Identifying and classifying equilibria

How many critical points does

$$
x^{\prime}=\sin x
$$

have in $[-4 \pi, 4 \pi]$? Mark them as stable or unstable.

Identifying and classifying equilibria

How many critical points does

$$
x^{\prime}=\sin x
$$

have in $[-4 \pi, 4 \pi]$? Mark them as stable or unstable.
A. 5 critical points, 2 stable.
B. 8 critical points, 3 stable.
C. 8 critical points, 4 stable.
D. 9 critical points, 4 stable.
E. 9 critical points, 5 stable.

Identifying and classifying equilibria

How many critical points does

$$
x^{\prime}=\sin x
$$

have in $[-4 \pi, 4 \pi]$? Mark them as stable or unstable.
A. 5 critical points, 2 stable.
B. 8 critical points, 3 stable.
C. 8 critical points, 4 stable.
D. 9 critical points, 4 stable.
E. 9 critical points, 5 stable.

How would you classify the equilibrium solution of the equation
$y^{\prime}=(1-y)^{2}$?

Solving a first-order ODE

The equation $y^{\prime}-1=x y^{2}+x+y^{2}$
A. is linear.
B. is autonomous.
C. is separable.
D. does not have a unique solution for a given initial condition.

Solving a first-order ODE

The equation $y^{\prime}-1=x y^{2}+x+y^{2}$
A. is linear.
B. is autonomous.
C. is separable.
D. does not have a unique solution for a given initial condition.

Find the general solution of this equation.

Chemical reactions

A second order chemical reaction involves the interaction (collision) of one molecule of a substance P with one molecule of a substance Q to produce one molecule of a new substance X. Let p and q denote the initial concentrations of P and Q respectively, and let $x(t)$ denote the concentration of X at time t. The rate at which X is produced is proportional to the product of amount of P and Q remaining in the system. Write down the differential equation governing the system.

Chemical reactions

A second order chemical reaction involves the interaction (collision) of one molecule of a substance P with one molecule of a substance Q to produce one molecule of a new substance X. Let p and q denote the initial concentrations of P and Q respectively, and let $x(t)$ denote the concentration of X at time t. The rate at which X is produced is proportional to the product of amount of P and Q remaining in the system. Write down the differential equation governing the system.

If $x(0)=0$, find the limiting value of $x(t)$ as $t \rightarrow \infty$ without solving the differential equation.

Chemical reactions

A second order chemical reaction involves the interaction (collision) of one molecule of a substance P with one molecule of a substance Q to produce one molecule of a new substance X. Let p and q denote the initial concentrations of P and Q respectively, and let $x(t)$ denote the concentration of X at time t. The rate at which X is produced is proportional to the product of amount of P and Q remaining in the system. Write down the differential equation governing the system.

If $x(0)=0$, find the limiting value of $x(t)$ as $t \rightarrow \infty$ without solving the differential equation.
(a) p
(b) q
(c) $\max (p, q)$
(d) $\min (p, q)$
(e) $(p+q) / 2$

