Lee and
Wolf [9], [10] explicitly computed optimal block encoders
for RLL( ) constraints. Optimal block-decodable encoders
for the same constraints are due to Gu and Fuja [5]. For

constraints, optimal block encoders were found by
Abdel-Ghaffar and Weber [1]. In this paper, we exhibit optimal
encoders for MTR( ) constraints in Section VI.

An outline of our paper is as follows. In Section II, we
summarize some necessary background material on con-
strained coding. In Section III, we give formal definitions of
the three classes of encoders that we consider, and we give,
in principle, a description of how the optimal encoder of each
type can be constructed using Franaszek’s notion of a set of
principal states [2], [3]. We give a complete proof of a sufficient
condition, due to Franaszek, for the equality of the optimal
rates of block-decodable and deterministic encoders. Then we
introduce a variation of this condition, called the straight-line
condition. Several examples of constrained systems are shown
to satisfy these conditions. Natural examples of systems where
equality fails are also given. In Section IV, we study the
asymptotic behavior of deterministic encoders. We provide a
simple method to determine an asymptotically optimal set of
principal states based on eigenvectors of an adjacency matrix
corresponding to the constraint. In Section V, we apply the
result in Section IV to characterize the asymptotically optimal
block-decodable encoders for RLL( ) and MTR( ). We
begin Section VI by a review of the results from Lee and Wolf
[9], [10] on optimal block encoders and Gu and Fuja [5] for
optimal block-decodable encoders for RLL( ) for all block
lengths. Then, we present optimal block, block-decodable, and
deterministic encoders for MTR( ) for all block lengths.
Some proofs of the lemmas in this section are given in the
Appendix. Finally, we study the effect of precoding on the code
rate in Section VII.

II. BACKGROUND

In this section, we summarize some necessary background
and definitions. For more detail, the reader is referred to [8] and
[11].

A labeled graph [11] consists of a finite set of
states , a finite set of edges where each edge
has an initial state and a terminal state in, and an edge la-
beling where is a finite alphabet. We will be
concerned mainly with finite sequences, calledblocksor code-
words; a -block is a block of length . Formally, aconstrained
systemor constraint is the set of finite sequences
obtained by reading the edge labels of a labeled graph. Such
a graph is called apresentationof the constraint. A presentation
is calleddeterministicif at each state all outgoing edges carry
distinct labels. It is well known that every constrained system

has a deterministic presentation. A graph islosslessif any two
distinct paths with the same initial state and terminal state have
different labelings. This is a weaker property than deterministic.

A graph isirreducibleif for any given pair , of states there
is a path from to and a path from to . A graph isprimitive
if there exists a positive integer such that for all pairs , of
states there are paths fromto and to of length . A con-
straint is said to be irreducible (resp., primitive) if it has an irre-
ducible (resp., primitive) presentation. Most constraints of prac-
tical interest, including RLL, MTR, and charge constraints, are
irreducible; in fact, except for trivial cases, the RLL and MTR
constraints are primitive. Moreover, any constraint can, in some
sense, be broken down into irreducible pieces. For these reasons,
we will consider only irreducible constraints (in fact, mostly
primitive constraints). For an irreducible constraint, there is a
unique minimal (in terms of number of states) deterministic pre-
sentation, called theShannon cover[11].

Let be a labeled graph. Theadjacency matrix is
the matrix whose entry is the number of
edges from state to state in . The th power of , denoted

, is the labeled graph with the same set of states as, but
one edge for each path of lengthin , labeled by the -block
generated by that path. For a constrained systempresented by
a labeled graph , the th power of , denoted , is the con-
strained system presented by. If is the adjacency matrix
of , it can be shown that the adjacency matrix of is .

It is well known that for any constraint, there exist encoders at
any rate that does not exceed the (Shannon)capacity, , of
the constraint; this capacity is defined as the asymptotic growth
rate of the number of sequences allowed by the constraint, i.e.,

where is the number of -blocks in the constrained system
. It can also be computed as where is the largest eigen-

value (also known as thePerron eigenvalue) of the adjacency
matrix of any deterministic (or more generally, lossless) presen-
tation of the constraint.

The encoders and the corresponding decoders can be imple-
mented as finite-state machines that encode/decode using state
information; the encoders are calledfinite-state encoders. More
precisely, for a constrained systemand a positive integer,
an -encoder is a labeled graphsuch that

• each state of has out-degree,

• ,

• is lossless.

The labels of the encoder are sometimes calledoutput labels.
A tagged -encoderis an -encoder whose outgoing
edges from each state are assigned distinctinput tagsfrom an al-
phabet of size . Therateof a tagged encoder is .
So, a rate encoder for is a tagged -encoder.

This structure is perfectly adequate for encoding. However, it
is desirable for the decoder to be implemented as asliding-block
decoder, which makes a decision on a given received codeword
on the basis of a local window consisting of the codeword itself,
as well as a fixed number of preceding codewords (thememory),
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and a fixed number of upcoming codewords (theanticipation).
In this way, any symbol error at the decoder input should give
rise to a limited number of errors at the decoder output. For
most constraints of interest, sliding-block decodability can be
achieved at any rate up to capacity.

III. B LOCK-TYPE-DECODABLE ENCODERS

Although sliding-block decoders enforce some limit on error
propagation, the extent of error propagation may be too large
for a given application. For this reason, there has been much at-
tention focused onblock encoders, which encode by mapping,
in a one-to-one manner, unconstrained-blocks to constrained
-blocks. Thus, block encoders are conceptually simpler than

general finite-state encoders and, more importantly, have the ad-
vantage that error propagation is limited to one block.

In many circumstances, instead of using a block encoder, it
may be possible to achieve a higher rate using a finite-state en-
coder that isblock decodable, that is, sliding-block decodable
with zero memory and zero anticipation. The corresponding de-
coder limits error propagation to the same extent as a block
decoder: only one block. In this paper, we do not consider a
more general notion of block decodability that can sometimes
be achieved at the cost of replacing finite-state encoders with
look-ahead encoders [7], [6].

In general, for a given block length, determining the op-
timal rate of a block-decodable encoder can be very difficult.
However, this problem can be considerably more tractable
for the class ofdeterministicencoders; these are finite-state
encoders with deterministic output labeling. While determin-
istic encoders do not necessarily have good error propagation
properties, it is well known that for RLL( ) constraints, the
optimal rates of deterministic and block-decodable encoders
coincide for every block length [2], [3], [5].

It is easy to see that a block encoder is block decodable
which in turn is deterministic. For the latter, observe that for
a block-decodable encoder, the deterministic tagging of input
labels forces the output labeling to be deterministic. In this
paper, we shall consider all of these three classes of encoders,
which we callblock-type-decodable encoders. Our goal is to
determine, for a given constraint, a given class of encoders,
and a given block length, the optimal rate of an encoder for

in class .
In order to quantify the optimality of block-type-decodable

encoders, we need the following notations. Letand be any
states in a labeled graph. Thefollower setof in , denoted

, is the set of all finite words that can be generated from
in . We shall use to denote the set of all words

of length in which end at state. Similarly,
denotes the set of all words of lengthin which end at
a state in the set . The states of a labeled graph are naturally
endowed with thepartial orderingby inclusion of follower sets:

if . We say that a set is com-
pleteif whenever is in and then is also in . For
a constrained system, define to be the maximum
such that there exists an -block encoder. Similarly define

and for the block-decodable and determin-
istic class of encoders, respectively.

Let be an irreducible constrained system andbe an ir-
reducible, deterministic presentation of. For each class of
block-type-decodable encoders, it can be shown that there exists
an ( )-encoder in class if and only if there exists such an
encoder which is a subgraph of(in particular, this holds when

is the Shannon cover) [11]. Thus, the problem of designing
block-type-decodable encoders is equivalent to choosing a sub-
graph of , in particular, a subset of , called aset of prin-
cipal states(this terminology goes back to Franaszek [2] who
used it only for the class of deterministic encoders). It follows
that

and

We do not know of a formula for as simple as those
above, but, as with and , it is a function of only an ar-
bitrary irreducible, deterministic presentation of the constraint,
such as the Shannon cover. For each class of block-type-de-
codable encoders, we shall refer to a subsetof states of the
Shannon cover that achieves the maximum as anoptimal set of
principal states.

Thememoryof a labeled graph is defined to be the smallest
integer such that the paths in of length that generate the
same word all terminate at the same state. Freiman and Wyner
show [4] that when has finite memory , for the optimal set
of principal states for block encoder, it suffices to consider sets

which are complete.

Definition 1: Let be a graph and be a subset of .
is said to satisfy theFranaszek conditionif the states in

can be ordered: such that if
then

The following result is due to Franaszek [2]. Because of its
importance, we give a complete proof here.

Proposition 1 [2]: Let be a constrained system with a de-
terministic presentation . Suppose that there exists a determin-
istic encoder, with a block length, determined by a set of prin-
cipal states such that satisfies the Franaszek condi-
tion. Then there exists a block-decodable encoder with the same
block length, rate, and set of principal states.

Proof: First let us note that satisfies the
Franaszek condition if and only if there exists an ordering of
the states in : such that if then

Suppose that there exists an -deterministic encoder
with a set of principal states such that satisfies
the Franaszek condition. In order to show that there exists an

-block-decodable encoder, we shall show that we can
assign consistent input tagging to a subgraph ofon the set of
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Fig. 3. The straight line condition.

states . Formally, we show that there exists
and a bijective mapping such that

1) if a codeword then ;

2) if then .

We show this for each set .
Clearly, this is true for . Next assume that this is true for

. Let

We claim that in fact To see
this, first let for some . By
the Franaszek condition, , and, therefore, by
Property 2, . Thus, , as
claimed.

Now, define on according to which is in-
jective and well defined by Property 1. Then, extend
by defining it on any subset of of size

to be a bijection onto .
This completes the construction of the bijection .

What remains to be shown is that Properties 1 and 2 hold for
. Property 1 is true because we define

from . And if then

which proves Property 2.

Next we shall give a different sufficient condition.

Definition 2: Let be a graph and be a subset of .
is said to satisfy thestraight-line conditionif the code-

words can be ordered such that for allin , is an
interval (see Fig. 3).

We interpret Fig. 3 as saying: ,
, and so on. It can be seen that sat-

isfies the straight-line condition, but does not (with respect
to any ordering of the words). On the other hand,does not
satisfy the Franaszek condition (with respect to any ordering of
the states), but does.

Proposition 2: Let be a constrained system with a deter-
ministic presentation . Suppose that there exists a determin-
istic encoder, with block length, defined by a set of prin-
cipal states such that satisfies the straight-line condi-

Fig. 4. Rolling input tag assignment.

tion. Then there exists a block-decodable encoder with the same
block length, rate, and set of principal states.

Proof: Suppose that there exists an -deterministic
encoder with a set of principal statessuch that sat-
isfies the straight-line condition with ordering of the codewords
of length : . Then we assign the input tag of

to be (called therolling assignment; see Fig. 4), and
delete excess codewords as necessary. It can be seen that for any
input tag, every state can generate a codeword with that given
input tag. This defines an -block-decodable encoder.

Corollary 1: Let and be positive integers. Suppose that
for a deterministic presentation of a constrained system

1) has memory at most, and
2) satisfies the Franaszek condition or the straight

line condition.
Then there exists an -block-decodable encoder if and

only if there exists an -deterministic encoder.
Proof: Since block decodability implies deterministic, it

suffices to show that if has a deterministic presentation
with memory at most such that satisfies either con-
dition and there exists an -deterministic encoder, then
there exists an -block-decodable encoder. This can be
done by showing that if satisfies either condition and
has memory at most, then also satisfies the same con-
dition for any . Then the result follows from Proposi-
tions 1 and 2.

Let and be the set of all words of lengththat
are labels of paths in that end in . Since the memory of
is at most , it follows that for all states

(1)

Suppose that satisfies the Franaszek condition. Let
be the ordering of states in inherited

from the ordering on that defines the Franaszek condition.
If , then by (1), we have

as desired.
Now, suppose that satisfies the straight-line condi-

tion. Then, there is an ordering on words of lengthsuch that
for each state , is an interval. Restrict this
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Fig. 5. An example in which block length is smaller than the memory and
Corollary 1 fails.

ordering to . Then by (1), each is an interval.
Intuitively, if a word can be presented by a path that does not
end in , then the entire row corresponding tocan be removed
from the straight-line diagram and the result still satisfies the
straight-line condition.

The following example shows that the conclusion of Corol-
lary 1 can fail if Condition 1 does not hold.

Example 1: Let be the labeled graph in Fig. 5. This
graph has memory, and satisfies both the Franaszek
and straight-line conditions. But the only set of principal
states which defines an -deterministic encoder is

, and it is easy to see that there is no consistent
input tagging of this subgraph.

From Propositions 1 and 2, we can design a block-decodable
encoder by first choosing a set of principal statesfor a de-
terministic encoder: if satisfies one of the conditions,
then it is guaranteed that there exists a block-decodable encoder
with the same rate and set of principal states. This is not such
a good design criterion because, in general, the Franaszek and
the straight-line conditions may hold for onebut not for an-
other . However, by Corollary 1, if we know that a constraint
has a deterministic presentationwith memory at most and

satisfies one of the conditions, then the existence of
a deterministic encoder with codeword lengthand any set
of principal states assures the existence of a block-decodable
encoder with the same block length, rate, and set of principal
states.

Example 2: For the RLL( ) constraint with Shannon
cover , shown in Fig. 1, and all , the Franaszek condition
holds for by virtue of the ordering:

. The straight-line condition also holds: for
, see Fig. 6; for , remove the codewords with

prefix and add the word to the bottom of that
diagram.

Proposition 1 was first established for RLL constraints by
Franaszek [3].

Example 3: The asymmetric-RLL( ) con-
straint is the set of binary sequences whose runs of’s have
length at least and no more than and runs of ’s have
length at least and no more than . In the case that

, , , this constraint coincides with
the MTR constraint (see the Shannon coverin Fig. 2).
We claim that for all , satisfies the Franaszek
condition with the ordering . To see this,
divide the states into two groups, and

Fig. 6. RLL satisfies the straight-line condition.

Fig. 7. MTR satisfies the straight-line condition.

. For any three ordered states
satisfying the ordering above, at least two of them must be from
the same group, say . It is easy to see that

hence, the Franaszek condition for holds for all .
The straight-line condition for also holds for all :
for , see Fig. 7; for , remove the
codewords with prefix and add
to the bottom and/or to the top of that diagram.

In fact, for any deterministic presentation, if the states can
be divided into two groups, for each of which the corresponding
follower sets are linearly ordered by inclusion, then for all,

satisfies both the Franaszek and the straight-line con-
ditions.

According to the examples above, the conclusion of Corol-
lary 1 holds for RLL and MTR constraints when the block length

is greater than or equal to the memory. We claim that it holds
even when the block length is smaller than the memory (i.e.,

for RLL and for MTR). To see this, we
next verify that the straight-line condition holds for all block
lengths and all subsets of states in the Shannon cover, and
then apply Proposition 2 (we remark that this result fails for the
Franaszek condition).
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For the RLL constraint, as mentioned in Example 2,
satisfies the straight-line condition even for . Next we
show that for any and , if satisfies the
straight-line condition, so does . This implies that

satisfies the straight-line condition for all. Suppose
that satisfies the condition and . To remove ,
we do the following:

1) remove the column corresponding tofrom the straight
line diagram, this clearly preserves the straight-line con-
dition;

2) remove all the points corresponding to edges ofthat
end at and are labeled by a codeword ; for
the RLL constraints, any such codewordhas a unique
terminal state, and so removing such a codeword ending
at means removing a whole row in the diagram, and
hence the straight-line condition is preserved;

3) remove the point (if any) corresponding to codeword
which ends at ; but again this does not destroy the
straight-line property because the codeword is at the
bottom of the diagram.

The same argument applies to the MTR constraint asand
are at the bottom and the top of the diagram, respectively.

Thus, we conclude that for the RLL and MTR constraints,
satisfies the straight-line condition for alland .

On the other hand, the conditions can fail for the asym-
metric-RLL constraints, even for larger than the memory; in
fact, see the following example.

Example 4: Using the procedure below, one can show that
for the asymmetric-RLL( ), . However,
one can check that all the deterministic encoders that achieve

cannot be assigned consistent input tags. The best that we
can achieve is .

As a final example, consider the following.

Example 5: The ( )-multiple-space-RLL constraint is
the set of binary sequences whose runs of’s satisfy the
constraint and have length equal to a multiple of. It does not
satisfy the conditions in general. But if or the codeword
length is large enough (say ) then the conditions are sat-
isfied.

Next, we relate sets of principal states to approximate eigen-
vectors. Given a nonnegative square matrixand a real number

, an ( )-approximate eigenvectoris a nonnegative integer
vector such that where the inequality holds
componentwise. We say thatis a – vectorif each of its en-
tries is either or . Let be a graph and be a subset of ; a
– vector of size is supportedon if if

and otherwise.

For the case of a deterministic encoder, let denote the
largest (by set inclusion) that achieves . It can be
shown that is unique. Let be the vector supported
on . Note that for , is the unique largest
(entry-by-entry) – approximate eigenvector.

Given integers and , and a matrix , if a –
approximate eigenvector exists, we can find one by the well-

TABLE I
POSSIBLERATES FORMTR(j; k) CONSTRAINT WITH CODEWORDLENGTH 25

known Franaszek algorithm [11] applied to the all-ones vector;
the algorithm returns either the largest– approximate eigen-
vector (when is small enough) or the zero vector (when
is too large). To find , we start with a small and
keep increasing it until the Franaszek algorithm returns the zero
vector. Then set the last two values of to be lower and upper
bounds for . Once we have the bounds, we let the next

be the midpoint and apply the Franaszek algorithm. If it re-
turns the zero vector, set to be the next upper bound. If it
returns an approximate eigenvector, setto be the next lower
bound. By repeating this process, the value ofwill converge
to . Once is found, the Franaszek algorithm
will return .

Example 6: We want to find a rate MTR
block-decodable encoder, and we wish to determine possible
values of . By Corollary 1, this is equivalent to finding
values of such that for MTR constraint,

. Some values are given in Table I. The
capacities suggest that the smallest is because it
has the capacity . However, for this and ,

is not large enough. The smallest which allows
a rate block-decodable encoder is . For this ,
we can show that is .

IV. A SYMPTOTICRESULTS FORDETERMINISTIC ENCODERS

In order to achieve a code rate very close to the capacity,
it is usually necessary to make codeword lengthvery large.
Thus, it is of interest to study the asymptotic versions of ,

, and described in the preceding section.
Let be the adjacency matrix of an irreducible presentation

of a constrained system. According to the Perron–Frobenius the-
orem [14], has the following properties. It has a unique largest
positive eigenvalue whose corresponding right and left eigen-
vectors, and , have all positive entries. In our context,is a
column vector and is a row vector. Moreover, letbe the nor-
malizing constant such that , and define
a rank-one matrix. If is primitive, then the Perron–Frobenius
theory shows that

(2)

Let be the largest real numbersuch that there exists a
– -approximate eigenvector. Equivalently

(3)
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We let be the unique, largest such approximate eigenvector
and be the corresponding set of principal states.

Proposition 3: For a primitive constrained system, the fol-
lowing hold.

1) For sufficiently large , any – vector which achieves
also achieves .

2)

Proof: For a – vector supported on a set, define

and

Note that maximizes by definition.
Let be a – vector which does not maximize , so

for some .
From (2), it follows that converges to for any

. Therefore, for large enough

This means that for large enough, any – vector maximizing
also maximizes . This proves Part 1. Moreover,

for any such vector , since and
, and converges to , it follows that

converges to , which concludes the proof.

According to Proposition 3, for large, belongs to the
set of – vectors achieving ; in particular, we have the fol-
lowing.

Corollary 2: If is the unique – vector achieving
then .

The following result reduces the complexity of computing
and .

Proposition 4: If we order the states of according to the
sizes of the entries of in descending order

, then

And if is the largest index which achieves , then is
supported on .

Proof: Letting be any set of principal states, consider
the following definition which is adapted from (3):

(4)

Then (3) becomes

This proposition states that the maximizingmust have the
form . To see this, let us compare

and where . Since and are
positive vectors and is the minimum among ,
we have

and

Clearly, because is positive. Re-
moving additional states from further decreases the expres-
sion. Therefore, we conclude that maximizingmust have the
form .

Example 7: Consider the asymmetric-RLL con-
straint. The adjacency matrix of its Shannon cover is

The corresponding right and left eigenvectors are as shown at the
bottom of the page. Since , the constant . We sort
the entries of and compute for .

From Table II, and . Therefore,
and .

The following proposition shows that a strong form of the
converse of the first part of Proposition 3 holds for a special
case where the graph has two states. However, this is not true in
general (see Example 9).

Proposition 5: If an irreducible constrained system has a de-
terministic presentation with two states, any– vector which
achieves also achieves for all .

Proof: Let be the adjacency matrix of the presentation.
First consider the case whenis primitive. We claim that can
be written as where . To see this, observe that
since is a matrix, it follows from the Cayley–Hamilton
theorem that where . Since

is primitive, . Therefore, and converge to
some real numbers and as desired.

It can be easily shown that if and only if
where
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TABLE II
COMPUTATION OFM AND x FOR ASYMMETRIC-RLL(1; 3; 2; 5)

Since is strictly increasing with , any vector achieving
also achieves .

Next let be an irreducible matrix but not primitive. Then
must have the form

where and are positive integers. By direct computation, we
find that is the only -approximate eigenvector for.
This vector also achieves for all .

It follows from the proof of Proposition 5 that for a two-state
primitive graph, a – vector achieves if and only if
it achieves . The following example demonstrates that the
“only if” part of this statement as well as the assertion

(which holds for all primitive graphs by Proposition 3) are not
true for graphs which are merely irreducible.

Example 8: Consider the following adjacency matrix:

The largest eigenvalue isand the corresponding is

The resulting is and the unique achieving vector is
. However,

if is even

if is odd.

We can see that and achieve for even ,
and achieves for all . Moreover

if is even

if is odd.

Hence, does not exist.
The following example shows that even in the primitive case,

can fail to stabilize; in fact, in this example, there is no
single – approximate eigenvectorthat achieves for
all sufficiently large .

Example 9: Consider the following adjacency matrix:

The right and left eigenvectors are and .
Therefore,

and . The only – approximate eigenvectors that
achieve are and . From Propo-
sition 3, these are the only vectors that can achieve for
large .

can be diagonalized as

Therefore,

From this, it is straightforward to compute

We can see from the preceding expression forthat for all
, there is a unique vector that achieves . When

is odd, and . When is
even, and .

In Section V, we will see that the pathological behavior of
this example does not occur for RLL and MTR constraints: in
particular, in those cases does stabilize to .

Example 10: Empirically, it seems that the convergence in
Part 2 of Proposition 3 is very fast, and so can be very useful
for estimating and the rate of the optimal deterministic
code for a given codeword length. For a primitive constraint and
large codeword length

(5)
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TABLE III
APPROXIMATION OF THENUMBER OF CODEWORDS AND THECODE RATE

FOR RLL(2; 7)

(6)

Equations (5) and (6) can be used to estimate and the
code rate, respectively. In particular, the rate approaches the ca-
pacity as . Note that (because the
largest eigenvalue of is ), and so is nonpositive.
Table III shows this for RLL .

V. ASYMPTOTICRESULTS ONRLL AND MTR CONSTRAINTS

For a particular constrained system, the asymptotically op-
timal set of principal states for deterministic encoders can be
computed systematically based on Proposition 4. But, in fact,
some families of constrained systems have enough structure that
we can completely and explicitly characterize the optimal set of
principal states analytically, for all members of the family si-
multaneously. In Propositions 6 and 7, we show that this holds
for two specific families: the RLL and MTR con-
straints. For RLL, this result can be derived as a consequence of
a result of Gu and Fuja [5], who show that, in fact, the asymp-
totically optimal set of principal states is optimal for all finite
. However, our proof gives an algebraic perspective on (albeit

a weaker version of) the Gu–Fuja result. It turns out that for
MTR constraints, the asymptotically optimal set of prin-
cipal states is not optimal for all (see Example 11).

Note that by virtue of Corollary 1, the results in this section
also characterize the asymptotically optimal sets of principal
states for block-decodable encoders. However, these state sets
generally differ from those for asymptotically optimal block en-
coders [10], [12].

Proposition 6: For an RLL constraint

if

if

if .

Proof: Suppose we have the ordering of

Define

By Proposition 4, it is enough to determine by comparing
all .

From the adjacency matrix of the RLL constraint, we
can find and explicitly in terms of

if

if
(7)

and . This can be verified as follows:

if

if

if

if

if ,

since is the characteristic equation of.
First consider the case . We shall show that max-

imizes . For this, we first observe that is
the smallest entry and is the second smallest entry
of . The former is obvious from (7). For the latter, we need
only verify that . But this is an immediate
consequence of the fact that is the characteristic
equation of the adjacency matrix for the Shannon cover of the
RLL constraint.

Now, we have

then

with equality if and only if (because is
the characteristic polynomial of the RLL constraint).

Next we shall compare with for
. Since and are the two smallest entries and is

clearly the largest entry of, we can assume that ,
and so for some . It follows
that

Therefore, maximizes . So,
if , and if .
We have only the case remaining. In this case

and

It is not hard to show that this quantity is maximized at
and , and so .
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The reader should note that in the foregoing result we did not
need to establish the entire ordering of entries of. Furthermore,
the maximizing sets of principal states are not unique for
and . From Proposition 3, for large, must be
one of these maximizing sets. Thus, the above proposition does
not uniquely determine . However, it can be shown that
all maximizing sets give the same code rate for all, and so in
particular .

Case 1 ( ): From the proof of Proposition 6, the two
possible choices for (large ) are
and . The number of codewords corre-
sponding to is the number of codewords starting at state
and ending at any state in . These codewords can begin with

to zeros and end with to zeros. On the other hand,
the number of codewords corresponding tois the number of
codewords beginning with to zeros and ending with to

zeros. These two numbers of codewords are equal; hence,
and produce the same code rate.

Case 2 ( ): Again from the proof of Proposition 6,
the two possibilities for (large ) are

and . The ambiguity arises because

Therefore, we must show that is equal to
. Since , we can derive from the

adjacency matrix that

for

and

for all

Thus,

Proposition 7: For MTR constraint with , if
and then

(8)

if or then

(9)

and if then

(10)

And for , due to the symmetry, reverse the roles ofand
in the above expression.

Outline of Proof: We only give an outline of proof here
(since the proposition can be deduced from a stronger result

stated and proved in Section VI-B). The proof follows a similar
approach to that of Proposition 6.

First assume that . Let be the largest eigenvalue of
the adjacency matrix of the graph in Fig. 2. We can show the
following properties of

1)
2) and , with

equality if and only if .
The first property is in fact the characteristic equation of the

adjacency matrix and the second property follows from the first
property and the assumption .

With the states named as in Fig. 2, it can be shown that

for

for

for

for

With these expressions and the properties ofmentioned above,
we can prove the following ordering of the entries of:

with equality if and only if .
Case 1 ( ): We prove that maximizes

for by computing the difference
. We show that this difference is decreasing in, nega-

tive for , and positive for
. It then follows that maximizes

for as desired.
By using a similar approach, it can be shown that max-

imizes for and maximizes for

(provided that ; otherwise, the
maximizing state is ). Therefore, we have three candidates
for the maximal ; namely,

We compare these three and it turns out that is

largest when . And is largest

when .
Case 2 ( ): In this case, . Similar to the case

in Proposition 6, we can show that and

maximizes .
The exceptional case arises from the fact that

both (8) and (9) achieve in this case.

Similar to Proposition 6, there are some cases that the max-
imizing set of principal states is not unique. These comprise

and . MTR is the same as RLL
(see Case 2 after Proposition 6). We shall see in Section VII that
MTR is obtained after precoding RLL ; thus, we
can apply Case 1: following Proposition 6.



CHAICHANAVONG AND MARCUS: OPTIMAL BLOCK-TYPE-DECODABLE ENCODERS FOR CONSTRAINED SYSTEMS 1241

Finally, we mention that, in contrast to RLL constraints, for
MTR constraints and finite, even of size at least the memory,
the maximizing set for need not be a maximizing set for

.

Example 11: For the MTR constraint, one can show
that and . This is different
from given above, which is the unique maxi-
mizing set for , but achieves for .

VI. FINITE RESULTS FORMTR CONSTRAINTS

In this section, we shift our interest to the case of finite code-
word length. For completeness, we state Lee’s result [9], [10] on
optimal block encoders for RLL constraint in Proposition 8. Gu
and Fuja’s result [5] on optimal block-decodable encoders for
RLL constraints is described in the previous section and is stated
again in Proposition 9. Theorems 1 and 2 consider optimal block
encoders and block-decodable encoders for MTR constraints,
respectively. Recall that for RLL and MTR constraints, optimal
block-decodable encoders are equivalent to optimal determin-
istic encoders in terms of optimal code rate and supporting set
of principal states for any given block length. Therefore, Propo-
sition 9 and Theorem 2 apply to deterministic encoders as well.
In fact, we prove Theorem 2 from the deterministic encoders
point of view.

Proposition 8 [9], [10]: The following are optimal complete
sets of principal states for RLL -block encoders and all
codeword lengths:

and

where .

Proposition 9 [5], [15]: The following are optimal sets of
principal states for RLL -block-decodable encoders and
all codeword lengths:

and if

if

and if

We remark that for RLL

because the partial ordering of states in the Shannon cover is
actually a total ordering: .

For the MTR constraint, we shall use combinatorial
methods to enumerate and compare the number of valid se-
quences for each choice of set of principal states. As usual,
denotes the element of . In particular, ; we
take to be for . Therefore, for all .

The following lemma is a useful tool in establishing the re-
sults of this section.

Lemma 1: Let be nonnegative integers such that
and . Then

Proof:

Break each term in the left-hand side into two terms.
The first and the third terms in the last equation cancel;

change index of the remaining terms.

A. Optimal Block Encoder

The following result corrects part of a statement made in [12,
p. 1863].

Theorem 1: The following are optimal sets of principal states
for MTR -block encoders and all codeword lengths:

and

Proof: Since we have the partial ordering of the states

and

we claim that we can assume that the optimal complete set has
the form where and

. For memory, this follows from the result of
Frieman and Wyner [4] cited in Section III. For memory,
this still holds provided that for each codewordall paths in the
Shannon cover that are labeled byend in the same state. The
only words for which this may not hold are and , neither
of which can be codewords in a block encoder for MTR .

For a complete set of this form, a valid sequence begins with
to zeros or to ones and ends with to zeros

or to ones. Define to be the number of valid sequences
of length beginning with zeros and ending withzeros and
let denote the number of valid sequences of lengthbe-
ginning with ones and ending with ones. Moreover, from
the state diagram, we see that the number of valid sequences of
length starting with zeros and ending withones is .
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Similarly, the number of valid sequences of lengthstarting
with ones and ending withzeros is .

We claim that for any . To see this, consider

a sequence starting from stateand ending at state. This se-
quence must pass through stateat least once. If we cyclically
shift the first phase from to , we get a sequence starting from
state and ending at state. So there is a – relationship be-
tween the cycles at stateand the cycles at state.

Using the above facts, the number of valid sequences of
length corresponding to the complete set

is

(11)

In order to compare this number for different values ofand
, we transform and into sums of the -entry of

powers of . For a valid sequence of lengthstarting with
zeros and ending with zeros, the first run of ones can have
length to . Therefore,

Similarly

Thus, (11) becomes

Let us denote this by . Our goal is to find and that
maximize . First, we fix and see how changes when we
change to .

Case 1:

The first term comes from Lemma 1 using ,
, and .

Neglect the last term of the previous equation; index of
the first term runs from to .

Recall that in this case , hence .
Case 2:

Use Lemma 1 with , , and .
Neglect the second term of the previous equation; index

of the first term is from to .
In this case therefore, .

Case 3:

(12)
We can see that the maximum number of valid sequences is

obtained when if is even. If is odd, the optimal will
be either , or , or both depending on the sign of (12). The
same analysis applies when we fixand vary . So we are left
with four possible choices of : , ,

, and . If both and are even, then all
of these are the same. If only one of them, say, is even, then the
optimal is and (12) will take value zero. Therefore,
and will both be optimal. Finally, consider the case
when both and are odd. If we pick then (12) will
take positive value and we must choose . On the other
hand, if we pick , we must choose . These
two choices give the same number of valid sequences as can be
verified by substituting into (11).

B. Optimal Block-Decodable Encoder

For MTR constraints, for all . There-
fore, we shall prove the optimality for deterministic encoders
and apply the result to block-decodable encoders.

For simplicity, we assume that throughout this section.
We shall treat the case in Section VII (Corollary 5).

We know that there exists deterministic encoder if
and only if there exists a– approximate eigenvector

and the states corresponding to are the principal states.
Our goal is to find a set of principal states that gives the largest

for each value of , , and . We do this assuming .
Note that an optimal set of principal states must be of the form

where and ; and the state that determines
the number of codewordsis either or . This follows from the
ordering of the states, and .

Let be the number of codewords generated from state
and ending at a state in . These codewords must start
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with to zeros and end with to zeros or to ones. By
using the same method as in Section VI-A, we find that

(13)

Similarly, define be the number of codewords generated
from state and ending at a state in . The codewords
must start with to ones and end with to ones or to

zeros. Therefore,

(14)

Hence,

Theorem 2: The following are optimal sets of principal states
for MTR -block-decodable encoders, :

if

if

for .

By modifying the proof of Theorem 2, we can get a charac-
terization for shorter block lengths as well. We state this without
proof.

Let and be as defined in Theorem 2. For , if
1) and —or
2)

then an optimal set of principal states is; otherwise, an op-
timal set of principal states is .

Before we give a formal proof of Theorem 2, let us describe
the idea of how to find optimal and and state the required
lemmas. Consider the following fact.

Fact 1: Suppose is a set and and are functions from
to . Let for . Suppose

that satisfies:
•
• maximizes .
Then maximizes and .
Fig. 8 shows the plane ofand . Each point in the plane cor-

responds to a set of principal states . The whole plane
is divided into three disjoint regions , , and . We shall
show that maximizes in , maximizes in , and

maximizes in (Lemma 8). Next we show that
(Lemma 4). Thus, it follows from Fact 1 that max-

imizes in region and . Similarly, we

Fig. 8. s andt plane.

show that (Lemma 5). Therefore, maxi-
mizes in region and . Then we move on
by showing that (Lemma 6). This implies that

in region cannot be greater than in region .
Finally, we compare and (Lemma 7).

Lemmas 2 and 3 are basic tools which will be used for proving
subsequent lemmas.

Lemma 2:

(15)

for , and

(16)

for all .
Proof: Let . The labeling of any cycle at stateof

length must have the form

where , , and denotes a cycle
at state of length . Therefore, according to
our convention for , , the total number of cycles of
length is

This establishes (15) for . For , (15) is trivially true,
as is (16) for .

Note that, alternatively, for , (15) follows from
Cayley–Hamilton theorem applied to the characteristic equation
of the adjacency matrix of the Shannon cover of the MTR
constraint.
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Lemma 3:

for .
Proof:

(17)

Use Lemma 2 (true for ).
Use Lemma 2 with the second term (true for ).
The exponents of the double sum run from to

; while the exponents of the sum of the previous
line are from to ; the inequality follows
from the assumption that .

Use Lemma 2.
For the proof of the other inequality, we follow the same steps

until (17)

This is clearly since the exponents of the sum run from
to which must include because

of the assumption .

Lemmas 4–7 will be proven in the Appendix.

Lemma 4:

for .

Lemma 5:

for .

Lemma 6:

for .
Lemma 7:

if

if

for .

Lemma 8: For any fixed , is nondecreasing for
and nonincreasing for . On the other hand, for

any fixed , is nondecreasing for and nonin-
creasing for . Hence, is maximized at
and is maximized at .

Proof:

If then use Lemma 1 with , ,
.

The exponents of the first term in the previous equation
are from to .

If then

If then use Lemma 1 with ,
,

The case of can be proved similarly.
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Proof of Theorem 2:Let
be the domain of and . We break into three regions

where

It is easy to see that , , and are disjoint. We shall apply
Fact 1 to regions and .

First note that for any fixed , is increasing in
(see (14)). This fact, together with Lemma 8 imply that

maximizes in . Moreover,
we have from Lemma 4. Therefore,

maximizes in region from Fact 1.
Similarly, is increasing in (see (13)). Thus, we have from

Lemma 8 that maximizes in .
Lemma 5 states that ; from Fact 1 we
have maximizes in region .

Again from Lemma 8 and the fact thatis increasing in,
is maximized at in region . There-
fore, in this region, . However, we know from
Lemma 6 that . This means that
in is not larger than in . Therefore, we have only
two candidates for optimal : and . Finally,
Lemma 7 compares these two choices and we have that
is optimal when and is optimal when

.

The case can be proved by first showing that
maximizes in region and maximizes

in region for all . Then for each value of, , and ,
we compare obtained from and by mod-
ifying Lemma 7.

VII. OPTIMALITY AND PRECODING

In magnetic recording, binary data is often represented in
two ways: nonreturn to zero inverted (NRZI) and nonreturn to
zero (NRZ). We usually use and as alphabets
for NRZI and NRZ, respectively. In the NRZ domain,and
represent the two directions of magnetic polarity. In the NRZI
domain, represents a transition from one polarity to the other
and represents no transition. Codes are usually designed in
the NRZI domain and then -precoded to NRZ before
recording. For more detail on precoding, the reader is referred
to [16], [11]. In this section, we shall investigate the effect of
the precoder on the optimality (code rate and ) of block-
type-decodable encoders. We shall use the symbolto denote
a constraint in NRZI and to denote its NRZ precoded ver-
sion. Furthermore, let denote the maximum number
of codewords of length satisfying constraint which can be
generated from class encoder, where can be ,
or .

Let be the adjacency matrix of the Shannon coverof
a binary constraint . We can write where

contains the edges with output labeland contains the edges
with output label . We now show that there is a deterministic
presentation of with an adjacency matrix

(18)

(although need not be the Shannon cover of). To see this,
for each , define and to be counterparts of
where the last symbol of the codeword ending atmust be
and the last symbol of the codeword ending atmust be .
Let us define and .
We construct a presentationof with . With
the adjacency matrix in (18), we think of the first states
of as and the other half as . The edges corresponding
to the top left and the bottom left have label and the
others have label . Suppose there is an edge with labelfrom

to in . Then there is an edge with labelfrom to
and another edge with labelfrom to in . On the other
hand, if there is an edge with labelfrom to in , then there
is an edge with label from to and another edge with
label from to in .

Proposition 10: Let be an irreducible constraint. Then

Proof: First we claim that

where and are matrices such that
. We prove the claim by induction on. Clearly, this is true

for . Suppose it is true for then

Therefore, and
and

This proves the claim.
Next we shall show that . Let be

a – vector such that

Let

Then



1246 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

Therefore,

Finally, we shall show that . Let
and be – vectors of equal length such that

Define componentwise. Then

and

Thus, . This implies that

The following corollary follows immediately from the proof
of the above proposition.

Corollary 3: If is a – approximate eigenvector of ,
then is a – approximate eigenvector of with the
same approximate eigenvalue.

Compared with Proposition 10, we do not have such a nice
result for block and block-decodable encoders. Here are some
examples showing that the code rate may be smaller or larger
when designed in the NRZ domain.

• MTR , . , and
. (This is an example where we have strict

inequality in Corollary 4 below.)

• , (see Fig. 9). , and
.

• RLL , . , and .

• , (see Fig. 10). , and
.

However, if we restrict to constraintsthat satisfy either the
Franaszek condition or the straight-line condition, then we have
the following result on block-decodable encoder.

Corollary 4: If a constraint satisfies either the Franaszek
condition or the straight-line condition, then

Proof:

(Franaszek or straight-line condition)

(Proposition 10)

Note that this is in contrast to Immink’s result [7], [8] in which
he shows that the code rate may be improved by designing the
code in NRZ domain. This is because he considers a more gen-
eral type of encoder which involves a nondeterministic input tag
assignment and a positive-delay encoding).

Fig. 9. G .

Fig. 10. G .

Corollary 5: The following are optimal sets of principal
states for MTR -block-decodable encoders and all block
lengths:

Proof: MTR is the precoding of RLL .
Gu and Fuja [5] assert that optimal sets of principal states for
RLL are

and

Since both RLL and MTR satisfy the Franaszek condi-
tion, Corollary 3 can be used to find the set of principal states
for block-decodable encoder for as well. The corresponding
sets of principals states for MTR are

and

Another precoding of interest is that ofsigned NRZIin which
the output alphabet is ; the signed NRZI version

of a binary constraint is the set of all words
over the alphabet such that

1) , and
2) successive nonzero symbols inalternate in sign.
If is the adjacency matrix of , a deterministic presenta-

tion of , one can show that the matrix in (18) also supports
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a presentation of . The edges corresponding to the top right
have label , the edges corresponding to the bottom left

have label , and the others have label. The concept of and
states applies here as well. Now and are the counter-

parts of where the last nonzero symbol of the codeword ending
at must be and the last nonzero symbol of the codeword
ending at must be .

We can show the following.

• . This is because the matrix
in (18) is also the adjacency matrix of a deterministic presen-
tation of . Thus, Proposition 10 also holds for signed NRZI
precoding.

• . Suppose
is the set of principal states for an NRZI block-decodable
encoder. Then one can show that
gives a signed NRZI block-decodable encoder with the same
block length and rate. This is because we can assign the
input tag of a codeword to be the input tag of

in the NRZI encoder. There can be no contradic-
tion in the assignments because there is only one codeword,
namely, the all-zeros word, that can be generated from a state
in and a state in . An example where we have strict
inequality is in Fig. 9 with . In this case,

and .

• . All principal states for a signed
NRZI block encoder must be in either or again be-
cause the only common codeword which can be generated from
a state in and is the all-zeros codeword. Then suppose
that is the set of principal states for a signed
NRZI block encoder; one can show that gives an
NRZI block encoder with at least the same rate. An example
where strict inequality holds is RLL , . In this case,

and .

Analogous to Corollary 4, we can show that ifsatisfies the
Franaszek or the straight-line condition, then

. This follows from the first and second bullets
above. To see this, we need only show that the reverse inequality
of the second bullet holds. Indeed, it does

(19)

(in (19), the inequality holds for all constraints, the first equality
follows from the first bullet, and the second equality follows
from the Franaszek or straight-line condition).

APPENDIX

Proof of Lemma 4:

(20)

Use Lemma 2 with the third term (true for ).

(21)

Use Lemma 2 with the third term (true for ).
From (20) and (21), we have
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The first term is the difference between the first term in
(20) and the fourth term in (21), the second term is the difference
between the second term in (20) and the third term in (21) the
third term is the difference between the third term in (20) and
the second term in (21).

Change the index of the first term; use the fact that the
second term has the exponents from to ;
use Lemma 2 with the third term (true for ).

The first two terms are the difference between the first
and the fourth terms of the previous equation.

The first term comes from the difference between the
second and the fourth terms of the previous equation.

Combine the first two terms of the previous equation
together.

Proof of Lemma 5:

(22)

(23)

The first term is the difference between the first terms in
(22) and (23) using Lemma 1 ( , , );

the second term is the difference between the second terms in
(22) and (23).

Use Lemma 3 (true for ).

Proof of Lemma 6:

(24)

Break each term of the previous equation into two terms.

(25)

Use Lemma 1 with the first term in the previous equation
( , , ).

Break the first and the third terms of the previous equa-
tion into two terms each; the third term comes from the fact that
the exponents of the second term in the bracket in the previous
equation range from to .
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The first terms of (24) and (25) cancel; the first bracket
is the difference between the second terms in (24) and (25); the
second bracket is the difference between the last terms in (24)
and (25).

The first bracket in the previous equation is clearly less
than or equal to zero; break the first term in the second bracket
of the previous equation into two terms.

The sum of the first and the third terms in the previous
equation are obviously less than or equal to zero; change
the index of the second and the fourth terms in the previous
equation.

Proof of Lemma 7:

(26)

(27)

(28)

The first term comes from using Lemma 1 with the first
terms in (26) and (27) ( , , ).

Next we fix and define

Consider

which is greater than or equal to zero by Lemma 2. Therefore,
is a nondecreasing function of. Hence, it is enough to prove

for and for .

Use Lemma 3 (true for ).

(29)

From Lemma 2, we have

(30)

We sum (29) and (30) and we get

Use Lemma 3 (true for ).
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