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Optimal Block-Type-Decodable Encoders for
Constrained Systems

Panu Chaichanavon&tudent Member, IEEEBNd Brian H. MarcusFellow, IEEE

Abstract—A constrained system is presented by a finite-state
labeled graph. For such systems, we focus on block-type-decodable
encoders, comprising three classes known as block, block-decod-
able, and deterministic encoders. Franaszek gives a sufficient
condition which guarantees the equality of the optimal rates of
block-decodable and deterministic encoders for the same block
length. In this paper, we introduce another sufficient condition, Fig. 1. RLL(, k) constraint.
called the straight-line condition, which yields the same result.
Run-length limited RLL(d, k) and maximum transition run
MTR(j, k) constraints are shown to satisfy both conditions.
In general, block-type-decodable encoders are constructed by
choosing a subset of states of the graph to be used as encoder
states. Such a subset is known as a set of principal states. For each
type of encoder and each block length, a natural problem is to find
a set of principal states which maximizes the code rate. We show
how to compute the asymptotically optimal sets of principal states
for deterministic encoders and how they are related to the case Fig. 2. MTR(j, k) constraint.
of large but finite block lengths. We give optimal sets of principal

states for MTR(j, k)-block-type-decodable encoders for all code- of the disk drive. They are still used today in some recording sys-

word lengths. Finally we compare the code rate of nonretum 0 o \e in particular, those which rely on relatively simple detec-

zero inverted (NRZI) encoders to that of corresponding nonreturn . ; .

to zero (NRZ) and signed NRZI encoders. tlon_ methods_, such as pe_ak dgtecthn. This includes some mag-
netic tape drives and optical disk drives.

Of particular importance for today’s high-density disk drives
are constraints that enhance the performance of more complex
detection methods, such as partial response maximum likeli-
hood (PRML). One important example is the class of maximum
. INTRODUCTION transition run (MTRY, k)) constraints [13], in which runs of

N modulation coding, one encodes arbitrary user data in6ros are bounded above byand runs of ones are bounded

sequences that satisfy some constraint that improves the g&tove byj (see Fig. 2). Thé-constraint plays the same role for
formance of a communications or recording channel—in partiglocking as mentioned above. Theconstraint is imposed in
ular, a magnetic or optical recording channel. The best knowrder to increase the minimum distance between distinct code-
constraint is the run-length-limited (RLi( %)) constraint on Words and therefore provide error-correction coding gain. This
binary sequences, in which runs of zeros are bounded belowdgpstraint also helps the recording head to switch polarity suffi-
d and bounded above By Sequences satisfying the RId (k) ciently fast and yet still saturate the recording medium. Typical
constraint correspond to consecutive edge labels in the fini¥@lues ofj andk can be roughlyt and15, but a wide range of
state machine shown in Fig. 1. values have been considered.

Run-length constraints help to mitigate problems of inter- Other important constraints include asymmetrical RLL
symbol interference and inaccurate clocking (theonstraint and multiple-spaced run-length constraints used in optical
for the former and theé-constraint for the latter). These conJecording, charge constraints used in both recording and com-

straints have been used in recording channels since the incepfigfnications channels, an(, :/I) constraints for timing
recovery and reduction of path memory in PRML.

It is well known that for any constraint, there exist encoders
at any rate up to capacity. However, the corresponding decoder
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deterministic encoders (see Section Il for definitions of thedes a deterministic presentation. A graplosslessf any two
encoders). While deterministic encoders do not necessarily haliginct paths with the same initial state and terminal state have
good error propagation properties, it turns out that for some ndtfferent labelings. This is a weaker property than deterministic.
ural constraints, including RLI( k) and MTR(, k), the op- A graph isirreducibleif for any given pairu, v of states there
timal rates of deterministic and block-decodable encoders coig-a path fromu to v and a path from to u. A graph isprimitive
cide for every block length. if there exists a positive integé¥ such that for all pairs, v of

For some well-known families of constrained systemstates there are paths franto v andv to« of lengthV. A con-
optimal encoders have been completely characterized. Lee atrdint is said to be irreducible (resp., primitive) if it has an irre-
Wolf [9], [10] explicitly computed optimal block encodersducible (resp., primitive) presentation. Most constraints of prac-
for RLL(d, k) constraints. Optimal block-decodable encodetical interest, including RLL, MTR, and charge constraints, are
for the same constraints are due to Gu and Fuja [5]. Fioreducible; in fact, except for trivial cases, the RLL and MTR
(0, G/I) constraints, optimal block encoders were found bgonstraints are primitive. Moreover, any constraint can, in some
Abdel-Ghaffar and Weber [1]. In this paper, we exhibit optimaense, be broken down into irreducible pieces. For these reasons,
encoders for MTRY, k) constraints in Section VI. we will consider only irreducible constraints (in fact, mostly

An outline of our paper is as follows. In Section Il, weprimitive constraints). For an irreducible constraint, there is a
summarize some necessary background material on conique minimal (in terms of number of states) deterministic pre-
strained coding. In Section Ill, we give formal definitions okentation, called th8hannon covejl1].
the three classes of encoders that we consider, and we givd,et G be a labeled graph. Tredjacency matrix4d = Ag is
in principle, a description of how the optimal encoder of eadhe [V | x |V| matrix whose entryAg )., » is the number of
type can be constructed using Franaszek’s notion of a seteoliges from state to statev in G. Thegth power ofGG, denoted
principal states [2], [3]. We give a complete proof of a sufficienr?, is the labeled graph with the same set of state& asut
condition, due to Franaszek, for the equality of the optimahe edge for each path of lengilin G, labeled by the-block
rates of block-decodable and deterministic encoders. Then generated by that path. For a constrained sy$tqresented by
introduce a variation of this condition, called the straight-lina labeled grapld:, the gth power ofS, denotedS?, is the con-
condition. Several examples of constrained systems are shatmained system presented &Y. If A is the adjacency matrix
to satisfy these conditions. Natural examples of systems wheffez, it can be shown that the adjacency matribGsfis A9.
equality fails are also given. In Section IV, we study the Itis well known that for any constraint, there exist encoders at
asymptotic behavior of deterministic encoders. We provideamy rate that does not exceed the (Shanpapgcity cap(.S), of
simple method to determine an asymptotically optimal set tifie constraint; this capacity is defined as the asymptotic growth
principal states based on eigenvectors of an adjacency matete of the number of sequences allowed by the constraint, i.e.,
corresponding to the constraint. In Section V, we apply the
result in Section IV to characterize the asymptotically optimal 1
block-decodable encoders for Rld (k) and MTR(, k). We cap(S) = qhggoglog(N(q))
begin Section VI by a review of the results from Lee and Wolf
[9], [10] on optimal block encoders and Gu and Fuja [5] fowhereN (q) is the number of-blocks in the constrained system
optimal block-decodable encoders for RUL¢) for all block S. Itcan also be computed kg ()\) where\ is the largest eigen-
lengths. Then, we present optimal block, block-decodable, aalue (also known as therron eigenvalugof the adjacency
deterministic encoders for MTR(k) for all block lengths. matrix of any deterministic (or more generally, lossless) presen-
Some proofs of the lemmas in this section are given in the&tion of the constraint.
Appendix. Finally, we study the effect of precoding on the code The encoders and the corresponding decoders can be imple-
rate in Section VILI. mented as finite-state machines that encode/decode using state
information; the encoders are callite-state encoderdore
precisely, for a constrained systefnand a positive integet,
an(S, n)-encoder is a labeled graghsuch that

In this section, we summarize some necessary background. each state of has out-degree,
and definitions. For more detail, the reader is referred to [8] and

A labeled graptG = (V, E, L) [11] consists of afinite setof ~ * € IS lossless.
statesV’ = Vg, a finite set of edge& = Eg where each edge The labels of the encoder are sometimes caileiput labels
has an initial state and a terminal statélin, and an edge la- A tagged(S, n)-encodetis an(S, n)-encoder whose outgoing
belingL = Lg: E — X whereX is a finite alphabet. We will be edges from each state are assigned disitpett tagsfrom an al-
concerned mainly with finite sequences, caltédcksor code- phabetofﬁzeuTheﬁueofataggedSq7n)encodeﬂ§ﬂ%gﬁ.
words ag-blockis a block of length;. Formally, aconstrained So, a ratey : ¢ encoder forS is a tagged.S?, 27)-encoder.
systermor constraintS = S(G) is the set of finite sequences This structure is perfectly adequate for encoding. However, it
obtained by reading the edge labels of a labeled géapBuch is desirable for the decoder to be implementedsigling-block
a graph is called presentatiorof the constraint. A presentationdecodeywhich makes a decision on a given received codeword
is calleddeterministicif at each state all outgoing edges carrpn the basis of a local window consisting of the codeword itself,
distinct labels. It is well known that every constrained systeas well as a fixed number of preceding codewordsiftkenory,

Il. BACKGROUND
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and a fixed number of upcoming codewords (&mticipation. Let S be an irreducible constrained system a@ndbe an ir-

In this way, any symbol error at the decoder input should giveducible, deterministic presentation $f For each clas§€ of

rise to a limited number of errors at the decoder output. Fblock-type-decodable encoders, it can be shown that there exists

most constraints of interest, sliding-block decodability can k@ (S, n)-encoder in clas§ if and only if there exists such an

achieved at any rate up to capacity. encoder which is a subgraph@f(in particular, this holds when

G is the Shannon cover) [11]. Thus, the problem of designing

block-type-decodable encoders is equivalent to choosing a sub-

graph ofG, in particular, a subsdt of V¢, called aset of prin-
Although sliding-block decoders enforce some limit on erraripal stateg(this terminology goes back to Franaszek [2] who

propagation, the extent of error propagation may be too largeed it only for the class of deterministic encoders). It follows

for a given application. For this reason, there has been muchthat

I1l. BLOCK-TYPE-DECODABLE ENCODERS

tention focused oblock encoderswhich encode by mapping,

in a one-to-one manner, unconstraineblocks to constrained My (q) = nax ﬂ Fé(u, P)

g-blocks. Thus, block encoders are conceptually simpler than =" luep

general finite-state encoders and, more importantly, have the atd

vantage that error propagation is limited to one block. Maet(q) = max min |FE(u, P)|
In many circumstances, instead of using a block encoder, it PCVe ueP

may be possible to achieve a higher rate using a finite-state en- = max min » (Ag)u, -

coder that idblock decodablethat is, sliding-block decodable PEVoueP (o

with zero memory and zero gnticipation. The corresponding d@&e do not know of a formula foMpikaec(q) as simple as those
coder limits error propagation fo the same extent as a blogKove, but, as with/,, ;. andM,., itis a function of only an ar-
decoder: only one block. In this paper, we do not considefrigary irreducible, deterministic presentation of the constraint,
more general notion of block decodability that can sometimg§h ‘as the Shannon cover. For each class of block-type-de-
be achieved at the cost of replacing finite-state encoders Wit§qaple encoders. we shall refer to a subielf states of the
look-ahead encoders [7], [6]. . Shannon cover that achieves the maximum aspimal set of

In general, for a given block length, determining the Opririncipal states
timal rate of a block-decodable encoder can be very difficult. Thememoryof a labeled grapls is defined to be the smallest
However, this problem can be considerably more tractahigegerN such that the paths i of length N that generate the
for the class ofdeterministicencoders; these are finite-statgame word all terminate at the same state. Freiman and Wyner
encoders with deterministic output labeling. While determing,q [4] that wher@ has finite memong g, for the optimal set

istic encoders do not necessarily have good error propagatityrincipal states for block encoder, it suffices to consider sets
properties, it is well known that for RLI( k) constraints, the p which are complete.

optimal rates of deterministic and block-decodable encoders
coincide for every block length [2], [3], [5]. Definition 1: Let G' be a graph and® be a subset o¥(.

It is easy to see that a block encoder is block decodabfe; ) is said to satisfy théranaszek conditioif the states in
which in turn is deterministic. For the latter, observe that fof ¢an be orderediy, us, ..., ujp; such thatifl <i < j <
a block-decodable encoder, the deterministic tagging of indﬂtﬁ || then
labels forces the oquut labeling to be deterministic. In this FL(ui, P) 0 Fh(up, P) C Fi(u;, P).
paper, we shall consider all of these three classes of encoders,
which we callblock-type-decodable encode@ur goal is 10 g fo)0wing result is due to Franaszek [2]. Because of its
determu_ﬂe, for a given constraifit agiven clasg of encoders, importance, we give a complete proof here.
and a given block length, the optimal rate of an encoder for
S in classC. Proposition 1 [2]: Let S be a constrained system with a de-

In order to quantify the optimality of block-type-decodabléerministic presentatio. Suppose that there exists a determin-
encoders, we need the following notations. Leindwv be any istic encoder, with a block length determined by a set of prin-
states in a labeled gragh Thefollower setof v in G, denoted Cipal states” such tha{G?, P) satisfies the Franaszek condi-
Fa(u), is the set of all finite words that can be generated frofiPn. Then there exists a block-decodable encoder with the same
u in G. We shall useF(u, v) to denote the set of all words block length, rate, and set of principal states.
of lengthq in F¢(u) which end at state. Similarly, 74 (u, P) Proof: First let us note that(G?, P) satisfies the
denotes the set of all words of lenghin F¢ () which end at Franaszek condition if and only if there exists an ordering of
a state in the seP. The states of a labeled graph are naturallpe states in’: u, ..., u;p such thatifi < j < & then
endowed with th@artial orderingby inclusion of follower sets: a q q
u =< vif Fo(u) C Fg(v). We say that a seP C Vg is com- Folui, PN Fg(u, P) € Fe(uj, P).
pleteif wheneveru is in P andu < v thenwv is also inP. For Suppose that there exists d8§7, n)-deterministic encoder
a constrained systeif\, define My, (¢) to be the maximume  with a set of principal state® such that(GY, P) satisfies
such that there exists &8¢, n)-block encoder. Similarly define the Franaszek condition. In order to show that there exists an
Myixdec(q) @andMaet(g) for the block-decodable and determin{.S?, n)-block-decodable encoder, we shall show that we can
istic class of encoders, respectively. assign consistent input tagging to a subgrapiobn the set of
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Fig. 3. The straight line condition.

statesP. Formally, we show that there exists C F(.(u;, P)
and a bijective mappin®;: H; — {1, 2, ..., n} such that

1) if a codewordy € H; N H; thenD;(y) = D;(y);
2) ifi < jthenH; ﬂfg;(u]'7 P) C H;.
We show this for each sétuy, ..., u,}, m =1, ..., |P|.
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tion. Then there exists a block-decodable encoder with the same
block length, rate, and set of principal states.

Proof: Suppose that there exists @$f, n)-deterministic
encoder with a set of principal statéssuch that{ G?, P) sat-
isfies the straight-line condition with ordering of the codewords
of lengthq: wq, w1, ..., w,—1. Thenwe assign the input tag of

Clearly, this is true forn = 1. Next assume that this is true fory, to bei mod = (called therolling assignmentsee Fig. 4), and
m. Let delete excess codewords as necessary. It can be seen that for any
input tag, every state can generate a codeword with that given

Epy1 = (U H) N FE (i1, P).

i=1

We claim that in factt,,+1 = H,, N F&(tmy1, P). To see
this, first lety € H; N F&(um+1, P) for somei < m. By
the Franaszek condition, € FZ (u.,, P), and, therefore, by
Property 2y € H,,. Thus,E,,, 41 = Hy, N FE(tm+1, P), @s
claimed.

Now, defineD,,,+1 on E,,+1 according toD,,, which is in-
jective and well defined by Property 1. Then, exteld,;
by defining it on any subset oF % (w1, P) \ Em41 Of size
n—|Fm+1| to be abijectionontd1,2,...,n}—Dpy1(Fmi1).
This completes the construction of the bijectibp, 1 1.

input tag. This defines af5?, n)-block-decodable encoddr]

Corollary 1: Let ¢ andn be positive integers. Suppose that
for a deterministic presentatigi of a constrained systes
1) G has memory at most, and
2) (G4, V) satisfies the Franaszek condition or the straight
line condition.
Then there exists a7, n)-block-decodable encoder if and
only if there exists afS?, n)-deterministic encoder.

Proof: Since block decodability implies deterministic, it
suffices to show that ifS has a deterministic presentatich
with memory at mosy such tha{ G4, V) satisfies either con-
dition and there exists af?, n)-deterministic encoder, then

What remains to be shown is that Properties 1 and 2 hold fplere exists ariS?, n)-block-decodable encoder. This can be

{u1, ..., ums+1}. Property 1 is true because we defibg,
from D,,. And if i < m + 1 then

H; N F&(tmes1, P) C Emg1 C Higa
which proves Property 2.
Next we shall give a different sufficient condition.

Definition 2: Let G be a graph and® be a subset of/.
(G, P) is said to satisfy thetraight-line conditionf the code-
words can be ordered such that foralin P, F(u, P) is an
interval (see Fig. 3).

We interpret Fig. 3 as sayingcy, (u1) = {wi, w2, ws},
Fg,(v1) = {z1, 22, 23}, and so on. It can be seen ti@f sat-

isfies the straight-line condition, bdt; does not (with respect

to any ordering of the words). On the other ha6d, does not

satisfy the Franaszek condition (with respect to any ordering of

the states), buf/y does.

done by showing that ifG?, Vi) satisfies either condition and
has memory at mogt then(G4, P) also satisfies the same con-
dition for any P C V. Then the result follows from Proposi-
tions 1 and 2.

Let P C Vi andt?(P) be the set of all words of lengththat
are labels of paths i6/ that end inP. Since the memory off
is at mosty, it follows that for all states € Vg

F&(u, P) = F(u, Vo) nt(P). 1)

Suppose thatG?, Vi) satisfies the Franaszek condition. Let
P = {uy, ..., up } be the ordering of states iR inherited
from the ordering orl/; that defines the Franaszek condition.
If i < j <k, then by (1), we have
F&(uiy PYNFE (uk, P) =T (wi, Vo) NFE (ur, Va)Nt!(P)

C F&(uj, Va)t!(P)

Proposition 2: Let S be a constrained system with a deteras desired.
ministic presentatior?. Suppose that there exists a determin- Now, suppose thdi7?, V) satisfies the straight-line condi-

istic encoder, with block length, defined by a set of prin-

cipal stated” such thaf{G?, P) satisfies the straight-line condi-

tion. Then, there is an ordering on words of lengtbuch that
for each states € Vi, F¢ (u, Vi) is an interval. Restrict this
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prefix of codeword
10 T I o
01 1
0411
0%1
Fig. 5. An example in which block length is smaller than the memory and )
Corollary 1 fails. ok—d-11
0k-d1
ordering tot?(P). Then by (1), eaclF{ (u, P) is an interval. :
Intuitively, if a wordw can be presented by a path that does not 0k-11
end inP, then the entire row correspondingtaan be removed o*1
from the straight-line diagram and the result still satisfies the state
straight-line condition. O

0 1 -+ dd+1-k-1k
The following example shows that the conclusion of Corokig. 6. RLL satisfies the straight-line condition.
lary 1 can fail if Condition 1 does not hold.
prefix of codeword

Example 1:Let G be the labeled graph in Fig. 5. This

graph has memorg, and(G, V) satisfies both the Franaszek vo T
and straight-line conditions. But the only set of principal 7ot
states which defines an(S, 2)-deterministic encoder is T
P = {1, 2, 3}, and it is easy to see that there is no consistent 10 ¢
input tagging of this subgraph. 0 +
From Propositions 1 and 2, we can design a block-decodable i o
encoder by first choosing a set of principal stafe$or a de- '
terministic encoder: ifG?, P) satisfies one of the conditions, U l
then it is guaranteed that there exists a block-decodable encoder 0*1 1
with the same rate and set of principal states. This is not such —t—t state
a good design criterion because, in general, the Franaszek and F7=T-- 1 1 ~~k—1k

the straight-line conditions may hold for ofiebut not for an- Fig. 7. MTR satisfies the straight-line condition.

other P. However, by Corollary 1, if we know that a constraint

has a deterministic presentatiGhwith memory at mosg and v — (T 2 ..., 7}. For any three ordered states < us < us
(G4, V) satisfies one of the conditions, then the existence ghtisfying the ordering above, at least two of them must be from
a deterministic encoder with codeword lengtrand any set the same group, say, u» € U. Itis easy to see that

of principal states assures the existence of a block-decodable

encoder with the same block length, rate, and set of principal Fi(ur) N F(uz) C FE(ur) C F(u2)

states.

hence, the Franaszek condition f@¥?, V) holds for allq.
The straight-line condition fo(G?, Vi) also holds for allg:
for ¢ > max{yj, k}, see Fig. 7; foy < max{j, k}, remove the
codewords with prefix <o, ..., 170, 071, ..., 01 and add)?

Example 2: For the RLL{, k) constraint with Shannon
cover(, shown in Fig. 1, and alj, the Franaszek condition
holds for (G?, V) by virtue of the orderingo, 1, ..., d,

d + 1, ..., k. The straight-line condition also holds: for p ;

¢ > k see Fig. 6: for; < k, remove the codewords with to the bottom and/ot? to the top of that diagram.

prefix 071, ..., 01 and add the wor@? to the bottom of that  In fact, for any deterministic presentati6h if the states can
diagram. be divided into two groups, for each of which the corresponding

Proposition 1 was first established for RLL constraints bfg/)llower sets_ are linearly ordered by inclusion, th_en fo_rqall
G1, Vi) satisfies both the Franaszek and the straight-line con-
Franaszek [3]. ditions

Example 3:The asymmetric-RLLdy, k1, do, ko) con- According to the examples above, the conclusion of Corol-
straint is the set of binary sequences whose runsohave lary 1 holds for RLL and MTR constraints when the block length
length at least/; and no more thar; and runs of0’'s have ¢ is greater than or equal to the memory. We claim that it holds
length at leastd, and no more thark,. In the case that even when the block length is smaller than the memory (i.e.,
dy =do = 1, k1 = j, ko = k, this constraint coincides with ¢ < k for RLL andq < max{j, k} for MTR). To see this, we
the MTR(j, k) constraint (see the Shannon co¢in Fig. 2). next verify that the straight-line condition holds for all block
We claim that for allq, (G?, V) satisfies the Franaszeklengthsq and all subset® of states in the Shannon cover, and
condition with the ordering, ..., 1, 1, ..., k. To see this, then apply Proposition 2 (we remark that this result fails for the
divide the states into two group$] = {1, 2, ..., k} and Franaszek condition).
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Forthe RLL constraint, as mentioned in Examplé@?, V) TABLE |
satisfies the straight-line condition even fpr< k. Next we PossIBLERATES FORMTR(j, k) CONSTRAINT WITH CODEWORDLENGTH 25
show that for any/ C Vi; andu € U, if (G?, U) satisfies the (4, k) | cap(S) | logy(Mae:(25))
straight-line condition, so do¢&'?, U —{u}). This implies that (3,00) | 9468 23.3436
(G4, P) satisfies the straight-line condition for al. Suppose (4,4) | .9468 23.3436
that (G4, U) satisfies the condition and € U. To removeu, Ei’ gg gg;ﬁ gggggg
e do the following: ’ ’ :
W wing (4,7 | 9718 | 24.0300
1) remove the column correspondinguitdrom the straight (4,00) | .9752 24.1541
line diagram, this clearly preserves the straight-line con-
dition;

known Franaszek algorithm [11] applied to the all-ones vector;
the algorithm returns either the larg@stl approximate eigen-
end atu and are labeled by a codeword 7 0% for yecior (whenns is small enough) or the zero vector (whah

the RLL constraints, any such codewanchas a unique g 154 |arge). To findMae(q), we start with a small/ and
terminal state, and. SO removing suc.h a codgword end'Qgep increasing it until the Franaszek algorithm returns the zero
atu means removing a thl_e row:in the diagram, angq(or. Then set the last two valuesidfto be lower and upper
hence the straight-line condition is preserved; bounds forM.;(g). Once we have the bounds, we let the next

3) remove the point (if any) corresponding(® codeword M be the midpoint and apply the Franaszek algorithm. If it_re—
which ends atu; but again this does not destroy thdurns the zero vector, sét to be the next upper bound. If it

straight-line property because thé codeword is at the returns an approximate eigenvector, &&to be the next lower
bottom of the diagram. bound. By repeating this process, the valuébfvill converge

. . to Maet(q). Once Myet(q) is found, the Franaszek algorithm
The same argument applies to the MTR constrairtt?aand will return z(q).

17 are at the bottom and the top of the diagram, respectively. .

Thus, we conclude that for the RLL and MTR constraints, Example 6:We want to find a rate24/25 MTR(j, k)

(G4, P) satisfies the straight-line condition for gliand P. block-decodable encoder, and we wish to determine possible
On the other hand, the conditions can fail for the asynyalues of(j, k). By Corollary 1, this is equivalent to finding

metric-RLL constraints, even far larger than the memory; in values of (j, k) such that forS = MTR(j, k) constraint,
fact, see the following example. log, (Maet(25)) > 24. Some values are given in Table I. The

. capacities suggest that the smallgstk) is (4, 5) because it
Example 4: Using the procedure below, one can show th%s the capacity.9614 > 24/25. However, for thisj andk,

for the asymmetric-RLLY, 2, 2, 4), Maet(6) = 9. However, M.t(25) is not large enough. The smallégt k) which allows

one can check that all the deterministic encoders that aChi%lVPat624/25 block-decodable encoder(i, 7). For this(, k)
Mg.¢ cannot be assigned consistent input tags. The best that\)()@can show thaP(q) is {1, 2, 1, 2, 3, 4} o

can achieve i9/,1xdec(6) = 8.

2) remove all the points corresponding to edges:6fthat

As a final example, consider the following. IV. ASYMPTOTIC RESULTS FORDETERMINISTIC ENCODERS

Example 5: The (d, k, s)-multiple-space-RLL constraint is  In order to achieve a code rate ¢ very close to the capacity,
the set of binary sequences whose rung'sfatisfy the(d, k) it is usually necessary to make codeword lengtvery large.
constraint and have length equal to a multiplesoft does not Thus, it is of interest to study the asymptotic versions:@f),
satisfy the conditions in general. Butdf= 2 or the codeword P(g), andMa.;(q) described in the preceding section.
length is large enough (say> k) then the conditions are sat- Let A be the adjacency matrix of an irreducible presentation
isfied. of a constrained system. According to the Perron—Frobenius the-
. orem[14],A4 has the following properties. It has a unique largest
e;ﬂisitive eigenvalua whose corresponding right and left eigen-
vectors,r and/, have all positive entries. In our contextis a
column vector and is a row vector. Moreover, letbe the nor-
malizing constant such thatl - ) = 1, and defineA = ¢(rl)

a rank-one matrix. Ifd is primitive, then the Perron—Frobenius
theory shows that

vectors. Given a nonnegative square matriand a real number
n, an (4, n)-approximate eigenvectés a nonnegative integer
vectorz # 0 such thatdz > na where the inequality holds
componentwise. We say thatis a0-1 vectorif each of its en-
triesis eithed or 1. Let G be a graph an® be a subset df;; a
0—1 vectorz of size|V| is supportecbn P if z, = 1 if u € P
and0 otherwise. O A¢

For the case of a deterministic encoder, ) denote the tholo N A 2)
largest (by set inclusionf that achieves\4.¢(q). It can be
shown thatP(q) is unique. Letz(q) be the vector supported Let M* be the largest real numbersuch that there exists a
on P(q). Note that forM = M. (q), z(q) is the unique largest 0-1 (A, n)-approximate eigenvector. Equivalently

(entry-by-entry—1 (A%, M) approximate eigenvector.
Given integersV andg, and a matrix4, if a 0-1 (A9, M) M* = max min |er, Z L. (3)
approximate eigenvector exists, we can find one by the well- PEVG ueP eP
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We letz* be the unique, largest such approximate eigenvectbinen (3) becomes

and P* be the corresponding set of principal states. M* = max M*(P).
i I . PCVg

Proposition 3: For a primitive constrained system, the fol-This proposition states that the maximiziiymust have the
lowing hold. form P; = {ui1, us, ..., u;}. To see this, let us compare

1) For sufficiently largeg, any 0—1 vector which achieves M*(P;) and M*(P; \ {ux}) wherek < . Sincer and! are

Maet(q) also achieved/*. positive vectors and,,, is the minimum among.,, , ..., ru,,
2) we have
M* = Lim Mdet(q). M*(P;) =cry, le

q—o0 4

Proof: For a0-1 vectorz supported on a set, define ~ @nd

i

q
My(o) = i (55 ) WA ) =era, | D0 1
u J=1,j#k
and Clearly, M*(P;) > M*(P; \ {u.}) becausé, is positive. Re-
Moo (z) = Eg}%(Ax)U' moving additional states fromR; further decreases the expres-
- . sion. Therefore, we conclude that maximiziRgnust have the
Note thatz* maximizesM(z) by definition. form {us, us i} O
Let T be a0-1 vector which does not maximiz&/,(z), so Tom
Moo (%) — Moo (T) > 2¢ for somee > 0. Example 7: Consider the asymmetric-RLL, 3, 2, 5) con-
From (2), it follows thatV, () converges td/..(z) for any ~ straint. The adjacency matrix of its Shannon cover is
x. Therefore, forg large enough O 1.0 1 0 0 0 07
My(5%) = My(®) > (Mao(a”) = €) = (Moo (7) + ) R
=Moo (7%) = Moo (T) — 2¢ > 0. 4_]0 0001000
This means that for large enoughany0—1 vector maximizing (1 0000 1 00
M, (z) also maximizes\/,(z). This proves Part 1. Moreover, 1 00000O0T10
for any such vector, sinceM, () = Maetl@) and M (z) = L 00 g 8 8 8 (1)

M*, and M, () converges taVl..(x), it follows that M (2) L1 00 .
converges ta/[*, which concludes the proof. The corresponding right and left eigenvectors are as shown atthe

bottom of the page. Sinde = 1, the constant = 1. We sort
According to Proposition 3, for large x(¢) belongs to the the entries of- and compute,, (3, L) for1 <i < |Vgl.
set of0-1 vectors achievind/*; in particular, we have the fol- . B
From Table Il,i* = 6 andM* = 0.7563. Therefore P* =

lowing.
g {5,6,1,7,4,2}andz* =[11011110]%.
Corollary 2: If z* is the uniqued-1 vector achievingV/* The following proposition shows that a strong form of the
thenlim, o z(q) = z*. converse of the first part of Proposition 3 holds for a special

The following result reduces the complexity of computin

gase where the graph has two states. However, this is not true in
M* andz*.

eneral (see Example 9).

Proposition 5: If an irreducible constrained system has a de-
terministic presentation with two states, awil vector which
achieves\/* also achieved/y..(q) for all q.

Proposition 4: If we order the states aff according to the
sizes of the entries ofin descending ordert,,, > r,, > --- >

el then Proof: Let A be the adjacency matrix of the presentation.
First consider the case whehis primitive. We claim that\ can
M* = 1<m<8ﬁ(/ CTy, Zlu7 . be written asv; A+ aol wherea; > 0. To see this, observe that
iglVel j<i sinceA is a2 x 2 matrix, it follows from the Cayley—Hamilton
And if i* is the largest index which achievég*, thenz* is theorem thatd? = f,(q)A + Bo(q)] Whereﬂlg q) > 0. Since
supported onP* = {uy, ug, ..., Ui }. Ais pr|m|t|ve,A—Z — A. Therefore 2 qu) and %2 converge to
Proof: Letting P be any set of principal states, considesome real numbers; anda, as desired.
the following definition which is adapted from (3): It can be easily shown that?z > Mz if and only if
Az > Cz where
M*(P) = min [cru (Z lv>] 4) O = a1 (M — Bo(q)) +a
wer veP Bi(q) o

r=[0.3719 0.3020 0.1875 0.3069 0.5025 0.4507 0.3659 0.2272]7
[ =[0.5837 0.3565 0.2178 0.7073 0.4320 0.2639 0.1612 0.0985].
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TABLE I
COMPUTATION OF M * AND z* FORASYMMETRIC-RLL(1, 3, 2, 5)
i 1 2 3 4 5 6 7 8
state u; 5 6 1 7 4 2 8 3
Tu; 5025 4507 .3719 .3659 .3069 .3020 .2272 .1875
ru, (Sycily,) | 2171 3136 4759 5272 6593 7563 5913 .5288

SinceC is strictly increasing with\Z, any vector achieving/*  The right and left eigenvectors are= [4 2 1]T andl = [1 1 1].

also achieved/g¢(q). Therefore,
Next let A be an irreducible matrix but not primitive. Theh 44 4
must have the form 1
A==12 2 2
[0 a} 7
A= 1 1 1
b 0

o _ ) and M* = 4/7. The only0-1 approximate eigenvectors that
wherea andb are positive integers. By direct computation, Wgchiever/* arex; = [10 0] andz» = [1 1 0]7. From Propo-

find that[1 1]7 is the only0, 1-approximate eigenvector fax. sition 3, these are the only vectors that can achigig, (q) for
This vector also achieve¥ 4. (q) for all q. O largeq.

It follows from the proof of Proposition 5 that for a two-state 4 ¢an be diagonalized as
primitive graph, a0—1 vector achievesd\/4.(q) if and only if 4 -1 -1 21 0 0

it achievesM™. The following example demonstrates that the 1 L 1 L
“ . . A=_-12 1 0 0 -7 0 -2 5 =2
only if” part of this statement as well as the assertion 7 1 1 6
1 0 1 0 0 0 T
M* _ 1 Mdet(q)
R ==3DY Therefore,
(which holds for all primitive graphs by Proposition 3) are noyys _
true for graphs which are merely irreducible. 4-21942(=T)7 4-219—5(=T7)7 4-21942(-7)1
. . . . 1
Example 8: Consider the following adjacency matrix: = 2.219-2(=7)9 2-21945(-7)7 2.219-2(=T)?
B [0 4} 214 214 214
10 From this, it is straightforward to compute

The largest eigenvalue %sand the corresponding is r4.219 4+ 2(=7)07

A:1 24 . Aqgclz1 2.219 —2(=T7)1

tlz ! 214

The resultingM* is 3/4 and the unique achieving vector is ) i
[1 1]. However, ) 8217 —3(-T7)*

29 0 i Alzg, == 4219 4 3(=7)4

if ¢ is even
A1 [0 2q}’ veeve 2. 219
B 0 2at! o We can see from the preceding expressionAdthat for all
9a-1 o |’ if ¢ is odd. ¢, there is a unique vector(q) that achieves/y..(q). Wheng

is 0dd,z(q) = z1 andMae(q) = 2217 4+ 2 (=7)7. Wheng is

We can see thdt 0]7 and[0 1]7 achieveMy..(q) for eveng, even,z(q) = xp and Maei(q) = 3 219 + 2 (=7)%.

and[1 1]7 achievesMy.(q) for all . Moreover
Maet(q) { 1, if ¢ is even

N 1 ifgisodd.

In Section V, we will see that the pathological behavior of
this example does not occur for RLL and MTR constraints: in
particular, in those casagq) does stabilize ta:*.

. Maer (2) : . . :
Hence lim, ... =57 does not exist. o Example 10: Empirically, it seems that the convergence in
The following example shows that even in the primitive cas@art 2 of Proposition 3 is very fast, ands6° can be very useful
2(q) can fail to stabilize; in fact, in this example, there is Ngor estimatingM/,.. (¢) and the rate of the optimal deterministic
single0-1 approximate eigenvectorthat achieved/a..(q) for - ¢code for a given codeword length. For a primitive constraint and

all sufficiently largegq. large codeword length
Example 9: Consider the following adjacency matrix: Maet(q) .
10 17 10 A
a-ls 1 sl Maet(q) =M™\ (®)

3 3 3 log(Maet(q)) ~ log(M™) 4 qlog(A)
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TABLE III By Proposition 4, it is enough to determid& by comparing
APPROXIMATION OF THENUMBER OF CODEWORDS AND THECODE RATE all M (T )
o0 u

RLL(2, 7 . . .
FORRLL(2, 7) From the adjacency matrik of the RLL(d, k) constraint, we

* ot 1o, 2 M7 cap(S . . .

q | Mu(q) Mrxs | eealPaalal | Log (T Hacep(®) can findr and! explicitly in terms of\

6 6 5.79 0.3333 0.3333 hbigl . )

8| 12 11.86 0.3750 0.3750 U EA fo<i<d @

10 24 24.30 0.4000 0.4000 ‘ Mefo XL ifd<i<k

12 50 49.78 0.4167 0.4167 i ] . )

15 146 145.98 0.4667 0.4667 andl; = A*~*. This can be verified as follows:

20| 877 877.03 0.4500 0.4500 Pier = N2 A f0<i<d—1

25 5269 5269.05 0.4800 0.4800 i ! -
ro 4 rixg = AL 4 )\E

30 | 31656 31655.65 0.5000 0.5000 (AT)i = 0 i+1 . . )

40 | 1142586 | 1142585.96 0.5000 0.5000 +--4+ A = \ry, ifd<i<k-1
ro = AL = Ay, ifi=k

[log(Maet(q))] ~ [log(M*) 4+ g cap(S)] . (©) ly4 41, = \e—d .
4 q (1A); = +otl= A=) ifi=0
Equations (5) and (6) can be used to estinfetg,(¢) and the Limg = A+l = )\, if1<i<k,

code rate, respectively. In particular, the rate approachestheca- .1 \x_q . - .
pacity ascap(S) + loggu-). Note thath* < 1 (because the sinceA*** = A\*~¢4... 4 1lis the characteristic equation df

largest eigenvalue af is 1), and solog(M*) is nonpositive First consider the cas¢ > 1. We shall show that, max-
’ L 1 1 1 . k i
Table 111 shows this for RL2, 7). imizes M (ry,). For this, we first observe that, = A" is

the smallest entry ane = \**! is the second smallest entry

of . The former is obvious from (7). For the latter, we need

only verify thatA\* + \*—1 > \k+1 But this is an immediate
For a particular constrained system, the asymptotically opensequence of the fact that+- 1 = 22 is the characteristic

timal set of principal states for deterministic encoders can kguation of the adjacency matrix for the Shannon cover of the

computed systematically based on Proposition 4. But, in fa&l-L(1, co) constraint.

some families of constrained systems have enough structure thdfow, we have

we can completely and explicitly characterize the optimal set of ,

principal states analytically, for all members of the family si- Moo(ro) =X TH A 4o+ )

multaneously. In Propositions 6 and 7, we show that this holds Moo (i) =eXFONF 4o 4 1)

for two specific families: the RLId, k) and MTR(j, k) con-

straints. For RLL, this result can be derived as a consequencé i

a rgsult of Qu and Fuja [5], yvho show t.hat, ir) fact, the asymp- Moo (ro) — Moo (14) = C)\k()\k+1 “A-1)>0

totically optimal set of principal states is optimal for all finite

q. However, our proof gives an algebraic perspective on (albgiith equality if and only ifd = k — 1 (because**! —z — 1is

a weaker version of) the Gu—Fuja result. It turns out that féine characteristic polynomial of the Rk — 1, k) constraint).

MTR(j, k) constraints, the asymptotically optimal set of prin- Next we shall comparé/.(ro) with M (ry,) for n; #

cipal states is not optimal for afl (see Example 11). 0, k. Sincer, andry are the two smallest entries amg is
Note that by virtue of Corollary 1, the results in this sectionlearly the largest entry of we can assume thag < r,,, < 74,

also characterize the asymptotically optimal sets of principahd so\**J < r,,. < A*+i+1 for somel < j < d. It follows

states for block-decodable encoders. However, these state Bt

generally differ from those for asymptotically optimal block en-

coders [10], [12].

Proposition 6: For an RLL(d, k) constraint

V. ASYMPTOTIC RESULTS ONRLL AND MTR CONSTRAINTS

Moo (1) < eNHFL (AP 4.0 41)
— (WP AR )
= AL O L))
{o,1,..., [£]}, if d=0 =cAFFLOF L V) < Mo (o).

Pr=q {01, k=1}, fl<d<k-2 Thereforey, maximizesM . (ry,). SO,P* = {0, 1, ..., k —
0,1,..., k), ifd=k—1. 1}ifd<k—2andP* = {0, 1,..., k}ifd=k— 1.

Proof: Suppose we have the ordering of We have only the casé= 0 remaining. In this case

Tu:TnOZTnIZ...ZTnk. TQ> T > e > T
] and
Define | |
Moo(ri) = (A" 4+ AN - A,

Moo (r,) = crp, Z ln, | - Itis not hard to show that this quantity is maximized at [£]

i<i andi = |%],andsaP* = {0, 1, ..., [£]}. O
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The reader should note that in the foregoing result we did netated and proved in Section VI-B). The proof follows a similar

need to establish the entire ordering of entries éfurthermore,
the maximizing sets of principal states are not uniquelfer 0
andd = k — 1. From Proposition 3, for large, P(q) must be

approach to that of Proposition 6.
First assume that < k. Let A be the largest eigenvalue of
the adjacency matrix of the graph in Fig. 2. We can show the

one of these maximizing sets. Thus, the above proposition déelfowing properties ofA

not uniquely determiné®(q). However, it can be shown that

all maximizing sets give the same code rate forgakhnd so in
particularlimg—, o 2(q) = z*.

1) Mtk = ()\j—l 4+t 1)()\k—1 +- 4 1)
2) M > N7 4o TandaF < AL
equality if and only ifj = k.

+ 1, with

Case 1 ¢ = 0): From the proof of Proposition 6, the two  The first property is in fact the characteristic equation of the

possible choices foP(q ) (largeq) areP; = {0, 1, ..., [£]}

adjacency matrix and the second property follows from the first

andP, = {0, 1, ..., [£]}. The number of codewords corre- property and the assumptign< .

sponding taP; is the number of codewords starting at stka@é

and ending at any state iy . These codewords can begin with
0to [%] zeros and end with to | £ | zeros. On the other hand,

the number of codewords corresponding*ois the number of
codewords beginning with to | £ | zeros and ending wit to

[ ] zeros. These two numbers of codewords are equal; hence, i

P, and P, produce the same code rate.

Case 2 = k — 1): Again from the proof of Proposition 6,
the two possibilities foP(¢) (largeq) areP, = {0, 1, ..., k—
1} andP, = {0, 1, ..., k}. The ambiguity arises because

ro(lo+ - +1lk—1) =7i(lo+---+ 1)

Therefore, we must show thaf , +--- + Af ,_; is equal to
Al g+ + Af . Sinced = k — 1, we can derive from the
adjacency matrlx that

-1
Ago—AOk 1+Ag,k

AY = ALL,, foru=1,2,.. k-1
and
—1
Al = AL s for all u.
Thus,
Af o+ A+ +AG 1_(Agk 1+Ag_k1)
+A0,0 +A0k 2
1 1
=Afo +-+AG,
=Af o+ + AL

Proposition 7: For MTR(j, k) constraint withj < k&, if

k>j+ |4 +1and(j, k) # (1, 2) then

‘e AR il_

S TSI IR R
if j <k<j+[4] or(j, ) (1, 2) then

—l
L\.’JIK
—_—

o fes

and if j = k then

* T 9 j k
P _{1727...7 bJ +1,1,2, ..., {EJ +1}. (10)

And for j > k, due to the symmetry, reverse the roleg @nd
k in the above expression.

With the states named as in Fig. 2, it can be shown that

k_ yi—1\(\j _
ri:(/\ AT 1) forl1 <i<k
(A-1)?
)\k /\j_)\i—l
T % fOflSZSJ
[; = IR for1 <i<k
AL Ak 1
l-.:#, for1<i<j.

! A—1
With these expressions and the properties wfentioned above,
we can prove the following ordering of the entries-of

TkST;<T’k_1ST’jT1<

- < Th_jt1 STT<7’k—j <Tp—j1 < - <re<mr

with equality if and only ifj = k.

Case 1( < k). We prove that, g maximizesM . (r;)
for k — 7 < ¢ < k by computing the differencé/.(r;+1) —
M. (r;). We show that this difference is decreasing,inega-
tive fork — [4] < i < k— 1, and positive fork — j < i <
k — %] — 1. It then follows tha"rk—L%J maximizesM. (r;)
fork —j < i < k as desired. )

By using a similar approach, it can be shown
imizesM.(77) f0r1<z'<jandr(k1 maximizesM, 2( ;) for
1 <i < k—j (provided thatl < [%4] < k—j; otherwise, the

maximizing state i — ;). Therefore, we have three candidates
for the maximalM . (r.,); namely,

o< [i -3 ]

We compare these three and it turns out thaf,(r

max-

) IS
5]
largest wherk > j + [4] + 1. And Moo(r, _ 2] is largest
whenj < k < j+ |4].

Case 2 { = k): In this casey; = r;. Similar to the case
d = 0 in Proposition 6, we can show thafﬂ aner%JJr1
maximizesM . (7).

The exceptional casg, k) =
both (8) and (9) achiev&/* in this case.

(1, 2) arises from the fact that
O

Similar to Proposition 6, there are some cases that the max-
imizing set of principal states is not unique. These comprise
(4, k) = (1, 2) andj = k. MTR(1, 2) isthe same as RL(1, 2)

(see Case 2 after Proposition 6). We shall see in Section VIl that

Outline of Proof: We only give an outline of proof here MTR(k, k) is obtained after precoding RI(Q, k£ —1); thus, we
(since the proposition can be deduced from a stronger resztdn apply Case 1 = 0 following Proposition 6.
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Finally, we mention that, in contrast to RLL constraints, for Lemma 1: Letd, e, f be nonnegative integers such that
MTR constraints and finitg, even of size at least the memorye < f andd < f — e. Then

the maximizing set fodl/* need not be a maximizing set for d fod e—d foe
—a—b —a—b —a—b
Mae (1) ) IETRED ) BETEED D DT F
Example 11: For the MTR2, 4) constraint, one can show @=1b=1 a=1b=1 a=1b=d+1
that P(4) = {1, 1, 2, 3} and My.;(4) = 8. This is different Proof:
from P* = {1, 1, 2} given above, which is the unique maxi- 4 fed
mizing set forM*, but achieves\/ = 7 for ¢ = 4. Z ZAq a—b Z Z Aq a- b
a=1b=1 a=1 b=1
VI. FINITE RESULTS FORMTR CONSTRAINTS @ d f—e , e \
. : . . i At At
In this section, we shift our interest to the case of finite code- ; ; + a%—:l—l ;
word length. For completeness, we state Lee’s result [9], [10] on 4 e p
optimal block encoders for RLL constraint in Proposition 8. Gu _ Aq a—b Aq o b
and Fuja’s result [5] on optimal block-decodable encoders for az:l bz; az::lb fz:eH
RLL constraints is described in the previous section and is stated emd feetd feetd e—d

again in Proposition 9. Theorems 1 and 2 consider optimal block (b) 4-a- b 4—a- b
encoders and block-decodable encoders for MTR constraints, B azl b;ﬂ A affz_eﬂ ;A
respectively. Recall that for RLL and MTR constraints, optimal od fe '
block-decodable encoders are equivalent to optimal determin- _ Z Z pa—a—b

istic encoders in terms of optimal code rate and supporting set Lo
of principal states for any given block length. Therefore, Propo-
sition 9 and Theorem 2 apply to deterministic encoders as well.(2) Break each term in the left-hand side into two terms.

In fact, we prove Theorem 2 from the deterministic encoders(P) The first and the third terms in the last equation cancel;
point of view. change index of the remaining terms. O

a=1b=d+1

Proposition 8 [9], [10]: The following are optimal complete A. Optimal Block Encoder
sets of principal states for RI(K, )-block encoders and all The following result corrects part of a statement made in [12,

codeword lengths: 0. 1863].
{@ S R e {MJ } Theorem 1: The following are optimal sets of principal states
g 2 for MTR(4, k)-block encoders and all codeword lengths:
an
{L L+1...7i+{¥l} {T 2%}12 EJ}
where: € {0, 1, ..., d}. and
Proposition 9 [5], [15]: The following are optimal sets of {T, 2, ..., V—J, 1,2,..., FW } )
principal states for RLLd, k)-block-decodable encoders and 2 2
all codeword lengths: Proof: Since we have the partial ordering of the states
{01 H} and{Ol M} if d=0 I=2>-=j5 and 1>=2>- >k
7 L | 2 7 LR | 2 )
i we claim that we can assume that the optimal complete set has
{0, L.y k= 1}, fl<d<k-2 the form {1, 2, ...,5,1,2,...,t} where0 < s < j and
{0,1,....,k—1} and {0, 1, ..., k}, ifd=k—1. 0 <t < k. Forg> memory, this follows from the result of
Frieman and Wyner [4] cited in Section Ill. FQr< memory,
We remark that for RLLO, &) this still holds provided that for each codewandll paths in the
_ _ Shannon cover that are labeleddyend in the same state. The
Mun(g) = Miikaec(q) = Maer(q) only words for which this may not hold af& and1¢, neither
because the partial ordering of states in the Shannon coveffigvhich can be codewords in a block encoder for MTR).
actually a total orderingd = 1 = --- > k. For a complete set of this form, a valid sequence begins with

For the MTR{j, k) constraint, we shall use combinatoriall t0 k — ¢ zeros orl to j — s ones and ends with to ¢ zeros
methods to enumerate and compare the number of valid &l to s ones. Define3, , to be the number of valid sequences
quences for each choice of set of principal states. As uddal, ©f lengthq beginning witha zeros and ending with zeros and
denotes thé1, 1) element ofA?. In particular,A} , = 1; we letCq,, denote the number of valid sequences of lengtie-

take A{ ; to be0 for ¢ < 0. Therefore, A% ; > 0 for all g. ginning with a ones and ending with ones. Moreover, from
The following lemma is a useful tool in establishing the rethe state diagram, we see that the number of valid sequences of
sults of this section. lengthg starting witha zeros and ending withones |sA"1 f‘ .
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Similarly, the number of valid sequences of lengtistarting (c) Recallthatin this case< g—l, henceg+3 < k—t+1.

with « ones and ending with zeros isA? * . Case2:t > &
We claim thatA"TJ = Af 1_for anyyq. To see this, consider d(s, t+1) — (s, 1)
a sequence starting from stat@and ending at state. This se- 1t g
guence must pass through statat least once. If we cyclically @_ Z Z Z Aq a—b=e ZA‘I kri=b
shift the first phase from to 1, we get a sequence starting from a=1b=k—t c=1
statel and ending at state So there is d—1 relationship be- j—s
tween the cycles at stateand the cycles at stale +y Al
Using the above facts, the number of valid sequences of a=1
lengthq corresponding to the complete set Jtt+l J—stt+l
(1.2, ...,5,1,2, ..., t} - D AT+ Y 41,
. a=k—t+2 a=t+2
is ©
k—t Jj—s s k—t s <0.

t
Z;Bab+zzcab+zzz4q o (a) UseLemmalwithl =k—t—1,e=Fk—t, andf = k.

o=t a=tb=1 e=tb=l (b) Neglect the second term of the previous equation; index
g—a—b of the first termis fromk — ¢t + 2toj + ¢ + 1.
+ZZA - @D (¢) Inthis caset > % thereforef —t +2 < t + 2.

a=1b=1
In order to compare this number for different values and Case 3.t = T
t, we transformB,, , andC, , into sums of the€1, 1)-entry of kel
powers of A. For a valid sequence of Iengqhitarti)ng witha (s, t+1) — Z AT > oAl
zeros and ending with zeros, the first run of ones can have a=1 (12)
lengthl to j. Therefore, ) We can see that the maximum number of valid sequences is
! g—a—b—c obtained wher = £ if k is even. Ifk is odd, the optimat will
Ba,p = Z Af : be either:1, or &1, or both depending on the sign of (12). The
Similarly e=1 same anaIyS|s apphes when we fiand varys. So we are left
with four possible choices dfs, t): (| 5], [4]), ([%]. [4]).
k (|51, [4]), and([£7, [Z]). If both j andk are even, then all
Cap = Z A(i’ff—b_c. of these are the same. If only one of them, $4g even, then the
e=1 optimals is 2 and (12) will take value zero. Therefore- | % |
Thus, (11) becomes andt = [%] will both be optimal. Finally, consider the case
ket t R when bothj andk are odd. If we picks = || then (12) will
ZZZAq a=b—c Z ZAQ a—b—c take positive value and we must choase [%g] On the other
o1 b1 =1 =1 b1 =1 hand, if we picks = [Z], we must choose = |%]. These
k—t s two choices give the same number of valid sequences as can be
+ > A4 Z Z A$"~". verified by substituting into (11). O
a=1b=1 a=1b=1

Let us denote this by(s, t). Our goal is to finds and¢ that B. Optimal Block-Decodable Encoder
maximize ¢. First, we fix s and see howp changes when we  For MTR constraintsMyiqec(q) = Mget(q) for all g. There-

changet to t + 1 fore, we shall prove the optimality for deterministic encoders
Casel:t < 5 -1 and apply the result to block-decodable encoders.
B(s, t + 1) — ¢(s, 1) For simplicity, we assume thgt< & throughout this section.
1 k—t—1 j We shall treat the cage= k in Section VII (Corollary 5).
@ SN Sarete ZAq kett—b We know that there exist§S4, n) deterministic encoder if
a1 bett ] o1 b1 and only if there exists -1 approximate eigenvectar
et Ay > nov
q— a
+ Z A5, and the states correspondinguto= 1 are the principal states.
. s Our goal is to find a set of principal states that gives the largest
(;) Z] A0 is b n for each value of, k, andg. We do this assuming > k + 2.
=, il L1 Note that an optimal set of principal states must be of the form
(C) P(St):{T,/§17t}
2 0. where0 < s < j and0 < ¢ < k; and the state that determines
(a) The first term comes from Lemma 1 usidg= ¢, e = the number of codewordsis eithers or¢. This follows from the
t+1,andf = k. ordering of the stateg,> 2 > --- = jandl = 2> --- > k.

(b) Neglect the last term of the previous equation; index of Let (s, t) be the number of codewords generated from state
the first term runs front + 3 to k — ¢ + j. t and ending at a state iR(s, ¢). These codewords must start
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with 0 to k — ¢ zeros and end with to ¢ zeros orl to s ones. By ¢
using the same method as in Section VI-A, we find that L
k—t t J k—t s
—a—b—c —a—b
P =S ATT Y S A (1) |
a=0b=1 c=1 a=0b=1 k— [%J T2

Iy

Similarly, definew(s, ¢) be the number of codewords generated k- [gJ -1
from states and ending at a state iR(s, ¢). The codewords

must start with) to j — s ones and end with to s ones orl to

t zeros. Therefore,

Jj—s s k Jj—s t
=SS ar e Y A g
a=0b=1 c=1 a=0 b=1 s
Hence, 0 [4] [3]+1
Maet(q) = max min{(s, t), w(s, t)}. Fig. 8. s andt plane.

show thatw(zz) > 9(z2) (Lemma 5). Thereforer, maxi-
?‘nizestet inregionDy andM .. = ¥ (z2). Then we move on
by showing thatv(z3) < ¥(z2) (Lemma 6). This implies that

} Mget in region D3 cannot be greater thall g in region Ds.
J-1p

Theorem 2: The following are optimal sets of principal state
for MTR(y, k)-block-decodable encoders< k:

< J J
Pr=<q1, ..., =], 1,... —|=
1 {7 ,’72-‘7 ’ 7k \‘2

iszj+H+1

Finally, we comparé/4e(z1) and Mget (22) (Lemma 7).
Lemmas 2 and 3 are basic tools which will be used for proving
subsequent lemmas.

Lemma 2:

1 J 1 k—i L&
S ey B sl B s A(il:ZZA?,_la_b (15)

. a=1b=1
'f‘]<k§J+{2J forq # 0, and
forqg > k + 2. ik
o AL 2> A (16)
By modifying the proof of Theorem 2, we can get a charac- ’ i
terization for shorter block lengths as well. We state this without
proof_ for all q.
Let P, and P, be as defined in Theorem 2. FpK & + 1, if Proof: Letq > 0. The labeling of any cycle at stateof
1) k>j+ L%J + 1andg > j + 3—or lengthg must have the form
2) k—q>|3] o _
then an optimal set of principal statesfs; otherwise, an op- 00---011---10gz---x
timal set of principal states iB,. b a q—a—b—1

Before we give a formal proof of Theorem 2, let us describe
the idea of how to find optima¢ and¢ and state the requiredwhere0 < b <k —1,1 < a < 4, andzz - - - v denotes a cycle
lemmas. Consider the following fact. at statel of lengthq — a — b — 1 > 0. Therefore, according to
Fact 1: SupposeX is a set and) andw are functions from our convention ford{ ;, ¢ < 0, the total number of cycles of
X toR. Let M(x) = min{¢(z), w(z)} for z € X. Suppose lengthq is
thatz* € X satisfies:

* T/J(l’*) S W(QE*) s, —a—b—1 d - —a—b
e x* maximizesiy. A(f, 1= Z Z A(f,1 = Z ZA?, 1 -
Thenz* maximizesM andmax, M(x) = ¢(z*). a=16=0 a=1b=1

Fig. 8 shows the plane afandt. Each pointin the plane cor-
responds to a set of principal statB¢s, ¢). The whole plane
is divided into three disjoint region®,, D5, andD3. We shall
show thatr, maximizesw in D1, xo maximizesy in Do, and Note that, alternatively, foy > j + &, (15) follows from
x3 maximizesv in D3 (Lemma 8). Next we show that(z,) < Cayley—Hamilton theorem applied to the characteristic equation
¥(xz1) (Lemma 4). Thus, it follows from Fact 1 that max- of the adjacency matrix of the Shannon cover of the MITR)
imizes Mget in region D, and Mg = w(x1). Similarly, we constraint.

This establishes (15) far > 0. Forq < 0, (15) is trivially true,
as is (16) forg = 0. O
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Lemma 3: Lemma 6:
J J J
a —a = 1, k)< k- |z
ZA%1<A%1<ZA o([5]+2e) <o (f5] - [3])
forq > 2.
forq > 2. Lemma 7:
Proof: ; p p p
. w120 k=12 =1)<w(|Z], k= |2]),
J 2 2 2 2
q q—a .
AI’I_ZAM ifj<k<j+V_J
- 2
k
@) q—a—b i ; ; ;
—ZZAH ZA w12 k=12 =) 2o (L], k= |L]),
a=1 b=1 2 ’ 2 2 ? 2 )
L& g—a=b g—a-1 ’ q—a ifk>j J 1
=22 AT ZA - D AT Thzit 5|+
a=1b=2 =1
i k-1 forq > k + 2.
_ q—a—b—1 q—1 -1
- Z Ai — Al AL Lemma 8: For any fixedt, w is nondecreasing far < s <
ot bk:11 . [2] and nonincreasing fdrZ | < s < j. On the other hand, for
(b) z]: — A b—1 Z]:ZAQ 1asb g goa any fixeds, ¢ is nondecreasing far < ¢ < [%] and nonin-
= i creasing forf 4] < ¢ < k. Hencew is maximized at = [1]
o andy is maximized at = [%].
_ —ZA?,_f'_k_l +Az{’—1j—1 Proof:
a=t . ) — w(s, t)
© & , . k 1 [ims s+l j—s+l s
Z —ZZA({iljiliaib + A({iljil q a b—c q— CL b—c
a=1b=1 c= QZ: = GX:l }z: A
@ T
Z 0. (17) q J+s— b
- 1 1
(a) Use Lemma 2 (true fog > 1). b:l
(b) Use Lemma 2 with the second term (true fop 2). If s < (j —1)/2 then use Lemma 1 with = s, ¢ = s + 1,
(c) The exponents of the double sum run frgt j —3to ¢ — ;4 1,
q — 2j — k — 1; while the exponents of the sum of the previous
line are fromg — k — 2to ¢ — j — k — 1; the inequality follows w(s+1, 1) — (3 t)
from the assumption that < k. k-1 Jostt ~
(d) Use Lemma 2. Z Z Z Aq el - Z A%,lb
For the proof of the other inequality, we follow the same steps ¢=0 La=1b=s+1 b=j—s+1
unt'l (17) (a) j—3+k 4—a Jj—s+t q_b
k k 2 Z Al,l - Z A1,1
—a —a—— Ck— a=s+2 b=j—s+1
Ag,l_ZA(f,l :_ZA?,I ! 1+A(f,1k g > 0.
a=1 a=1 -

This is clearly< 0 since the exponents of the sum run from (&) The exponents of the first term in the previous equation
are fromg — s —2toq—j + s — k.

qg—j—2toqg—k—j—1which mustincludg — k£ — 1 because ; h
of the assumption < k. o [Ifs=j/2then
. . . t ;
Lemmas 4—7 will be proven in the Appendix. w(s+1, 1) —w(s, 1) = — ZA({;TI, <o.
Lemma 4: b=1

J J i If s > (j + 1)/2 then use Lemma 1 with = j — s, ¢ =
o3 - [3)-1) <o (3= 18] 1) sma=dt

forq > k + 1. w(s+1, f)—w(s t)
k—1 s

Lemma 5: — Z Z Aq a—b—c ZAq j+s—b

(ST R T Rt

forqg > k+ 2. The case of) can be proved similarly. O
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Proof of Theorem 2:Let D = {(s,t): 0 < s < 4, 0 < contains the edges with output labelnd A, contains the edges
t < k} be the domain of andw. We breakD into three regions with output labell. We now show that there is a deterministic

D = Dy U Dy U D5 where presentatiory of S with an adjacency matrix
J A {AO Al} (18)
_ ) J J (aIthoughG‘ need not be the Shannon coverfl)f To see this,
Dy = {(s, t)ye D:s< h-‘ b2 k- {_J } for eachu € Vg, defineu™ andw™ to be counterparts of
j j where the last symbol of the codeword ending atmust be+
D3 = {(8-/ t)€D:s> b-‘ +1Lt>k- bJ } and the last symbol of the codeword ending:at must be—.

Let us definelU* = {ut|u € Vg} andU~ = {u"|u € Vg}.
Itis easy to see thdP, D>, andD; are disjoint. We shall apply We construct a presentatiéhof S with Vg, = U+ U U~. With
Fact 1 to regiond); and Ds. the adjacency matri¥ in (18), we think of the firs{V| states
First note that for any fixeds, w is increasing int of G asU+ and the other half a~. The edges corresponding
(see (14)). This fact, together with Lemma 8 imply thafo the top leftd, and the bottom lefid; have labek and the
(s1.t1) = ([4], k— 4] — 1) maximizesv in D;. Moreover, others have labet. Suppose there is an edge with labdfom
we havew(si, t1) < (s, t1) from Lemma 4. Therefore, 4 to v in G. Then there is an edge with labelfrom u* to v+
(51, t1) maximizesMg.: in regionD; from Fact 1. and another edge with labelfrom «~ to v~ in G. On the other
Similarly, ¢ is increasing ins (see (13)). Thus, we have fromhand, if there is an edge with labefrom « to v in G, then there
Lemma 8 thats, t2) = ([§]. k — |§]) maximizes) in D>. s an edge with labet from «~ to v+ and another edge with
Lemma 5 states thab(so, t2) > 9(s2, t2); from Fact 1 we |abel— from ut to v~ in G.
have(sa, t2) maximizesMge in regionDs.
Again from Lemma 8 and the fact thatis increasing int, w
is maximized a{ss, t3) = ([4] + 1, k) in regionD3. There- Maet(S, q) = Maet(S, q).
fore, in this regionMyet < w(ss, t3). However, we know from Proof: Eirst we claim that
Lemma 6 thatu(ss, t3) < (s, t2). This means thal e B
in Ds is not larger thanVly.; in D>. Therefore, we have only A — [ q ‘1}
two candidates for optimdk, t): (s1, 1) and(ss, t2). Finally, Cqy By
Lemma 7 compares these two choices and we havédhat,) whereB, andC, are|V| x |V | matrices such tha, +C, =
is optimal whenk > j + [%J + 1 and(sq, t2) is optimal when A4, We prove the claim by induction ap Clearly, this is true

Proposition 10: Let S be an irreducible constraint. Then

J<k<j+|%]. O for ¢ = 1. Suppose it is true fog then
The casey < k + 1 can be proved by first showing that o+l _ {Bq Cq} [AO Al]
(s1, t1) maximizesMy,; in region Dy and(ss, t2) maximizes C, BgllA1 A
Myet in regionDs for all ¢. Then for each value of, k£, andg, ByAyg+ CyA1  BgAi + ChAp
:/f\;;ncor[]griﬁg?t obtained from(sy, 1) and(ss, t2) by mod- = {Cqu LB A CyAy + BqAJ .
g ' Therefore,B,+1 = B, Ao + C,A; andCy41 = By A1 + C, A
and
VII. OPTIMALITY AND PRECODING Bys1 + Cysr = (By + C))(Ag + Ay)
In magnetic recording, binary data is often represented in _ g1 = AcH
two ways: nonreturn to zero inverted (NRZI) and nonreturn to - - :
zero (NRZ). We usually us¢0, 1} and {+, —} as alphabets This proves the claim. .
for NRZI and NRZ, respectively. In the NRZ domaifq,and— Next we shall show that/ge (S, ¢) < Maet(S, ¢). Letz be
represent the two directions of magnetic polarity. In the NRZ 0—1 vector such that
domain,1 represents a transition from one polarity to the other A% > Mgei(S, q)z.

and0 represents no transition. Codes are usually designed in
the NRZI domain and thehy/(1 & D)-precoded to NRZ before Let
recording. For more detail on precoding, the reader is referred x
to [16], [11]. In this section, we shall investigate the effect of y= [ ]
the precoder on the optimality (code rate adq)) of block-
type-decodable encoders. We shall use the syrfitioldenote Then
a constraint in NRZI and> to denote its NRZ precoded ver- q By Cql [z
sion. Furthermore, let/ (.S, ¢q) denote the maximum number Aty = C, B ] Lﬁ}
of codewords of lengtly satisfying constraint which can be . p

[ Byz + Cyx
generated from clasS encoder, wher€' can beblk, blkdec, =
or det. LCq + Byw
Let A be the adjacency matrix of the Shannon coteof Alg

X
. . . = > et (S, = et(D, .
a binary constraing. We can writeA = Ay + A; where 4, _Aqx] > Maer(S, 9) L} Maet(S, 9)y
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Therefore,
Mdet(§7 q) Z Mdet(57 (])

Finally, we shall show thaba.(S, q) > Mae(S, q). Let
x1 andx, be0-1 vectors of equal length such that

~ T ~ 1
Al Z Mdet(57 Q) .
D) o

Definey = max{z,, z2} componentwise. Then
- Fig. 9. G,.
Ay = Byy + Cqy > Byw1 + Cgxa > Maer(S, ¢)1

and
Aly =C,uy + Byy > Cyay + Bywa > Maei(S, q)a.

Thus, A% > M (S, q)y. This implies that
Mdet(S7 (I> Z Mdet(§7 (]) D

The following corollary follows immediately from the proof
of the above proposition.

Corollary 3: If z is a0-1 approximate eigenvector of?,
then[zT 27T is a0-1 approximate eigenvector of? with the
same approximate eigenvalue.

. ., . Corollary 5: The following are optimal sets of principal
Compared with Proposition 10, we do not have such a M&ftes for MTRE, k)-block-decodable encoders and all block

Fig. 10. G..

result for block and block-decodable encoders. Here are sorne )
. engths:
examples showing that the code rate may be smaller or largér
when designed in the NRZ domain. _ Fﬂ Fﬂ
L ..., |=,1,...,|=
* S =MTR(2,5), ¢ = 6. Myaec(S, q) = 28, and 2 2
Mikaec(S, q) < 28. (This is an example where we have strict 5l i
inequality in Corollary 4 below.) {T, ., {—J +1,1, ..., {—J + 1} )

¢ S =S5(Gy), ¢ = 2 (see Fig. 9).Mpikaec(S, ¢) = 1, and _ .
Myikaec(S, q) = 2. Proof: MTR(k, k) is the precoding of RLLO, &k — 1).

. Gu and Fuja [5] assert that optimal sets of principal states for
* S=RLL(1, 2),q=6. Myi(S, ¢)=2,andMu(S, ¢)=1. RLL(0, k — 1) are

* S = 5(G2), ¢ = 2 (see Fig. 10).Mypi (S, q) = 2, and k—1 k—1
Mblk(S’, q):S_ {07 1, ..., ’V —‘} and {0, 1, ..., { J}

2

However, if we _restrict to con_strair_lﬁthat sg?isfy either the Since both RLILS) and MTR(S) satisfy the Franaszek condi-
Franaszek condition or the straight-line condition, then we haHSn, Corollary 3 can be used to find the set of principal states
the following result on block-decodable encoder. for block-decodable encoder fétas well. The corresponding

Corollary 4: If a constraintS satisfies either the Franaszeksets of principals states for MTR, k) are
condition or the straight-line condition, then { {

' F1] k41
Myikdec(S; @) > Miikdec(S, q)- 2 |77 2

Proof: and

- kE+1 kE+1
Mblkdec(57 Q) {1/ e \‘TJ 17 e \‘TJ} O

= Mot (S, q¢) (Franaszek or straight-line condition)

= Maet(S, q) (Proposition 10) Another precoding of interest is thatsifjned NRZIn which
> Mpiaee(S, q). O theoutputalphabetid = {-1, 0, 1}; the signed NRZI version
S of a binary constrain$ is the set of all words = wy - - - wy
Note that this is in contrast to Immink’s result [7], [8] in whichover the alphabet! such that
he shows that the code rate may be improved by designing thel) |w]|---|w,| € S, and
code in NRZ domain. This is because he considers a more gen2) successive nonzero symbolsiralternate in sign.
eral type of encoder which involves a nondeterministic inputtagIf A is the adjacency matrix a7, a deterministic presenta-
assignment and a positive-delay encoding). tion of S, one can show that the matrikin (18) also supports
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a presentationy of S. The edges corresponding to the top right 5] & 151 [2] &
A; have labell, the edges corresponding to the bottom léft =>> AT+ >N Afhe
have label-1, and the others have lakielThe concept of- and b=1 c=1 a=1b=1 c=1
— states applies here as well. New# andw~ are the counter- k—|4]-1 [4] k=41
parts ofu where the last nonzero symbol of the codeword ending AT) 4+ AT
atut must bel and the last nonzero symbol of the codeword =1 ’ =1 b1 ’
ending atu— must be—1. [4] & 1] 4] &

We can show the following. ORN q—b—c g—a—b—c

. N = Z A1, 1+ Z A4

o Maet(S, q) = Maet(S, q). This is because the matrix b=1 c=1 a=1b=1 c=1
in (18) is also the adjacency matrix of a deterministic presen- —13]-1 ;& 4] k—]3]-1
tation of S. Thus, Proposition 10 also holds for signed NRZI + Z Z AT embmey Z Z AT
precoding. a=1  b=le=1 a=1 =1 ’

¢ Mpikdec(S. @) > Myikaec(S, ). Suppose{us, ..., ui} (20)
is the set of principal states for an NRZI block-decodable (a) Use Lemma 2 with the third term (true for> k — L%J)

encoder. Then one can show tHat , ..., u;, uf, ..., u;}
gives a signed NRZI block-decodable encoder with the same j j

block length and rate. This is because we can assign t%qg-‘ k— { J >
input tag of a codewordy = wy - - - w, to be the input tag of
|wi] - - - |we| in the NRZI encoder. There can be no contradic- J b b
tion in the assignments because there is only one codeword, — Z Z ZA%’J + Z A(il

namely, the all-zeros word, that can be generated from a state a=0 b=l e=l a=0 b=1
in U~ and a state irl/+. An example where we have strict k=31 3] +1k=[3]-1
inequality isS = S(G1) in Fig. 9 withg = 2. In this case, = Z ZA({](’_C + ZA’{H“_”_C
Miikaec(S, @) = 2 and Mydec(S, ) = 3. b=1 =1 a=1  b=1 c=1

o My (S, q) < Mui(S, q). All principal states for a signed E b Lel+1[#] R
NRZI block encoder must be in eithé&f~ or U™ again be- Ay + A1
cause the only common codeword which can be generated from b=1 a=l b=1 _
astate inU~ andU™* is the all-zeros codeword. Then suppose ., ela] -t I [s)+1k-]5]-1 I
that {u], ..., u} is the set of principal states for a signed = Z AT+ Z Z Al
NRZI block encoder; one can show tHat, ..., ux} gives an b=1  c=1 a=l  b=1 =1
NRZI block encoder with at least the same rate. An example (4] 7 & L5]+1T4]
where strict inequality holds is RL(L, 3), ¢ = 6. In this case, NI Al oA, (21)
M (S, ¢) = 5 and My (S, ¢) = 4. a=1b=1 c=1 a=1 b=1

Analogous to Corollary 4, we can show thabifatisfies the (a) Use Lemma 2 with the third term (true for> (%1 +1).
Franaszek or the straight-line condition, thefxge. (.S, q) = From (20) and (21), we have

Myixdec(S, q). This follows from the first and second bullets

above. To see this, we need only show that the reverse inequality (17| , |7 | _ ) _ " A R P
of the second bullet holds. Indeed, it does ’ 2 2|’ 2

5 . HE: i I3 &
Mpikdec(S,; @) £ Maet(S, q) = Maet(S, q) = Myikdec(S, q) @ Z A‘f,_fl_b - Z ZA%,_la_b_c
(29) a=1p=|4]+2 a=|4]+1b=1c=1
E—|2]-1
(in (19), the inequality holds for all constraints, the first equality 4] 4 k qa—a—b—c
follows from the first bullet, and the second equality follows + Z Z 1,1
from the Franaszek or straight-line condition). o=l b=le=|f |42
P E
_ Aq—a—b
APPENDIX Z — L1
e=lilnn =
Proof of Lemma 4: k-4 2]k
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© k[ %] i+l the second term is the difference between the second terms in
= 3 Al )y Ay (22) and (23).

a=k+1 a=|4]+2 (b) Use Lemma 3 (true fog > k + 2). O
i3]+ % Proof of Lemma 6:
- Z A?T"‘ Z A({,_lc J Lk
SHE e=[4]+ “\lz| T
W & k+[3] i+[g]+k [3]-1T3]+1 & [5]-1 &
9 atye YAy 3oty =Y Y a3 ar
a=j+2 a=k+1 a=|%|+3 a=0 b=1 c=1 a=0 b=1
K+[4] JH[4] 4k ()L%Jflfﬂ k [$)-1 &
o a —a—b—c qg—a—|3%|—-1—c
9y aro y A 2 Yy e 3y A
_. ’ ’ a=0 b=1c=1 a=0 c=1
a=j+2 a=4]+3 :
<0 [5]-114] lil-1 &
- + AT+ Z Z AT (24)
(a) The first term is the difference between the first term in a=0 b=1 a=0 p=[1]+

(20) and the fourth term in (21), the second termis the difference
between the second term in (20) and the third term in (21) the'®
third term is the difference between the third term in (20) and

the second term in (21).

(b) Change the index of the first term; use the fact that the

second term has the exponents frpr £ | —3tog—j—[ 2] +k;
use Lemma 2 with the third term (true for> & + 1).

(c) The first two terms are the difference between the first

and the fourth terms of the previous equation.

(d) The first term comes from the difference between the =

second and the fourth terms of the previous equation.

(e) Combine the first two terms of the previous equation

together. O

Proof of Lemma 5:

HIOR 4] k- 4]
=SS At S Y At (22)
a=0 b=1 c=1 a=0 b=1
il 17
o(13] - 13))
L3 k-14]) 14 T4]
=53 Sart Y > Al (29

[5] »=3] :

= Yoo |- AT Al
a=0 b:[%—| 41 c=1

(b)

> 0.

(a) The firstterm is the difference between the first terms in -

(22) and (23) using Lemma B = [4],e = j, f = k + [1]);

(a) Break each term of the previous equation into two terms.

o([3] +-

LéJk— %J i . 13] [3] B
OB I SIEEED 9) welet
a=0 b=1 c=1 a=0 b=1
o 5] | 5] & . [5] *-[3] .
Yy S it
a=0 [b=1c=1 b=1 .— |'§'|+1
3] [3]
+ A({Tla b
a=0 b=1
L2]-1T4] & (4] &
(®) h—c
2 ZAqabCJFZZAqH}
a=0 b=1c=1 b=1 c=1
3] & . [5]-114] .
Z Z AT+ Al
a=0p_ |'%'|+2 a=0 b=1
3] 4]
+Y AT, L] (25)

(a) Use Lemma 1 with the first term in the previous equation
@=T[4l.e=4.f =k+[3]).

(b) Break the first and the third terms of the previous equa-
tion into two terms each; the third term comes from the fact that
the exponents of the second term in the bracket in the previous
equation range from — [4] — 2toq — k.

() -e (l3] - [3))
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[2]-1 & 2] 3]s Consider
+ Z Atf,_la_b - ZAZ v [£]
0 e=laln "~ hk+1) = h(k) = AT = 3 L AfHT
3] & [4]-1 . b=1
(b) —a—|Z |-
< - Z A‘{TH’ + A} 1 31— which is greater than or equal to zero by Lemma 2. Therefore,
a=0p=[1]+2 a=0 h is a nondecreasing function bf Hence, it is enough to prove
4] ] h(k) > 0fork =j+ ||+ Landh(k) <0fork=j+ |4].
217 k 2 ;
—a— q—|3|-b ; ) )
P A yar } s s
=0 j=[§]+2 b=t h <j + M ) > Al Z Z Al
(© d q—a d q—b bfl f -
< > oar- Y A 3] 15] .
o341 S > > AT =D D A
S 0 b:‘1 bz.l c=1
el E
(a) The first terms of (24) and (25) cancel; the first bracket > AP ST et
is the difference between the second terms in (24) and (25); the b=1 b=1
second bracket is the difference between the last terms in (24) =0.
and (25).
(b) The first bracket in the previous equation is clearly less (a) Use Lemma 3 (true foj > j + [£] +2 =k +1).
than or equal to zero; break the first term in the second bracket 3] 1 2] 3]
of the previous equation into two terms. A S —b SRR b
(c) The sum of the first and the third terms in the previous h <J + b - bz_:l ALr - bz_:l —~ Al (29)

equation are obviously less than or equal to zero; change

the index of the second and the fourth terms in the previoksom Lemma 2, we have

equation.

Proof of Lemma 7:

- I L I
A >y A5, (30)
b=1 c=1

We sum (29) and (30) and we get

5] [5] & [3]k=[3]1 : 4] 13) &
DI I i A (@8) n(i+[5]) s oA - A
a=0 b=1 c=1 a=0 b=1 = b=1 c=1
(Tl . ) L%J ol
(5] 2)) U S apto
L8] k=L4] 4] [4] o =
= AT AT @ |
a=0 b=1 c=1 a=0 b=1 (a) Use Lemma 3 (true fof > j + [éj +2=k+2). O
w (H-‘ k- BJ - 1) -1 q%-‘ k- { ACKNOWLEDGMENT
2] 12] w—4] K—|4]-1 The authors would like to thank Mario Blaum, Jorge
(a) . - Z Ad—a—b=e Z Aq a—b Campello, John Gill, Richard New, Lei Poo, and Bruce Wilson
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a=0 b=1.=[1741 b= |' —|+1 .
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j k—j—1 4] k—j for hosting the seminar where parts of this work were first
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(a) The first term comes from using Lemma 1 with the first

terms in (26) and 27)(= [4],e =4, f = k+ [Z]).

Next we fix j and define

,_
.

k—j—1 | k—j

b=1 b=1 c=1

J
>4 Z AL
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