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Abstract—In digital storage systems where the input to the noisy
channel is required to satisfy a modulation constraint, the con-
strained code and error-control code (ECC) are typically designed
and decoded independently. The achievable rate for this situation
is evaluated as the rate of average intersection of the constraint
and the ECC. The gap from the capacity of the noisy constrained
channel is called the constraint gain, which represents the poten-
tial improvement in combining the design and decoding of the con-
strained code and the ECC. The constraint gain is computed for
various constraints over the binary-input additive white Gaussian
noise (AWGN) channel (BIAWGNC) as well as over intersymbol
interference (ISI) channels. Finally, it is shown that an infinite cas-
cade of reverse concatenation with independent decoding of con-
straint and ECC has a capacity equal to the rate of average inter-
section.

Index Terms—Capacity, constrained codes, error-control codes
(ECCs), noisy constrained channels, reverse concatenation.

I. INTRODUCTION

I N constrained coding, one encodes arbitrary data sequences
into a restricted set of sequences that can be transmitted

over a channel. Constraints such as runlength-limited (RLL)
constraints are commonly used in magnetic and optical storage
([12], [17] and [11]). While the calculation of the noise-free ca-
pacity of constrained sequences is well known, the computa-
tion of the capacity of a constraint in the presence of noise (the
“noisy constrained capacity”) had been an unresolved problem
in the half-century since Shannon’s landmark paper [22], with
only a handful of papers on this topic ([9], [16], [25], and [21]).
Recently, significant progress has been made on this problem:
papers by Arnold and Loeliger [1], Kavčić [13], Pfister, Soriaga,
and Siegel [20], and Vontobel and Arnold [24] present practical
methods for computing accurate bounds on the noisy capacity
of Markov sources.

In this paper, we consider the performance of -RLL
modulation constraints on a binary-input additive white
Gaussian noise (AWGN) channel (BIAWGNC) and over
several intersymbol interference (ISI) channels. In particular,
we evaluate the noisy capacity of such a system assuming a
maxentropic input. This is compared with a lower bound on
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the capacity that corresponds to the rate of average intersection
(defined in Section II-D) of the constraint and an error-control
code (ECC). It is argued that this lower bound corresponds to
the situation where the constraint is ignored in the design and
decoding of the ECC. We introduce the concept of constraint
gain (in analogy to “coding gain”), which corresponds to
the additional robustness to error that is afforded by jointly
designing the ECC and constrained code (also known as
modulation code), and using the modulation constraint in the
decoding process. Finally, we consider a method for combining
the modulation constraint and the ECC using an infinite
cascade of reverse concatenation. The achievable rate when the
constraint and ECC are independently decoded is found to be
equal to the rate of average intersection (when positive).

II. CAPACITY

A. Basic Definitions

Let represent the transmitted sequence, and represent the
received sequence. (In storage, would be the sequence of bits
written to the disk, while would be the sequence of signals
read from the disk.) These are infinite sequences of the form

, and the first elements are represented by
.

Let represent the channel. In Sections II and III, we focus on
two memoryless channels, the binary-symmetric channel (BSC)
and the BIAWGNC. For the BSC, the input is
and the output is incorrect (i.e., ) with crossover
probability and correct (i.e., ) with probability

. For the BIAWGNC, we assume the input is
mapped using pulse amplitude modulation (PAM) to .
The output of the channel is , where
represents Gaussian noise with variance . In this case, we
use the notation to also denote the signal-to-noise ratio (SNR)

.
By an unconstrained channel, we mean a binary-input

channel with no input constraints. For an unconstrained
channel , the capacity is defined as the supremum of the mu-
tual information rate over all stationary stochastic processes

The entropy rate of a stochastic process is
defined as

The conditional entropy rate is defined similarly, and
the mutual information rate is defined by
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Alternatively, the capacity can be given by

(1)

where the supremum is taken over all possible distributions
on the input sequence .

From the channel coding theorem, corresponds to the
maximum number of bits that can be transmitted per symbol,
and still have error-free performance for the channel. Specif-
ically, for any , there exists an and a subset
consisting of codewords of length such that the code rate

satisfies

and the probability of block error (the maximum probability
over all codewords) when using this code over the channel is
less than . In this case, the code is said to be -good.

B. Noisy Constrained Capacity

The constraint set is the set of sequences that are al-
lowed as inputs to the channel. We restrict our attention to con-
strained systems ([17]), which are defined by directed graphs
whose nodes correspond to the states and whose edges are la-
beled by symbols (e.g., and ). RLL codes form an important
class of constrained systems. The -RLL constraints restrict
the number of ’s between adjacent ’s to be a minimum of

and a maximum of . Following notation used in magnetic
recording, we consider the -RLL constraints to be applied
to a nonreturn to zero NRZ inverse (NRZI) sequence where
the ’s represent transitions. This yields an NRZ sequence as
input to the channel. The minimum and maximum lengths of a
run in the NRZ sequence are and , respectively.
For example, for the -RLL constraint, the transition se-
quence cannot contain more than one nontransition between ad-
jacent transitions, e.g., ; the cor-
responding input to the channel cannot contain more than two
identical bits in a row, e.g., . Note
that .

The Shannon capacity (or noiseless capacity) of the con-
strained system is given by

where is the set of sequences of length that meet the con-
straint. This capacity can be computed as the logarithm1 of the
largest real eigenvalue of the adjacency matrix of any determin-
istic2 presentation of the constraint.

Define the noisy constrained capacity (also known as (a.k.a.)
the noisy input-restricted channel capacity) as

(2)

1In this paper, all logarithms are taken base 2, so that the capacity is measured
in bits.

2A labeling is deterministic if at each state, all outgoing edges are labeled
distinctly.

where “ ” means that is a stationary process sup-
ported on the constraint , and is the corresponding output
process. A process is said to be supported on a constraint if
any finite sequence of strictly positive probability belongs to the
constraint. Clearly

Observe that the Shannon capacity is simply a limiting ver-
sion of the noisy constrained capacities. For a BIAWGNC with
channel parameter , we have

As in (1), it is possible to rewrite the noisy constrained ca-
pacity in (2) as

The supremum is taken over all probability distributions
with support on .

We remark that the operational meaning of is sim-
ilar to that of : it corresponds to the maximum number of
bits that can be transmitted over the noisy constrained channel,
and still have error-free performance. This follows from the
Shannon coding theorems for finite-state channels, see [8,
Sec. 5.9].

We briefly review a practical method to compute the mutual
information rate for constrained channels. The Arnold–Loeliger
approach [1] first breaks up the mutual information as follows:

(3)

For a channel with additive noise , the term
is simply the entropy of the noise, e.g., for additive

Gaussian noise

The key innovation in [1] is to use computations similar
to the forward–backward algorithm (also known as the Bahl–
Cocke–Jelinek–Raviv (BCJR) algorithm) to calculate the first
term in (3). The entropy rate of the process is

where

The forward messages

satisfy the following recursive sum:

where is the probability of re-
ceiving given that was transmitted (where is the label for
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transition from state to state ), and is the transition
probability from state to state . With these computations, it is
possible to evaluate and the mutual information
for any stationary process . Note that to compute ,
it may be necessary to search over all stationary processes
supported on to find the one that maximizes the mutual in-
formation rate.

C. Noisy Maxentropic Constrained Capacity

For a given constraint , there is a particular source
supported on that deserves special attention: the stationary
process that maximizes the entropy rate among all
stationary processes supported on the constraint, known as the
maxentropic distribution. There are explicit formulas for this
process ([17]), and its entropy rate coincides with the Shannon
capacity of the constraint, i.e,

The noisy maxentropic constrained capacity, or simply “max-
entropic capacity,” is defined as

(4)

where denotes the output distribution corresponding to
. Note that the Arnold–Loeliger [1] method outlined in

Section II-B can be used to evaluate . This ca-
pacity in (4) defined by the maxentropic distribution is clearly
upper-bounded by the noisy constrained capacity in (2)

The noisy maxentropic constrained capacity in (4) is easier to
compute than the noisy constrained capacity in (2) since it is not
necessary to take the supremum over all input distributions. For
some situations, this maxentropic capacity pro-
vides an approximation to the constrained capacity .
Also, it should be noted that the maxentropic distribution is
often used in practical implementations of constrained coding.

D. Intersection Rate

Let be a block binary error-control code of
length , where . The intersection rate is defined as

which corresponds to the transmission rate that is possible by
using the block code but restricting the transmission to
codewords that also belong to the constraint set .

Patapoutian and Kumar [19] evaluated the expected size of
intersection of a -RLL constraint with a fixed linear error-
correcting code (and its cosets). They gave the rate of intersec-
tion averaged over all cosets of the linear error correcting code
as

We define the rate of average intersection as

where the expectation is taken over all -good codes .
This extends the definition of the rate of intersection from Pat-
apoutian and Kumar [19] in that the codes considered are not
necessarily linear.

Motivated by the preceding results and by Loeliger’s aver-
aging bounds for linear codes (see [14]), we prove the following.

Proposition 1:

(5)

Proof: Denote by for convenience. Let be
the vector space over the field . Note that for any

, the translated code is also -good for the
unconstrained channel. This is because , thus, they
have the same rate. Also, has approximately the same
error correcting ability as since it is possible to communicate
which fixed translate was used at the expense of some initial
bits in transmission, and the decoder could just subtract from
the received codewords and then use the decoding from .

Since is a vector space over , it is an Abelian group
under addition. Let act on the set of all -good codes by
translation, i.e., maps to for any . This is a group
action since for any
and where is the zero vector in . The orbit of

is , which we denote by . This gives an
equivalence relation ( if and only if and are in the
same orbit) and hence partitions the set of good codes.

Let , i.e., the size of
the stabilizer of . We will show that for
any , and in particular it follows that does not
depend on .

If satisfies , then ;
conversely, if , then , so

. This shows that

So for all .
Following the proof of Lemma 4 in [14], let

be the indicator function of . Averaging over all
gives

Since for all , the foregoing average can
be interpreted as an average over the orbit . Since the orbits
partition the set of all -good codes, we can further average
over the space of such codes of a fixed size satisfying
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Note that not all orbits of codes of size have the same
number of codes , but the average over each orbit is the
same. Thus,

where the expected value is taken over all -good codes
of size . Next, the expectation over all can be found by

averaging over all possible . Finally, for sufficiently large ,
the size of the constraint set approaches , e.g.,

Putting this all together, the rate of average intersection is
.

An interpretation for this result is that
is the rate of the average scheme over all schemes with indepen-
dent design (and joint decoding) of the ECC and constraint code.
We will give another interpretation for in
Section V.

By Proposition 1, the rate in (5) cannot exceed the noisy con-
strained capacity

(6)

The following result shows that (5) is also a lower bound for the
maxentropic capacity.

Proposition 2: For a BIAWGN channel

(7)
Proof: See Appendix I.

In addition, we consider the rate of maximum intersec-
tion, which is defined by the maximum intersection over all

-good codes

Clearly, the maximum intersection rate satisfies

The following proposition shows that this is an equality, i.e.,
there exist good (not necessarily linear) ECCs for the uncon-
strained channel where the intersection with the constraint has
rate arbitrarily close to the capacity .

Proposition 3:

Proof: See Appendix II.

For Sections III–V, we define to be the max-
imum of and

(8)

III. CONSTRAINT GAIN

The noisy constrained capacity is achieved when
the ECC and the constrained code are jointly designed and
this knowledge is exploited in decoding. This is the theoretical
maximum for the rate of any code for error-free transmission
on the noisy constrained channel. Meanwhile, the lower bound

gives the average rate when the ECC is chosen
without knowledge of the constraint. The difference between

and then gives an estimate of the
increase in capacity that is theoretically available from a system
that makes use of the constraint in designing the ECC and in
decoding. We call this potential improvement the constraint
gain.

Recall that a BIAWGNC with noise variance is repre-
sented by the channel parameter . Constraint gain can be
measured as a difference in thresholds for a given rate , where
the threshold is the minimum value of the channel parameter
such that rate can be achieved

Measured in decibels, the constraint gain is given by

The lower bound is computed using (8), while
the noisy constrained capacity can be computed using the
Arnold–Loeliger technique [1].

An estimate of (and lower bound for) constraint gain can be
obtained by substituting the more easily computed maxentropic
constrained capacity for

Proposition 2 guarantees that the rate of average intersection
(on which the lower bound is based) is at most the maxentropic
capacity, so .

In Fig. 1, various capacity curves are plotted for the -
RLL constraint as a function of . One curve shows an approx-
imation to using only Markov chains of order as
input distributions. (The curve using Markov chains of order is
very similar, so it was omitted.) Over the range of SNRs on this
AWGN channel and for this constraint, the noisy maxentropic
constrained capacity is only very slightly less
than the second-order approximation for . Meanwhile,
the lower bound is given by the curve
shifted down by . For some rate , the constraint
gain is estimated by the horizontal distance between the curves
for and .

To compare the estimates for different constraints in a fair
way, we make the somewhat arbitrary assumption that the rate

is a fixed proportion of . Table I shows the estimates
for the constraint gain for rates of and

for various constraints over a BIAWGNC.
We see that the gain generally increases as the noise-

less capacity decreases, but the exact value depends
on the structure of the particular constraint. For example,
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Fig. 1. Estimating the constraint gain for the (0; 1)-RLL constraint.

TABLE I
LOWER BOUNDS ON CONSTRAINT GAIN FOR BINARY-INPUT AWGNC

-RLL has a higher noiseless capacity than -RLL, yet
its estimated constraint gain is larger.

These results are especially of interest in the case of optical
storage, where a constraint with is used in CDs and
DVDs. In current systems, the error-control code is typically de-
signed independently of the RLL constraint, and soft decoding is
not used for the RLL constraint. These capacity results indicate
that significant improvements in performance may be available
from decoding the constraint.

IV. NOISY CONSTRAINED ISI CHANNELS

These results extend to the case of a binary-input channel with
ISI. In general, the methods for computing the noisy capacity
apply to any situation where both the source and the channel
have memory, such as a RLL constraint used in conjunction with
a binary-input ISI channel with AWGN.

The ISI channel with AWGN can be represented by

(9)

where is the channel memory. We introduce a variable
to represent the deterministic output of the channel before the

random noise has been added, and separate the channel into
an ISI part and an AWGN part

Let denote the set of channel states that correspond to
the last bits, which is called the channel memory. A graph can
be used to represent the transitions between channel states, with
the deterministic output as edge labels.

If the input process is required to satisfy a constraint de-
fined by a graph representation on a state set , then we can
form the fiber product graph representation [17] for the com-
bined source/channel. The states of this combined graph are the
product states , with the transitions labeled by

. (It is often possible to choose the constraint and the channel
target such that the number of overall states can be made smaller
than .)

The capacity of the noisy constrained ISI channel is

(10)

where the supremum is over all possible distributions
with support on the constraint. In terms of stochastic processes,
(10) can be rewritten as

(11)
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TABLE II
CONSTRAINT GAIN ESTIMATES � (R) FOR ISI CHANNELS AT

R = 0:75 cap(C)

TABLE III
CONSTRAINT GAIN ESTIMATES � (R) FOR ISI CHANNELS AT

R = 0:9 cap(C)

where is the output process corresponding to the input process
. Note that , where is the deterministic

output of the ISI channel with input .
As in (4), we consider the maxentropic capacity

(12)

where the subscript “max” refers to the corresponding distribu-
tion based on the maxentropic distribution for the con-
straint. Expression (12) is more easily computed than (11) since
it is not necessary to search over all input processes. The ca-
pacity can be found by applying the Arnold–Loeliger method
[1] to the variables , which are the labels of the transitions
between the finite set of product states .

It is also possible to formulate a lower bound in analogy
with (8). Suppose that the ECC is designed instead for a sym-
metric memoryless channel (i.e., the BIAWGNC) so that it is
chosen from a uniform distribution (also known as the i.i.d. dis-
tribution). This suboptimal choice might be made because the
transmitter does not have accurate knowledge of the channel,
or for simplicity in implementation. Then the ECC has rate ap-
proaching

which we call the i.i.d. capacity of an ISI channel. Again,
is the induced output process from .

As in Proposition 1, it is possible to find the average intersec-
tion between the ECC and the constraint , and then to define
the corresponding lower bound as

Constraint gain in this context can be defined analogously as
the difference between and . A
lower bound estimate for constraint gain is obtained by using

in place of . In Tables II and
III, estimates of constraint gain are shown for various input-con-
strained ISI channels using the difference in thresholds between

and . The dicode channel
is , the EPR4 channel is , the
E PR4 channel is .

V. REVERSE CONCATENATION AND THE RATE OF

AVERAGE INSERSECTION

The lower bound in (8) is based on restricting
the transmission to ECC codewords that meet the constraint and
then applying an ECC decoder that does not make use of the
constraint. For this scenario, the decoding is straightforward,
but it is a challenge in practical implementations to create a
joint ECC and constraint encoder that specifies only the code-
words of an ECC that meet the constraint. Instead, it is typical
to concatenate an ECC encoder and constraint encoder to create
a combined encoder.

The standard method of concatenation involves encoding the
user sequence with an ECC encoder (ENC ECC), followed by a
near-capacity constraint encoder (ENC C) that encodes the ECC
encoder output into a constrained word, as shown in Fig. 2. The
problem with standard concatenation is that the output of the
constrained encoder is not necessarily an ECC codeword, and
the decoding of the constraint often results in error propagation.

As an alternative approach, a technique known as reverse con-
catenation (a.k.a. “modified concatenation”) has been known in
the context of magnetic storage for many years (e.g., [2], [15]),
and has been analyzed in [10], [6], and [7]. The idea is to first en-
code the user bits using the constraint encoder, and then apply a
systematic ECC encoder to produce parity bits, which are then in
turn encoded by another constraint encoder. (In addition, a vari-
ation in which the parity bits are inserted into the constrained se-
quence as unconstrained positions is considered in [4] and [23].)

In a typical implementation of reverse concatenation, the
user sequence is first encoded by a modulation encoder
ENC C to provide a constrained sequence . Based on

, an ECC encoder (ENC ECC) produces a sequence
of parity bits, which do not necessarily meet the modulation
constraint. The parity bits are further encoded by a second
modulation encoder ENC C before being transmitted on
the channel. This single stage of reverse concatenation is shown
in Fig. 3.

It is natural to extend this single stage into a cascade of
reverse concatenation by taking the unconstrained parity bits

from one stage of reverse concatenation as the user input
for the next stage of reverse concatenation. In this manner, an
infinite cascade of reverse concatenation can be constructed,
as shown in Fig. 4. In this section, we will show that for
the case of an infinite cascade where there is no cooperation
between the ECC and modulation decoders, the asymptotic
capacity is , corresponding to the rate of average
intersection.

Considering the infinite cascade in more detail, the input to
the th stage is (where ), and the outputs are a
message sequence that satisfies the constraint and a parity
sequence that does not necessarily satisfy the constraint.
The user data is used as the first input . Let denote the
ratio of the message to the entire output for the th
stage



FAN et al.: CONSTRAINT GAIN 1995

Fig. 2. Standard concatenation.

Fig. 3. A single stage of reverse concatenation.

Fig. 4. Infinite cascade of reverse concatenation blocks.

Similarly, let denote the overall rate of the th stage

Note that

and

For a user input of bits, the resulting number of encoded
bits from this construction is given by

(13)

This is only an approximate expression because the length of
the sequence must be an integer.

The rate of the infinite cascade in (13) thus approaches

(14)

if the summation converges.

If we assume that the rates and are the same for all ,
i.e., and , then (14) reduces to a reciprocal of a
geometric series that converges when , yielding
the rate

(15)

A diagram illustrating independent decoding of the ECC and
modulation constraint within the infinite cascade is shown in
Fig. 5. This is the case where there is no passing of soft informa-
tion between the ECC and modulation decoders and no iterative
decoding. More specifically, in the decoding of the th stage, the
decoder receives signals corresponding to the constrained
message , and also receives a decoded version of from
the th stage. What is meant by independent decoding of
the ECC and modulation code is that the ECC decoder, without
any knowledge of the modulation constraint, decodes based on
the input to produce the decoded version of the con-
strained message bits . Assuming that the ECC has been
appropriately designed for the channel, the decoder output
is correct with high probability. Finally, a constraint decoder is
used to transform the constrained message to a decoded
version of the input.

In this situation of independent decoding of the ECC and
modulation code, we will later argue that the ECC essentially
sees a mixture channel (see Fig. 6), where is transmitted
over a noisy channel with capacity and is transmitted
over a perfect channel with capacity . The capacity of a mixture



1996 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 2004

Fig. 5. Independent decoding of the infinite cascade.

Fig. 6. Mixture channel.

channel is given by the weighted average of the capacities. The
rate of the ECC is limited by this mixture capacity, yielding
the following upper bound on the rate

or equivalently

(16)

On the other hand, the constraint encoder converts the uncon-
strained word (where ) to a constrained word

, so that its rate is bounded by the capacity of the constraint
. Thus, , so that satisfies

the bound

(17)

We claim that with sufficiently long codewords, the ratios
and can both be made arbitrarily close to the upper bounds
in (16) and (17). At the th stage, the user input
is encoded by the constraint encoder into , which is
transmitted across the channel . The goal of the systematic en-
coder is to produce a parity sequence for encoding by
the next ( th) stage of the cascade. We give the following
explicit construction for an ECC code that is suitable for the
mixture channel.

Decompose into a prefix and suffix (so that ).
Next consider a systematic encoder for an ECC whose input is ,
and whose parity output has the same length as (so ).
From this encoder, we will construct a systematic encoder for

the mixture channel. The idea to transmit across the
channel , and then compute the XOR-ed sequence
for encoding by the next stage of the cascade.

At the decoder for the th stage, is assumed to be
recovered perfectly from the inner stages. Let denote
the received signal (corresponding to ) from the channel

. In the case of a BSC , let . The
noise that has been introduced in is then passed on to , i.e.,

if and only if . Thus, the combined sequence
is equivalent to the result of passing through the BSC . If
the ECC is good (in the sense of -good) for the channel ,
then with high probability it is possible to decode the sequence

to obtain and correctly. Taking the XOR of and
yields the correct value of . Recovering and yields , which
can then be decoded by a (deterministic) constraint decoder to
obtain the original sequence .

A similar result holds for the BIAWGNC. Let denote
the received sequence from the BIAWGNC . It is a sequence
of real-valued signals corresponding to a binary input
that has been modulated and corrupted with additive noise, i.e.,

, where is a Gaussian noise sample. On the
other hand, the sequence is received perfectly from the inner
stages of the cascade. Instead of XOR-ing with the sequence
directly as in the BSC case, for the BIAWGNC it is necessary
to reverse the sign of the real-valued sequence according to

as follows: Let if , and if .
The resulting real-valued sequence will then be equivalent to
passing through the channel . Thus, if the ECC is
good for the channel , the decoder can with high probability
recover the original and from the real-valued sequence .
Again, from and , can be found, and then from , the
original sequence can be obtained.

Regarding the existence of an error-control code that is good
for the channel, the channel coding theorem says that with suf-
ficiently large block lengths, such a code exists with rate arbi-
trarily close to the channel capacity . Formally, for ,
there is some such that for all , there exists an

-good ECC for the BSC or BIAWGNC such that the rate
is greater than (where is to
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Fig. 7. M -stage truncation of the reverse concatenation cascade.

be chosen later). Moreover, it is possible to choose this code to
be a linear systematic code.

Then for this construction, the ratio is given by

Now choose such that is within of .

Next, the ratio is related to by the rate
of the constraint encoder. Since for sufficiently large

block length, this ratio can be chosen to be arbitrarily close to
the capacity of the constraint, and in particular, we choose it
such that . Then

since both and are at most .
Thus, for any , it is possible to construct an encoder and de-

coder for this mixture channel such that the ratios and are
within of their maximum rates in the inequalities (16) and (17),
i.e., and , for all , where
and in (15). We will now use this to show in
Proposition 4 that an infinite cascade of reverse concatenation
can achieve an overall rate of

when
To prove this result, it will be helpful to define an -stage

truncation, as shown in Fig. 7. An -stage truncation can be
thought of as an infinite cascade that has been truncated at the

th stage. The output of the th joint encoder block
is fed into a combined ECC and modulation encoder be-
fore transmission on the channel. This encoder should have
nonzero rate and is designed for the channel to allow
decoding with low probability of error.

Proposition 4: For a channel and constraint , if
, the maximum rate of an infinite cascade of

reverse concatenation with independent decoding is given by
.

In other words, for any , for sufficiently large number
of stages and sufficiently long user input , there exists an

-stage truncation that has probability of error and has rate
within of .

Proof: Fix . The number of stages , the allowed
variation in rate , and the user input length will be chosen
later based on . Typically, and will be large integers,
while will be a real number close to .

The resulting number of encoded bits for an -stage trunca-
tion is given by

where is the rate of the combined modulation and ECC en-
coder in the th stage. Thus, the rate of the -stage
truncation as a function of and for is

(18)

Let denote the rate of the
-stage truncation without the final ECC/modulation encoder
in the th stage

(19)
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For simplicity, the expressions in (18) and (19) will be repre-
sented by and , respectively. In addi-
tion, for the case where the rates take their maximum allowed
values according to (16) and (17), i.e., and

, let the expressions in (18) and (19) be repre-
sented by and , respectively.

Consider the following three observations.

i) We can choose an large enough such that for all

since is a partial sum of .

ii) With (this is equivalent to
), we can fix an encoder with rate and

probability of error arbitrarily small , and choose
an such that for all , satisfies

Thus, for

iii) Since is continuous in variables and
about and , respectively, we can choose so small
that if and , then

Thus, for , we can realize the cascade
with block codes of sufficiently long block lengths such that
and are within of their ideal values. The deviation of the
rate from is

Also, we may assume that each stage of the -stage trun-
cation is decodable with probability of error at most
provided the parity is known perfectly, and that the probability
of error for is . So, with probability , we can
decode correctly, and hence . Each stage of the
truncated cascade with received , can thus be
decoded correctly when we backtrack up the cascade using the
correctly decoded to obtain , then , etc., until
we get .

Note that this proposition gives an additional justification for
the use of

as the rate that can be achieved when a code designed for the
channel is used for a noisy constrained channel.

On the other hand, if we allow a joint decoder for both the
ECC and the constraint, it is possible to increase the capacity of
the system. The reason is that with joint decoding, the decoder is
allowed to use all the information about the ECC and constraint
in decoding. If, in addition, arbitrary design is allowed in terms

of joint encoding of modulation and ECC, then the capacity is
by definition.

We also point out that the infinite cascade is a scheme that
involves independent decoding of the ECC and modulation
constraint. Yet Proposition 4 establishes that the rate of such
a scheme is the same as that of the average scheme over all
schemes with independent design (and joint decoding) of the
ECC and constraint code.

VI. CONCLUSION

We summarize the capacity relations below as follows.

We introduced the notion of constraint gain as the potential
improvement over a system in which the ECC is designed
and decoded independently of the modulation constraint, as
measured by the rate of average intersection. We defined
constraint gain to be the difference between and

. An accurate and easily computable lower
bound estimate of constraint gain is given by comparing

and . The constraint gain
indicates the potential improvement in performance that can be
obtained by making use of the constraint in the decoding. We
also showed that an infinite cascade of reverse concatenation
with independent decoding of constraint and ECC yields a
capacity of , giving another interpretation.

APPENDIX I
LOWER BOUND

According to (6), is
a lower bound for the noisy constrained capacity . In
this appendix, we prove Proposition 2, which claims that in the
case of the BSC and BIAWGNC, it is actually a lower bound on
the noisy maxentropic constrained capacity .

Consider a binary-input channel that satisfies the following
properties:

• memoryless, i.e.,

(in the continuous case, this formula should be interpreted
as a product of densities);

• symmetric with respect to inputs, i.e., is the same
for all ;

• symmetric across zero, i.e., .
Let be the uniform independent and identically dis-

tributed (i.i.d.) binary source, and be the corresponding
output process. Let be an arbitrary input process, and

be the resulting output process. By symmetry,
does not depend on , and so in particular, it agrees with

. Also, given our channel assumptions, the
uniform input distribution achieves the noisy channel
capacity, i.e., . Now, observe that the
following four statements are equivalent:

(20)
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(21)

In particular, if , the maxentropic process for a con-
straint , then (20) becomes our desired lower bound

So, it suffices to prove (21) for . In fact, we show
that (21) holds for any unifilar Markov source3 . Let be the
Markov chain on state sequences of the constraint graph that
generates . The output process is a function of a Markov
chain (namely, a function of the independent joining of and
the memoryless noise process). It then follows from [3, The-
orem 4.4.1] that

Since is unifilar Markov, we also have
, and so

Now, the right-hand side of this inequality is a weighted average
of

over all states of the Markov chain, with weights equal to the
stationary probability distribution. So, to prove (21) it suffices
to show that for each state

(22)
For the BSC with crossover probability , inequality (22) re-

duces to showing

since . Note that the random vari-
able is discretely distributed as (where
may be dependent on the state ), since the Markov chain has at
most two outgoing edges for each state. On the other hand, the
random variable is distributed discretely as

which is closer to being uniform since it is a weighted
average of and . Hence, ,
thus proving the desired lower bound

In the case of the BIAWGNC with distributed
discretely as , the output random variable
is continuously distributed with probability density function

3A unifilar Markov source is a process on label sequences induced by a con-
straint graph such that: 1) the labeling is deterministic and 2) the graph is en-
dowed with transition probabilities to form a first-order Markov chain.

where is simply a Gaussian distribution. The differential
entropy of is

which is a function of , so we denote by .
The inequality (22) is equivalent to the statement that the func-
tion

(23)

is minimized at . (The second term, , is the binary
entropy function.) It is straightforward to verify that

and that is strictly convex. A plot of versus is
shown in Fig. 8 with .

APPENDIX II
MAXIMUM INTERSECTION RATE

We prove Proposition 3, which asserts that the maximum
intersection rate is equal to the noisy con-
strained capacity .

First, the inequality

is obvious. To show equality, we construct a sequence of
channel-capacity-achieving block codes whose intersection
with the constraint approaches the noisy constrained capacity.
The idea is to take a code which satisfies the constraint

whose rate nearly achieves and which can be
decoded with probability of error , and combine it with
an -good code for the channel to obtain a code

. The code will also be -good for the
channel , and the intersection rate of can be made arbitrarily
close to the noisy constrained capacity.

To allow easy decoding of codewords from , we form a new
code by attaching a prefix of length to each codeword.
Codewords from the subset will have a fixed prefix that
satisfies the constraint , while codewords from will have
prefix (the bitwise complement of ). This helps to distinguish
between codewords derived from and from and thus bound
the error probability during decoding. Denote the extended
code by , and the extended code by . A prefix can be
selected if the constraint graph is irreducible. The length will
be determined from channel statistics.

We now show for sufficiently large , the set
is an -good code for the unconstrained channel, i.e.,
it has rate close to , and is decodable with small error
probability. The rate of the code is given by

for sufficiently large , thus obtaining
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Fig. 8. Plot of F (q) versus q.

Next, we will bound the probability of error when code is
used over the BSC channel with crossover probability (with

). It is straightforward to extend this to the case of the
BIAWGNC when hard-decision decoding is employed for the
prefix. When a codeword is received, the decoder for first
decodes the first bits to one of the two possible prefixes using
nearest neighbor decoding. If the decoded prefix is , the de-
coder for is subsequently used in decoding the last bits of

; otherwise, the decoder for is used.
Suppose a codeword from is sent and the received word

is . The possible error events fall into two cases: a) the decoded
prefix is , and is decoded to a codeword in but not , and
b) the decoded prefix is , and is decoded to a codeword in

. In case a), if we denote the probability of the event by

then ; in case b), the probability of error

is just the probability that more than half of the prefix bits have
been flipped by the channel. By the Chernoff bound

has errors

This can be made arbitrarily small with large enough since
. (The latter can be shown using the well-known

inequality for by letting .) Thus,

If is sent from , then by symmetry, if is the prob-
ability that is decoded to a codeword in different from the
one sent, then ; also, if denotes the proba-
bility that is decoded to a codeword in despite originating
from , then . This bounds the length of the re-
quired prefix to

which is achievable for large enough. Thus, the maximum
block error probability when using code is upper-
bounded by

Hence, is an -good code for the unconstrained
channel.

Finally, . This proves that is an
-good code for the unconstrained channel, whose intersec-

tion with the constraint yields a code with rate arbitrarily close
to the noisy constrained capacity. Hence,
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Alek Kavc̆ić, Tom Richardson, and Bruce Wilson for very
helpful discussions. We also wish to thank John Gill, Jorge
Campello, and Richard New for helpful comments at the 2002
IBM–Stanford Coding Seminar where parts of this work were
first presented.

REFERENCES

[1] D. Arnold and H.-A. Loeliger, “On the information rate of binary-input
channels with memory,” in Proc. IEEE Int. Conf. Communications,
Helsinki, Finland, June 2001, pp. 2692–2695.

[2] W. G. Bliss, “Circuitry for performing error correction calculations on
baseband encoded data to eliminate error propagation,” IBM Tech. Discl.
Bull., vol. 23, pp. 4633–4634, 1981.

[3] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[4] J. C. de Souza, B. H. Marcus, R. New, and B. A. Wilson, “Constrained
systems with unconstrained positions,” IEEE Trans. Inform. Theory, vol.
48, pp. 866–879, Apr. 2002.

[5] J. L. Fan, Constrained Coding and Soft Iterative Decoding. Norwell,
MA: Kluwer Academic, 2001.

[6] J. L. Fan and A. R. Calderbank, “A modified concatenated coding
scheme, with applications to magnetic storage,” IEEE Trans. Inform.
Theory, vol. 44, pp. 1565–1574, July 1998.

[7] J. Fan and J. Cioffi, “Constrained coding techniques for soft iterative de-
coders,” in Proc. GLOBECOM, Rio de Janeiro, Brazil, Dec. 5–9, 1999,
pp. 723–727.

[8] R. G. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1968.

[9] C. D. Heegard, A. Duel-Hallen, and R. Krishnamoorthy, “On the ca-
pacity of the noisy runlength channel,” IEEE Trans. Inform. Theory, vol.
37, pp. 712–720, May 1991.

[10] K. A. S. Immink, “A practical method for approaching the channel ca-
pacity of constrained channels,” IEEE Trans. Inform. Theory, vol. 43,
pp. 1389–1399, Sept. 1997.

[11] , Codes for Mass Data Storage Systems. Amsterdam, The Nether-
lands: Shannon Foundation Publishers, 1999.

[12] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inform. Theory, vol. 44, pp. 2260–2299, Oct.
1998.
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