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Time-Varying Maximum Transition Run Constraints
T. Lei Poo, Member, IEEE, and Brian H. Marcus, Fellow, IEEE

Abstract—Maximum transition run (MTR) constrained systems
are used to improve detection performance in storage channels.
Recently, there has been a growing interest in time-varying MTR
(TMTR) systems, after such codes were observed to eliminate cer-
tain error events and thus provide high coding gain for EnPR4
channels for n = 2; 3.

In this work, TMTR constraints parameterized by a vector,
whose coordinates specify periodically the maximum runlengths
of 1’s ending at the positions, are investigated. A canonical way
to classify such constraints and simplify their minimal graph
presentations is introduced. It is shown that there is a particularly
simple presentation for a special class of TMTR constraints and
explicit descriptions of their characteristic equations are derived.
New upper bounds on the capacity of TMTR constraints are
established, and an explicit linear ordering by capacity of all tight
TMTR constraints up to period 4 is given. For MTR constrained
systems with unconstrained positions, it is shown that the set of
sequences restricted to the constrained positions yields a natural
TMTR constraint. Using TMTR constraints, a new upper bound
on the tradeoff function for MTR systems that relates the density
of unconstrained positions to the maximum code rates is deter-
mined.

Index Terms—Capacity, constrained systems, maximum transi-
tion run (MTR), time varying, tradeoff function, upper bounds.

I. INTRODUCTION

I T is well known that maximum transition run (MTR) con-
strained codes [9] are a means of achieving coding gain for

high-density magnetic recording. In the non-return to zero in-
verse (NRZI) domain, where a corresponds to no transition
and a corresponds to a transition, the MTR codes limit
the run of ’s to be at most , i.e., at most transitions for the
recorded sequence.

Recently, Moision et al. [8] and Karabed et al. [6] used
error-event analysis on partial-response channels to design
codes that forbid the appearance of certain patterns in a
periodic manner. The resulting codes successfully eliminated
problematic sequences in the data recording or retrieval process,
and gave improved code distance and detection performance.
These codes are known as “distance-enhancing constrained
codes.” In particular, it was observed that certain time-varying
MTR (TMTR) constraints were not only distance-enhancing,
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Fig. 1. Standard trellis diagram for the period 2TMTR (j = 2; 3) constraint.

but had the advantage that they allowed codes of rate and
above. An example given by Bliss [3], Fitzpatrick and Modlin
[5], and Moision et al. [8] is the period TMTR
constraint, which allows a run of two (three) ’s to end at even
(odd) time periods. Its standard trellis diagram is shown in
Fig. 1, with solid edges having label and dotted edges having
label . This TMTR constraint has been used to construct
a rate– block code that achieves 2.2-dB coding gain on
the channel in additive-white-Gaussian noise. It was
further shown by Moision et al. [8] that this constraint achieved
the matched-filter bound (MFB) on the channels, with
system polynomials , for .

In this paper, we analyze TMTR constraints indexed by a
vector , whose coordinates specify periodically the maximum
runlengths of ’s ending (or starting) at the positions. We intro-
duce the notion of tightness to classify TMTR constraints
in Section II and study their minimal graph presentations in Sec-
tion III. In Section IV, we present new upper bounds on the ca-
pacity of TMTR constraints and show that there is a complete
linear chain of tight TMTR for vectors up to length or-
dered by capacity. Finally, in Section V, we show that for MTR
constrained systems with unconstrained positions [13], [4], [11],
the set of sequences restricted to the constrained positions yields
a TMTR constraint. We also derive a new upper bound on the
tradeoff function relating the density of unconstrained positions
to the maximum code rates. Omitted proofs can be found in [10].

We begin with definitions of the TMTR constraints.
A labeled graph consists of
• a finite set of states ;
• a finite set of edges , where each edge has an

initial state and a terminal state , both in ;
• an edge labeling , where is a finite

alphabet.
Formally, a constrained system or constraint is the
set of finite sequences obtained by reading the edge labels of a
path in a labeled graph . Such a graph is called a presentation
of the constraint. An element in is called a word. We use to
denote the concatenation of two words and ; denotes the
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length of ; denotes the th symbol in ;
denotes the substring of from positions to .

Let be the nonnegative integer vector . For
all , put where and

. From [3], [5], and [8], the TMTR constraint is
given as the set of sequences such that at time (or position) , the
maximum allowable runlength of ’s ending at is . For this
to be a constrained system (see [7]), all shifts of valid sequences
have to be included. Let denote the cyclic right shift operation
on the vector by positions. Then

TMTR TMTR

is a constrained system.
We can also consider the set TMTR of finite se-

quences with the maximum allowable runlength of
’s starting at time . Sequences of a fixed length in

TMTR and TMTR are related as follows. For a
word of length , let us write for the reversal of

, i.e., for . If is a

set of words of length , let
Then there is a permutation such that

TMTR TMTR For the remainder of this
paper, we will only deal with TMTR ; dual results hold for
TMTR .

A closely related notion is the TMTR values of a word
. Specifically, we define the sequence of instan-

taneous TMTR values by letting be the runlength of ’s
ending at position ( if ). Note that if is
contained in TMTR , then . Conversely, satisfies
TMTR .

II. TIGHT VECTORS FOR TMTR

Given two vectors of the same length, it is possible to
have TMTR TMTR . An example is
and . To provide a canonical choice for , we
introduce the notion of tightness.

As before, fix a vector of length . Let be the col-
lection of all vectors of length such that TMTR
TMTR . Let be the component-wise minimum of .

Proposition 1: For any , .
Proof: Clearly, TMTR TMTR . For the re-

verse containment, let be a word in TMTR and fix an ar-
bitrary position . By definition of , there is some
such that . Then, is also contained in TMTR ,
so the runlength of ’s starting at position in is at most

. So TMTR . Hence, TMTR TMTR .

We call the tight form of . It follows that given two
vectors of the same length , TMTR coincides with
TMTR if and only if and have the same tight form.
However, we need an efficient way to find the tight form .
This can be done using the following necessary and sufficient
condition for tightness.

Proposition 2: A vector is the tight form of if
and only if

(1)

for all .

Proof: Suppose for some fixed . Define
by and for

. Then, componentwise, with strict inequality at

. So TMTR TMTR . Conversely, let be a
word in TMTR and let be the index of a position in .
If , then the runlength of ’s ending at is
at most since the runlength of ’s ending at

is at most . If , the runlength of
’s ending at is at most . Thus, TMTR ,

showing TMTR TMTR . So is not tight, which
proves the necessity of the condition.

For sufficiency, let satisfy inequality (1). Let be a
vector of the same length as such that for some component ,

. Let , where is chosen so that

It is easily checked that at index , the runlength of ’s ending
at is exactly . Then is contained in TMTR by con-
dition (1). However, is not contained in TMTR since

. This shows that . Therefore, is tight.

The corresponding tightness condition for TMTR is

Using Proposition 2, we give the following algorithm for
computing the tight form of a vector . The algorithm cycli-
cally and iteratively reduces each until inequality (1) holds
for all . Since no component of ever increases or becomes
negative in any iteration and TMTR does not change, the
algorithm must terminate and output . In the outline of
the algorithm below, the subscripts of the vector are taken

and start from . An example illustrating the algorithm
is also given.

COMPUTING THE UNIQUE TIGHT FROM GIVEN VECTOR

Input:

length

Count

while Count

if

Count

if

else

Count Count

Output: (which equals )

Example 3: Let . Then reduce to its
tight form by
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TABLE I
TIGHT FORMS OF mmm FOR TMTR FOR p = 2; 3; 4

So . Note the necessity of wrapping
around at the last step of the reduction.

Finally, the tight forms of for are listed (up
to their cyclic permutations) in Table I. The number of reduced
forms of the TMTR vectors increases exponentially with their
length.

III. GRAPH PRESENTATIONS OF TMTR

Let be a labeled graph. For convenience, we sometimes
write

to denote an edge or transition from state to state with label
, and

to denote a path with label from state to state . A path
of length in is a finite sequence of edges such

that for . The state sequence
of a path is the sequence .
A cycle in is a path where . A cycle
of length is called a loop. A simple cycle is a cycle in which
the state sequence consists of distinct states except the initial and
terminal states. The period of is the greatest common divisor
of the lengths of cycles in . We say is deterministic if at each
state, all outgoing edges carry distinct labels, and irreducible if
for any pair of states, there is a path from to .

For a graph , the adjacency matrix is the
matrix whose entries are indexed by the states of and
is the number of edges from to in .

The follower set of a state in , denoted by ,
is defined to be the set of all finite words that can be generated
from in . Two states and are equivalent if .
The graph is reduced if no two distinct states in are equiv-
alent. For a constraint with an irreducible graph presentation,
there is a unique minimal (in terms of the number of states)
deterministic presentation, called the Shannon cover. It is the
unique presentation that is irreducible, deterministic, and re-
duced. For more background on constrained systems and their
presentations, see [7].

A. Standard Trellis Presentation

A graph presentation of TMTR is constructed by con-
catenating in an appropriate sense the standard presentations of
MTR for each , and letting the transitions
pass from phase to phase . This is known as the standard
trellis presentation . Specifically, the states and transitions of

are given as follows.
• States: states in the th phase, for ,

Here represents the number of preceding consecutive ’s.
• Transitions: Beginning at phase ,

if

This construction yields states and takes linear
time. Applying the state-merging algorithm [1], which finds and
merges equivalent states, we can obtain the Shannon cover for
TMTR . If is not tight, we can decrease the number of
states and transitions in this construction by first reducing to
its tight form.

We say that has minimal length if there does not exist
of shorter length than such that TMTR TMTR .
For an equivalence class in phase of , let

; we choose as the representative of . We
call such points the division points of phase . For tight with
minimal length, the following properties of hold.

• Any two states with different phases are not equivalent.
• Two states and (with ) in the same phase

are not equivalent if and only if there exists an integer
such that .

• The division points for phase are given by the set of states
with

(where the notation if and if ).
The equivalence class of a division point consists of
the states where is
another division point or the state .

This leads to the following explicit description of the Shannon
cover.

Proposition 4: Let be tight with minimal length. Then the
states of the Shannon cover of TMTR are the division points
of all phases in as specified above.

Proof: We prove the three properties of .
1) Assume (for contradiction) that the two states and

with are equivalent. Then and
so . However, is a TMTR
constraint with vector

while is a TMTR constraint with vector

Thus, .
The shifted vectors

and

are tight since is tight by assumption. Then
, which implies that for ,
. This in turn implies that

so TMTR TMTR , contradicting the as-
sumption that was chosen to be of minimal length.

2) Assume that and are not equivalent. Then
is a proper subset of . Let be a word in

which is not contained in . The word can be taken to
be of the form . Then (since )
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and (since ). This implies that
.

Conversely, suppose there is an integer such that
. Then can be generated from state

but not from state . This implies that ,
and so the states and are not equivalent.

3) For any phase , we can enumerate the set

as , with . Note that if
, then by part 2), is equivalent to .

Thus, the division points for phase are given by the set of states
for in

(since the state is always a division point). Note that if
is tight, then . Writing , where

and , we can write the
set of division points in the claimed form.

Using part 1), it is clear that the division points in each of
the phases are distinct. Thus, they constitute the states of the
Shannon cover of TMTR (if merged into those representa-
tive classes).

Proposition 5: Let be a tight vector of minimal length .
Then the Shannon cover of TMTR has period .

Proof: Any cycle in the trellis presentation must have
length that is a multiple of . To show this, let be a cycle of
length in the Shannon cover. This induces a path of length
(not necessarily a cycle) in . The initial and terminal states
of are equivalent since is a cycle, so their phases are the
same, by part 1) of the proof of Proposition 4. It follows that
is a multiple of .

To show that the period of the Shannon cover is exactly , we
show that there is a cycle of length exactly . By part 3) of the
proof of Proposition 4, the set of states in

are always division points (and hence states in the Shannon
cover of TMTR ). By construction, there is a cycle of length
exactly in the Shannon cover given by

B. Shannon Cover When

Let , that is, satisfies
the tightness condition (1) with equality except for the rightmost
coordinate. This includes the TMTR constraint mentioned
in the Introduction. Construct the graph with exactly

states as follows.
• States of : The states are labeled .
• Transitions of : The transitions are given by

for

for

Note that is irreducible and deterministic. Moreover, it
is reduced since for any state , the follower set contains
the word but not , so the follower sets of the states
in are distinct.

We present a combinatorial proof that is the Shannon cover
of TMTR .

Proposition 6: The graph is the Shannon cover of
TMTR .

Proof: We first show that every word that can be gener-
ated from is contained in TMTR . Since is irreducible,
without loss of generality, it suffices to consider paths starting
at state . Let be the sequence of states in the path
generating

By construction, cannot have a run of more than ’s.
Note that since if , then

and if , then .
Therefore, for all

(2)

Let be the runlength of ’s ending at position in (take
if ). Then , since for any state in

, and path in terminating at such that the label of is
a run of ’s, the length of is at most .

There is a unique element of that is
congruent to , namely

(3)

Equations (2) and (3) together imply

which yields

which in turn implies that satisfies TMTR .
To prove the converse, let TMTR

, choosing the shift such that at position , the
TMTR value is . It suffices to show that any word in can
be generated by a path in starting at state . To do this, let
be a right infinite word which cannot be generated by a path in

starting at state , and show that violates .
Let be minimal such that is not the label of

a path in starting at . Let be the sequence of states
for the path starting at .

Note that and since otherwise the path
could be extended further. For the case , it follows
immediately that is not in since but the TMTR
value at is (since ).
So assume . Then since the state does not
have an incoming edge.

So choose with maximal such that
are all ’s. Then either or

has an incoming edge, so in either case .
But then the run of ’s ending at has length

so the run of ’s ending at has length at least .
But the TMTR value at is since

. Thus, is not in .
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Fig. 2. Shannon cover for TMTR (2; 3).

Using Proposition 6, the Shannon cover of TMTR con-
sists of four states, and is drawn in Fig. 2. Compare this with its
standard trellis presentation in Fig. 1.

The set of sequences in TMTR is a constrained system
if phase information is included. Its Shannon cover can be ob-
tained from by incorporating phase information into
the states of in the following way. Let denote
a state with phase and state label . This is achieved by re-
placing the state label by for each

. This ensures that a run of ’s always terminates
at the th phase.

We remark that a graph presentation for TMTR , where
can be obtained

by reversing the arrows in the Shannon cover for TMTR .
However, the resulting graph presentation is not necessarily de-
terministic.

C. Rome Graphs and Characteristic Equations

A labeled variable-length graph (VLG) is a labeled graph in
which each edge has length and is labeled by a
word (in some alphabet) of length . A Rome set of a
labeled graph is a set of states in such that every cycle in
passes through a state in . Trivially, every graph has a Rome
set, but we are interested in a Rome set of minimal size. If
has a minimal Rome set with a single element , then we call
a Rome graph and a Rome state.

The following is a well-known construction of a VLG from
an irreducible presentation of a constrained system; see [2].

Let be a constrained system presented by an irreducible
graph with a Rome set . Then there is a
VLG presenting with vertex set and edge set defined as
follows. Let denote the set of simple paths of first return to
in , namely, paths whose sequence of states satisfies

, and for . For each , with initial
state , terminal state , and label , there is an edge in
from to with label .

When the Rome set has size , then there is a VLG presenta-
tion of with a single state, whose variable-length edge labels
are the labels of simple cycles in .

Proposition 7: Let be a nonnegative vector of minimal
length . Let denote the minimum number of division points
in any phase of the standard trellis presentation of TMTR .
Then the size of the minimal Rome set for the Shannon cover of
TMTR is at most .

Proof: It is clear that the set of division points in any phase
within the trellis presentation constitutes a Rome set. Thus, we
can select the smallest set which has size . Also note that the
set containing the topmost state in each phase, i.e.,

, also forms a Rome set since all cycles in the
standard trellis eventually have to return to a state in that set.

Fig. 3. Shannon cover G of MTR (j) and its variable length presentation K .

Thus, the size of the minimal Rome set for the Shannon cover
of TMTR is at most .

A trivial example where the Shannon cover of TMTR is
a Rome graph, is when for some .
Then there is only one state in phase in the trellis presentation

for TMTR , so all paths of length at least in must
pass through . Therefore, all cycles in the Shannon cover
of TMTR contains . Note that the Shannon cover is
also a Rome graph whenever the size of the minimal Rome set
is .

The edge labels of a VLG can be viewed as distinct symbols
(of a new alphabet) of varying time duration (or equivalently
symbol length). Shannon [12, Theorem 1] proved the following
well-known result.

Theorem 8 ([12]): Let be the length of the th edge label
from state to state . Then the capacity of the constrained
system is equal to , where is the largest real root of the
determinantal equation:

(4)

where if and otherwise.

Thus, we can determine the capacity of any constrained
system by applying Theorem 8 to a deterministic VLG presen-
tation for the constraint and obtaining an equation whose base-
logarithm of its largest positive real root equals the capacity.
When the VLG is a Rome graph with period , let be the
number of simple cycles of length for , where
denotes the maximal simple cycle length. Then (4) reduces to

(5)

Example 9: Consider the MTR constraint. Its Shannon
cover is shown in Fig. 3. Clearly, is a Rome graph with
state as the unique Rome state. A VLG presentation is
also depicted in Fig. 3. Clearly, there is one simple cycle each
of the lengths starting at the Rome state cor-
responding to the words . Thus, the determi-
nantal equation of MTR , from (5), becomes ,
which can be rearranged to obtain the more commonly seen
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forms: , or equivalently,
.

Proposition 10: The graph is a Rome graph and
state is a Rome state. Let denote the quotient and
remainder, respectively, of divided by . There are
simple cycles of length for , and
simple cycles of length starting at state . Thus, the
capacity of TMTR is equal to

, where is the largest positive real root of the following
equation:

(6)

Proof: Consider the subgraph of obtained by
deleting the state and all its incoming and outgoing edges.
Let and . Note that the
states in are inaccessible in from the states in , so there
is no cycle in containing states from both and . There is
also no cycle in whose states are all in , since if there is an
edge from to , with , then . Similarly, there is
also no cycle in whose states are all in . Therefore,
is a Rome state.

To prove the form of the determinantal equation, call the
edges in of the form , where

long edges. Note that each simple cycle
in has exactly one long edge. For simplicity, count by
assuming that the long edge is used first. Starting at state , with

, there are exactly simple cycles starting with
a long edge, where . The length of all these
cycles is

which is clearly a multiple of .
It is easy to check that the set of satisfying

is , and
there are exactly such states. If , then the
total number of simple cycles of length starting at a state in

is

which is independent of . Clearly, the largest for which this
holds is , where is the quotient of divided by .

The set of satisfying is
. Since ,

this means that the total number of simple cycles of length
starting at a state satisfying is

is given by a partial sum

where is the remainder of divided by .

Fig. 4. Shannon cover for TMTR (0; 1; . . . ; p� 1).

Fig. 5. Shannon cover for TMTR (1; 2; . . . ; p).

We remark that if , state is the only
Rome state in since we can find two cycles whose only
common state is state , namely

and

Example 11: Let . From (6), the character-
istic equation of TMTR can be simplified to

for even (7)

for odd (8)

Example 12: Let . The Shannon cover
of TMTR is shown in Fig. 4, and has exactly

states according to Proposition 6. Clearly, all states are Rome
states. There are exactly simple cycles of length exactly
starting at state , so the characteristic equation is

(9)

and the largest positive real root is .

Example 13: Let . The Shannon cover of
TMTR is shown in Fig. 5, and has exactly
states by Proposition 6. By inspection, states through
are all Rome states. There are exactly simple cycles
of length starting at state , so the characteristic equation is

(10)

and the largest positive real root is .

We can find TMTR constraints for which their Shannon
covers are not Rome graphs. An example is given below.

Example 14: Consider the TMTR constraint, in
which the vector is tight. We obtain its Shannon cover
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Fig. 6. Shannon cover for TMTR (2; 2; 3; 3).

by way of the division points in its standard trellis presenta-
tion, using Proposition 4. The graph is shown in Fig. 6 with
states in phase repeated for clarity.

Note that is not a Rome graph because we can find two
disjoint simple cycles in , namely

and

Using the adjacency matrix of , we obtain the character-
istic polynomial , which can
be further factored as .

It is easily checked that the roots of the characteristic equation
are given analytically as follows:

and that the largest positive real root is obtained from the factor
.

In general, for any TMTR constraint with a non-Rome
Shannon cover, we can use its standard trellis presentations to
compute (4) by selecting a Rome set consisting of the states

. The entry in Theorem 8 would then
correspond to the length of a path of first return originating at
state and terminating in state , where , and whose
path label is .

IV. BOUNDS ON THE CAPACITY OF TMTR CONSTRAINTS

In this section, we present some new bounds on the capacity
of TMTR constraints. As before, let be a vector of length
and let . The capacity of a constrained system

, which we denote by , is defined by

where is the number of words of length in . Let be
an irreducible deterministic presentation of . The capacity can

be computed by , where denotes the
largest positive real eigenvalue of .

To simplify notation, let denote the capacity of the
TMTR constraint. We present new upper bounds on
in the next three theorems, whose proofs are given in the Ap-
pendix . The first shows that modifying by adding to the
minimum entry and subtracting from the maximum entry does
not decrease capacity.

Theorem 15: Let be a vector with .
Let be a pair of positions such that ,

, and for
(performing a cyclic shift of if necessary). Let be

obtained from by putting and ,
and otherwise. Then .

Proof: Let and . Let be the
smallest integer such that . We first show that for
any integer , there is a one-to-one mapping from strings
of length in TMTR into strings of length that
satisfy TMTR .

Let be a string of length satisfying TMTR . Let the
position indices for range from to . Let
and for all . Thus, and

. The image sequence of length is indexed
from to . Let denote the TMTR values of the word

, so for all . Similarly, let denote
the TMTR values of the image sequence . The mapping is
constructed so that and for all and ,
and for all other position indices . This is depicted for
one pair of as follows.

Position index

TMTR of

TMTR of

First, we will define the mapping which maps strings of
length satisfying TMTR to strings
of the same length satisfying TMTR for
the th pair, and show that is one-to-one. The overall
mapping is then defined as

where is the mapping that prepends zeros to a given se-
quence of length . Since and for are
one-to-one mappings, it will follow that is also one-to-one.

Given a string of length (indexed from
to ) satisfying TMTR , define

as follows. First let denote the following (possibly empty)
substring of :

if or

if and
.
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Then define the mapping as follows.
i) If has ’s ending at , then .

ii) If has exactly ’s ending at , there are two cases:
a) if or , then let

with
outside of this interval;

b) if and , then let
with

outside of this interval.
This forces exactly ’s ending at position in the

image string , when there are exactly ’s ending at position
in string . To preserve the information that is lost due to

setting , the string is mapped into the space between
positions and . We need to check that fits in this space.

In case ii) a),
since . (Equality holds when .) Thus,
fits between positions and , though not necessarily tight;
any extra space is filled in by . In case ii) b),

. Again, fits between positions and , since
the inequalities and together
imply that .

Next, let . We need to check that
under , and , and for all other positions
, . In fact, it suffices to show this for ,

since only changes in this local segment.
In case i), . Clearly, for all

to . In particular, (by construction) and
trivially. In case ii), the run of ’s ending

at forces the . The label in at positions
and imply that , so clearly

and . For positions
in , there are at most ’s ending at positions ,

and so . For the remaining positions from to
, we need to consider cases ii) a) and ii) b) separately.
For case ii) a), first consider the subcase when and

. Here, , so .
But in , ended at position . By definition
of and , , which implies

since is mapped into to end at position .
We claim that for positions , . To
see this, recall that for , for

. It then suffices to show that there is no run
of ’s ending anywhere between positions and
in . Observe that the string does not contain any run of

’s even though the values of for
are not known. The length between positions and is
exactly . But , which means that there can be
at most ’s followed by a zero ending at . For positions

, , and so there is no run of
’s ending anywhere within this interval in . Correspondingly,

with and , there cannot be a run of
’s ending anywhere in the interval , so

for .
The next subcase is when and .

Again, . But .
If , rewriting this yields ,
so terminates exactly at position in , which
satisfies . This means that must contain a zero, so

. Then and
together imply that for positions , . If

, then eliminates the possibility
of a run of ’s ending at .

If and , it is easy to verify that

If , then , which implies that
eliminates the possibility of a run of ’s ending

at even if contains all ’s. Thus, , and it
is clear that for . If ,
then , so . A run of ’s
ending in position in is not possible since
and must contain a since is a substring of that ends at
position and . Thus, , and
for .

For case ii) b), when and ,
then . Since is a substring of which
ended at position , where ,
must contain a . When is mapped to , it is clear that

. The fact that while
and

implies that for . For the remaining
positions , it is clear that since

.
To show that is one-to-one, we show that given a

satisfying TMTR , there is at most one pre-image sat-
isfying TMTR , where and

. The position indices for and range
from to . By comparing vectors and , we can
determine the positions and where

, , , and . We can
distinguish between cases i) and ii) by observing if there is a
run of ’s ending at position in . If there is no such
run, we are in case i), and . Otherwise, we are in case ii),
so . Using the values of

, we can further distinguish between cases ii) a) and
ii) b) to reconstruct from positions to . Namely,
in case ii) a), we can determine ,
and thus assign . In case ii) b),
identify the string , and assign

.
The overall mapping is thus one-to-one,

mapping strings of length satisfying TMTR into strings
of length satisfying TMTR . Thus, letting
denote the number of strings of length satisfying , we have

Taking log on both sides and dividing by yields

Taking limits as , we obtain .
It remains only to show strict inequality. For simplicity, we

assume that (the case can be handled by an easier
argument).
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There is a word in TMTR such that
and . Let denote the

constrained system obtained by forbidding the word from the
constrained system TMTR . Since is irreducible,
any proper subsystem, in particular , of must have strictly
smaller capacity [7]. Thus, to show that the inequality asserted
in the theorem is strict, it suffices to show that any word of
length in the image of must be in . It is enough to
show that does not contain the word in the sense that for all

, for the th pair it is impossible to have:

and

Let be the pre-image of . We claim that for the th pair
,

and

This is equivalent to saying that none of can
change any symbol in or (again, here
denote the th pair). This follows from the facts that 1) the string

cannot properly overlap itself except at the rightmost
coordinate and 2) the string cannot overlap the string

except at the rightmost coordinate.
Since can produce ending at the th only by an

application of case ii), it follows that for the th ,
. But this contradicts the fact that is the

maximal TMTR value in .

Let . Applying Theorem 15 repeatedly to
yields an upper bound based on .

Theorem 16: MTR .
Proof: Applying the mapping in the proof of Theorem 15

repeatedly to the vector , we obtain an with for all
, or for all , where is some positive integer.

Each time, , so MTR ,
where .

To obtain the best possible bound in Theorem 16, we reduce
the vector to its tight form before applying the theorem.

For TMTR vectors of the form ,
a strict upper bound on the capacity can be obtained, which is
sharper than the bound of Theorem 16 when is not an integer.

Theorem 17: Let
(with , ), so . Then

where is the largest positive real
root of the equation

(11)

(the latter being the characteristic equation for the standard pre-
sentation of MTR if as seen in Example 9). An
algebraic proof of the theorem is given in the Appendix . The
proof idea is as follows. Let . Let

Fig. 7. Shannon cover of TMTR (2; 3; 4).

denote the polynomial obtained from (6), such that the ca-
pacity of TMTR equals the
base- logarithm of the largest positive real root of .
To show that the largest positive real root of exceeds that of
in some interval , we show that for , the largest real root
of in , . and .

Example 18: Let , whose capacity
. Theorem 15 gives , and

Theorem 16 implies MTR , while
Theorem 17 yields .

Example 19: Consider the TMTR constraint, whose
Shannon cover is given by Proposition 6 and depicted in Fig. 7.
Its capacity is . Now, is exactly . By Theorem 17,

MTR .

We conjecture the following.
Conjecture 20:

1) For any tight vector with minimal length

MTR

2) For any tight vector with minimal length and

where is the largest positive real root of (11).

Note that part 2) of Conjecture 20 is proven in a special case
in Theorem 17. Extensive Matlab computations also give cre-
dence to the conjecture. We remark that if is an integer, the
conjecture would read as follows. For vectors with

MTR MTR

Note that the expression on the left is at most that on the right
due to strict concavity of the largest positive real root of (11).
The latter fact can be derived using [4, Lemma 2], which uses
differentiation techniques on (11). We include the derivation
below. Let denote the largest positive real eigenvalue of the
adjacency matrix of the standard presentation of MTR . It is
well known that MTR . From [4, Lemma 2],
the function is strictly concave on the domain
of positive integers.

This implies that
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But observe that we can rewrite the left-hand side as

which in turn implies

Taking the th root on both sides yields the desired inequality

This shows that the function is strictly concave on
the domain of positive integers.

We also remark that part 2) of Conjecture 20 would follow
from Theorem 15 if part 2) is proven in the special case when

.

A. Complete Linear Ordering of Up to Period

It is difficult to compare the capacity of TMTR constraints
of different lengths, unless one constraint is contained in the
other. Generally, TMTR constraints are not determined by their
capacities as there can be different tight TMTR vectors and

for which . We give an example of this
below.

Example 21: Consider the period TMTR constraint,
and the period TMTR constraint. Both vectors sat-
isfy (1), and are thus tight.

Neither of these two constraints is contained in the other. For
example, the word satisfies TMTR
but not TMTR , while the word satisfies
TMTR but not TMTR .

From (7), the characteristic polynomial for TMTR is
, whose roots are

From Example 14, the largest positive real root of the charac-

teristic equation of TMTR is also . Hence,
TMTR and TMTR have the same capacity.

We can further establish the following capacity relations.

Proposition 22: For any positive integer
1) a) for ;

b) for ;
c) for

.
2) for .
3) .
4) MTR for

and MTR
when .

5) MTR .
6) .

The proofs of the various inequalities in Proposition 22
are very similar, so we shall only prove part 1) in detail in
the Appendix . There are two steps, the first being to derive
the characteristic equation of the TMTR constraint using
Theorem 8. This involves constructing the VLG of its standard
trellis presentation by selecting trellis states, namely,

as the Rome set. For a given con-
gruence class of , counting the paths and path lengths of first
return to the Rome set enables us to derive the matrix whose
characteristic equation is described by (4).

Once the characteristic equation of the constraint is deter-
mined, the second step uses algebraic techniques similar to that
of the proof of Theorem 17.

Using Proposition 22 and Theorems 15 and 17, we give an ex-
plicit linear ordering of the TMTR constraints by capacity
for tight of lengths and . Let be a positive in-
teger. For

For ,

where the last strict inequality is due to Theorem 17.
For

where steps , , , , , and are due to Proposition
22 parts 1), 2), 3), 4), 5), and 6), respectively, while step
is due to Theorem 15. In particular, note that in step , even
though may be strictly greater or less
than depending on the equivalence class
of , still strictly exceeds

(in the preceding line) due to Theorem 15.
The symbol ( ) indicates that the relation between the two
quantities could be , , or ( or ) depending on the value
of . In lines and , the quantity on the right of the
inequality is strictly greater than all of the quantities above it.
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V. ON MTR CONSTRAINTS WITH UNCONSTRAINED POSITIONS

Let be a constrained system. For a given period , let
. Following the scheme in [4], where error cor-

rection parity bits are inserted into prespecified “unconstrained”
positions that can freely take on either or without violating
the existing modulation constraint, let denote a set of uncon-
strained positions. A word is a -flip of if when-
ever . The -unconstrained version of ,
denoted by , is the set of all sequences such that

for all , and all -flips of belong to .
Let denote the set of all sequences in of length .
Let denote the complement of , and denote the restric-
tion of to the constrained positions . This is a periodic
constraint with period .

The code rate for a given configuration with inser-
tion rate is defined as

The optimal code rate for a given is

For finite-type constraints, which includes MTR constraints,
can be achieved by periodic configurations (see [11]).

We call the insertion-rate–code-rate tradeoff function, or in
short, the tradeoff function.

For the rest of this section, let MTR . View as a
set of points on a circle of points. Addition of numbers will
proceed clockwise (to the right). For a point on the circle, let

where is the number of consecutive ’s immediately to the
right of . Note that when both and are in , then

, and . When is in
and in , then .
Let denote the one-to-one correspondence from constrained
positions indexed ( ) to positions on the circle in
( ).

Theorem 23: Let MTR . Then is a TMTR
constraint with tight parameters

for .
Proof: For a position for the constraint, let

be the corresponding position on the circle, i.e., .
We will show that the longest run of ’s (in the constrained
positions) ending at has length .

Let denote the interval . Then
is a block of length containing unconstrained
positions and constrained positions.

If all of the constrained positions in
were filled in with ’s, then would be a block of length
with only unconstrained positions and ’s, which violates the
constraint. So at least one constrained position in must be a .

This shows that the longest run of ’s ending at has length at
most .

On the other hand, if the first constrained position in is a
and the rest of the constrained positions in are ’s, then

satisfies the constraint. Moreover, since the next position after
is constrained (by definition of ), it is possible to have a

run of ’s ending at , by making the position
immediately after a .

To show that is tight, consider the following. For any
, let and .

Let denote the interval and
denote the interval . Both and are
of length and share some overlap . Let denote
the number of unconstrained positions in an interval . Then
the difference in the number of unconstrained positions in
and is equal to the difference in the number of unconstrained
positions in and , i.e.,

since . This shows that for all
.

Example 24: Let MTR . Let insertion rate ,
block length , and . Then from The-
orem 23, TMTR .

Corollary 25: ,
where is obtained from Theorem 23.

A. New Upper and Lower Bounds for the Tradeoff Function
for MTR Constraints

Let denote the adjacency matrix for the MTR con-
straint. Let be the matrix obtained from by replacing all
entries of the first column by zeros. Given a length , a parity
insertion rate , and a specification of unconstrained
positions with and ,
define the matrix

where if and if . Then each
entry of represents the number of sequences in that
begin with a restricted set of prefixes and suffixes. We can view

as a sequence of ’s and ’s, which can be broken up into
consecutive runs of ’s followed by runs of ’s. Note that if

, the run of ’s cannot exceed length since is nilpo-
tent ( ), but the run of ’s can be of any length (less
than the block length ).

Define the VLG whose vertex set of size
consists of all -tuples over the alphabet ending in as
well as the -tuple . For every vertex and each
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with and , endow with an edge labeled
from a vertex to one labeled by the suffix of length of
. In particular, there is an edge labeled from every state

ending in to the state and a self-loop labeled at state
. Clearly, has parallel edges with distinct variable-length

edge labels, so is deterministic. Self-loops in are treated
as simple cycles of length .

Traversing a path in , we can read off the edge labels to
obtain the path label , which is a sequence of ’s and ’s.
Alternatively, we can think of the ’s as constrained positions
and the ’s as unconstrained positions, where at the constrained
positions, we can determine from Theorem 23 the TMTR values
using a sliding window of length and counting the number
of unconstrained positions within that window.

A special feature of is that each edge in yields a def-
inite sequence (or vector) of TMTR values. This is because a
particular edge , together with its starting and terminal state,
has sufficient information in its edge label
and starting state label to determine the TMTR values at the
positions of the ’s. Thus, for two connected simple cycles

in with TMTR vectors and , respectively, the
TMTR vector for the combined cycle is simply . Re-
call that any cycle can be decomposed into a collection of simple
cycles. This special property of imposes a linear relationship
between TMTR values on a cycle and those on the simple cycles,
even though there is not necessarily any corresponding connec-
tion between the largest positive real eigenvalue of the ,
products of the cycle labels.

We also define the insertion rate of a path (or cycle) in as
the proportion of ’s in its path (cycle) label to the length of its
path (cycle) label.

We will describe an upper bound on the tradeoff function
for MTR based on the TMTR vectors induced by the set of
simple cycles in . (Note that we can enumerate the states in

so that the simple cycles in are ordered to begin with the
smallest numbered state. This avoids listing a simple cycle more
than once.)

Let be a cycle in , which when decomposed into a col-
lection of simple cycles, has copies of the th simple cycle

, where , and is a positive integer . Let
, , , and , denote the

insertion rate, number of constrained positions, length of cycle
label, and mean of the TMTR values of , respectively.

The length of the label of is , and the
number of constrained positions in is . The
insertion rate of is .

Let denote the average of the TMTR values
induced by . Then

Define for .
Then becomes

The factor is a convex combination of
and is upper-bounded (pointwise) by the convex hull

of , so

(12)

Now for real , define to be of the largest
positive real root of

Since is increasing with (see [4, Appendix]), we apply
to (12) to obtain

(13)

Taking the supremum of both sides of inequality (13) over all
cycles in that yield insertion rate , we obtain

(14)

Equation (14) leads to our formulation of an upper bound for
the tradeoff function for MTR .

Proposition 26: For insertion rate

Proof: We make use of Theorem 44 of [11], which says that
the tradeoff function at insertion rate can be achieved by a
periodic configuration denoted by parameters , where
is the unconstrained set, and is the block length, and

. This configuration corresponds to a cycle in , and
also induces a sequence of TMTR values which we can express
as a vector .

Using Corollary 25, we have

where the third line is due to Theorem 16, and the fourth line
comes from taking the ceiling on both sides in (13) before ap-
plying the function and taking the supremum on both sides
over all cycles in with the same insertion rate.

We remark that the upper bound in Proposition 26 can be
improved if part 2) of Conjecture is proven in the special case
when .

Example 27: For MTR , there are three states in ,
namely, , , and , and four possible edge labels

. The graph is presented in
Fig. 8, while the upper bound is plotted in Fig. 9 as a solid line
in comparison with some upper and lower bounds from [11].
Namely, the dashed line corresponds to the bit-stuffing lower
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Fig. 8. Graph presentation of H for MTR (2).

Fig. 9. Bounds on the tradeoff function of MTR (2).

bound (Bit-stuffing LB); the dotted line is the dynamic pro-
gramming approximate upper bound with parameter
(Approx. DPUB); the dotted-dashed line corresponds to the
only other known upper bound , which is a
straight line and which we thus call the straightline UB. Note
that the bit-stuffing lower bound (Bit-stuffing LB) for MTR
is the tradeoff function of MTR , as established by [4].

We present further plots of this new upper bound for MTR
and MTR in Figs. 10 and 11, respectively. We remark that
the tradeoff functions for MTR and MTR are not known.
In fact, the tradeoff function for MTR with is an open
problem. From the plots, it can be seen that this TMTR upper
bound improves on the straight-line upper bound over high in-
sertion rates. This improvement is readily seen as increases.
We can take the pointwise minimum of the two bounds to fur-
ther obtain an improved upper bound.

One reason for the new TMTR upper bound underper-
forming in the low insertion rate region is because the
average TMTR value is generally not a good gauge of

. A TMTR vector can have a high and
yet a low capacity. For example, in the case of MTR ,
consider two configurations with the same insertion rate

: , which has average
and capacity versus

, whose average is strictly
less than but whose capacity
exceeds .

Fig. 10. Bounds on the tradeoff function of MTR (3).

Fig. 11. Bounds on the tradeoff function of MTR (4).

VI. CONCLUSION

In this paper, we have developed a general framework for
analyzing and understanding time-varying maximum transition
run constraints. We have computed bounds on the capacity of
such constraints and used our results to obtain new bounds on
the tradeoff function for constrained systems with unconstrained
positions.

APPENDIX

Proof (Proof of Theorem 17): We first check the cases for
which . For , the largest positive real root of
its characteristic equation, as given by (10), is

. For , the largest positive real root of its
characteristic equation, (9), is . When

, the largest positive real root of its character-
istic equation is . (We exclude the case

since the largest positive real root of its character-
istic equation is .)

Now assume and . Let
and , so .

The characteristic equation for TMTR for satisfying the
tightness condition with equality is given by (6), and can be
rewritten as
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Multiplying by throughout and simplifying, we obtain

Let

Let , where
as above, so .

Note that if , then is the characteristic equation
of MTR . The equation has a unique solution

in and the solution is increasing as a function
of (see [4, Proof of Lemma 2]).

Let , chosen so that MTR . It follows
that the root of in is greater than since . It
suffices to show that for any , implies

, because is continuous and .
Assume that , where is in . Then

Substituting the above equation into , we obtain

We will show that . This is equivalent to showing

(15)

For , consider the two cases and . When
, inequality (15) reduces to

which is equivalent to , since . The
latter is equivalent to , which
is true for .

When , inequality (15) reduces to

which is equivalent to , which is
in turn equivalent to . The latter is true
for since its largest real root is .

For , first note that

since . Thus, the left-hand side of inequality (15) is
at least

so it suffices to show

(16)

For , this inequality is easily checked by explicit cal-
culation using

as a lower bound to the left-hand side of inequality (16) by let-
ting range from to and range from to .

Assume , and consider the two cases and
separately. For , inequality (16) reduces to

, which is true since and

for

For , we will show ,
which implies inequality (16) since the term
is also positive.

Note that , so it suffices to show

(17)

We can then bound the left-hand side of inequality (17) as
follows:

Note that

for since for .
Thus, , which proves inequality (17).

To prove part 1) of Proposition 22, we require the following
lemma.

Lemma 28: Let be the largest positive real root of the
characteristic equation of TMTR . Then is
given by the largest positive real root of the following equations
(one per congruence class of ):

(18)

for ;

(19)

for ;

(20)



4478 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 10, OCTOBER 2006

for ;

(21)

for , where is a nonnegative integer.
Proof: First define the polynomials , , and as

follows:

Construct the VLG of the standard trellis presentation of
TMTR by choosing the four trellis states

as the Rome set. By counting
the paths and path lengths of first return to the Rome set, we
form the matrix (one for each congruence class of ) whose
characteristic equation is given by (4). Let denote the
identity matrix.

For , where , the determinantal equa-
tions are given by , respectively, with the matrices

( ) listed as follows:

It is easy to check that the determinantal equations expand to
(18), (19), (20), and (21), respectively, for

.

Proof (Proof of Part 1) of Proposition 22):
1a) Let . We can factorize (20) from Lemma 28 as

follows:

implying

which in turn implies

Let

and

Note that and , so the moduli of
the roots of are the same as the moduli of the roots of .
But is the characteristic polynomial of TMTR by
(7). Thus, .

1b) From (7), the characteristic polynomial of TMTR
for is given by which

simplifies to . Define the polynomial
as

Let denote the function

From Lemma 28 (18), the largest positive real root of
equals the largest positive real root of the characteristic equation
of TMTR for . Note also that
has the same largest root as . Observe that

, and (with strict inequality for all
). The derivative is

for , so is increasing on . Thus, the
largest root of is contained in .

Perform a change of variables on and by letting .
We obtain

and . So we can restrict attention
to finding a root in .

Setting , the solution satisfies
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Then, substituting the above into , we obtain

We claim that for in the open interval .
This is because the function
for . Rewriting as

, yields ,
which implies that

which is equivalent to .
Since falls into the range , this implies that

for . Thus, the largest root of is strictly to the right
of the largest root of , hence

for

1c) Let . Let denote the function
. From Lem-

ma 28 (19), the largest positive real root of equals
the largest positive real root of the characteristic equation of
TMTR for . Observe that
while (It is easily checked that for , the
largest positive real root of TMTR is ). We
compute the derivative

for , so is increasing on . Thus, the largest positive
real root of lies in the open interval .

From (7), the characteristic polynomial of TMTR
for is given by

For , or , of which the
latter reduces to

(22)

Thus, substituting (22) into , we obtain

We claim that for . Note that showing
is equivalent to showing for

. But it is easily checked that simplifies
to , hence proving the claim. Thus,
the largest root of is strictly to the right of that of .

Let . Let denote the function

From Lemma 28 (21), the largest positive real root of
equals the largest positive real root of the characteristic equation
of TMTR for . Also observe that

, while (It is easily checked that for ,
the largest positive real root of is ). We
compute the derivative

for , so is increasing on . Thus, the largest positive
real root of lies in the open interval .

From (7), the characteristic polynomial of TMTR
for is given by

For , or , of which the
latter reduces to

(23)

Thus, substituting (23) into , we obtain

We claim that for . Note that showing
is equivalent to showing for

. It turns out that

for , thus proving the claim.
Thus, the largest root of is strictly to the right of the largest

root of . Hence, for
or .

Parts 2) through 6) of Proposition 22 can be proved using the
same techniques and are thus omitted here.
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