Solution guaranteed

Consider the differential equation

$$
(x-2) y^{\prime \prime}+y^{\prime}+(x-2)(\tan x) y=0, \quad y(3)=1, y^{\prime}(3)=2
$$

Without solving the equation, find the longest interval in which this initial value problem is certain to have a unique solution.

Solution guaranteed

Consider the differential equation

$$
(x-2) y^{\prime \prime}+y^{\prime}+(x-2)(\tan x) y=0, \quad y(3)=1, y^{\prime}(3)=2
$$

Without solving the equation, find the longest interval in which this initial value problem is certain to have a unique solution.
A. $\left(\frac{\pi}{2}, 2\right)$.
B. $(2,3)$.
C. $\left(2, \frac{3 \pi}{2}\right)$.
D. $(2,3]$.
E. $\left(\frac{3 \pi}{2}, \frac{5 \pi}{2}\right)$.

The principle of superposition

For which of the following equations does the principle apply?
A. $y y^{\prime \prime}+y^{\prime 2}=0$.
B. $y^{\prime \prime}+y^{\prime}-2 y=\sin t$.
C. $t y^{\prime \prime}+3 y=t$.
D. $y y^{\prime}=e^{t}$.
E. $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0$.

Wronskians

The Wronskian of f and g is $t^{2} e^{t}$, and $f(t)=t$. Find $g(t)$.

Wronskians

The Wronskian of f and g is $t^{2} e^{t}$, and $f(t)=t$. Find $g(t)$.

Wronskians

The Wronskian of f and g is $t^{2} e^{t}$, and $f(t)=t$. Find $g(t)$.
A. $t e^{-t}+C t$
B. $t e^{t}+C t$
C. $e^{t}+C t$
D. $(t+C)^{2} e^{t}$
E. $(t+C)^{2} e^{-t}$

Here C denotes an arbitrary constant.

Fundamental solutions

Consider the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on an open interval I, where the coefficients $p(t)$ and $q(t)$ are continuous and nonvanishing everywhere I. Determine which of the following statements is false.

If $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions of this equation, then
A. y_{1} and y_{2} cannot have a common zero on I.
B. y_{1} and y_{2} cannot have a common maximum or minimum point on I.
C. y_{1} and y_{2} cannot have a common inflection point (where the second derivative vanishes) on I.
D. Every solution of the ODE on I is of the form $y=c_{1} y_{1}+c_{2} y_{2}$ where c_{1} and c_{2} are constants.
E. There is a constant c such that $y_{2}=c y_{1}$ on l.

Fundamental solutions

Consider the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on an open interval I, where the coefficients $p(t)$ and $q(t)$ are continuous and nonvanishing everywhere I. Determine which of the following statements is false.

If $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions of this equation, then
A. y_{1} and y_{2} cannot have a common zero on I.
B. y_{1} and y_{2} cannot have a common maximum or minimum point on I.
C. y_{1} and y_{2} cannot have a common inflection point (where the second derivative vanishes) on I.
D. Every solution of the ODE on I is of the form $y=c_{1} y_{1}+c_{2} y_{2}$ where c_{1} and c_{2} are constants.
E. There is a constant c such that $y_{2}=c y_{1}$ on l.

Prove the statements that are true.

