
Review Questions Solutions

Question 1

dy

dx
+ ycos(x) = 4cos(x)

dy

dx
= cos(x)(4− y)

TIP: treat dy
dx like a fraction

1

4− y
dy = cos(x)dx∫

1

4− y
dy =

∫
cos(x)dx

−ln(4− y) = sin(x) + C

4− y = e−sin(x)−C

Let C∗ = e−C

y = 4− (C∗)(esin(x))

y(0) = 6→
6 = 4− C∗

C∗ = −2

Therefore

y = 4 + 2e−sin(x)

Question 2

y′ + 5y = e4x

since it isn’t separable, use integrating factor

µ = e
∫ x
0 5dt = e5x
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TIP:
given a first order linear ODE

a(x)y′(x) + b(x)y(x) = c(x)

with initial condition x0

y′(x) + p(x)y(x) = q(x)

where p(x) = b(x)/a(x), q(x) = c(x)/a(x)

then the integrating factor is:

µ = e
∫ x
xo
p(t)dt

Therefore

e5x(y′ + 5y) = e5xe4x

d

dx
(e5xy) = e9x

e5xy =

∫ x

0
e9xdx

e5xy =
1

9
e9x − 1

9
+ C

y =
1

9
e4x − 1

9
e−5x + Ce−5x

y(0) = 3→
3 =

1

9
− 1

9
+ C

C = 3

Therefore

y =
1

9
e4x + (3− 1

9
)e−5x

y =
1

9
e4x +

26

9
e−5x

Question 3

λ =
−10±

√
100− (4× 25)

2
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λ = −5

Therefore
y = C1e

−5t + C2te
−5t

TIP:
For constant coefficient second order linear ODE’s , there are 3 cases based
on the roots.

CASE 1:λ± real, λ+ 6= λ−

y = C1e
λ+t + C2e

λ−t

CASE 2: λ+ = λ− = λ

y = C1e
λt + C2te

λt

CASE 3: λ± = µ± ωi (complex)

y = C1e
µtcos(ωt) + C2e

µtsin(ωt)

y(1) = 0 y′(1) = 1

y(1) = C1e
−5 + C2e

−5 = e−5(C1 + C2) = 0

C2 = −C1

y′ = e−5t(−5C1 + C2(1− 5))

y′(1) = e−5(−5C1 − 4C2) = −e−5C1 = 1

Therefore C1 = −e5, C2 = e5

y = −e5e−5t + e5te−5t
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Question 4
x(0) = 11 and y(0) = −9

[
x
y

]′
=

[
−10 −12

9 11

] [
x
y

]
SHORTCUT:
for a 2x2 matrix:

A =

[
a b
c d

]
the characteristic polynomial is:

λ2 − tr(A) + det(A) = 0

where trace: tr(A) = a+ d, determinant: det(A) = ad− bc
trace = −10 + 11 = 1
determinant = (−10× 11)− (9×−12) = −2

λ2 − λ− 2 = 0

Therefore λ = 2,−1

For λ = 2 : A− λI [
−12 −12

9 9

] [
v1
v2

]
=

[
0
0

]

−12v1 − 12v2 = 0→
[

1
−1

]
For λ = −1 : A− λI [

−9 −12
9 12

] [
v1
v2

]
=

[
0
0

]

−9v1 − 12v2 = 0→
[

4
−3

]

P =

[
1 4
−1 −3

]
,D =

[
2 0
0 −1

]
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x0 =

[
11
−9

]
SHORTCUT: Let

A =

[
a b
c d

]
Then:

A−1 =
1

ad− bc

[
d −b
−c a

]

P−1 =

[
−3 −4
1 1

]

PeDt =

[
e2t 4e−t

−e2t −3e−t

]
P−1x0 =

[
3
2

]
Therefore the solution x(t) = PeDtP−1 is:

3

[
e2t

−e2t
]

+ 2

[
4e−t

−3e−t

]
Therefore

x(t) = 3e2t + 8e−t

y(t) = −3e2t − 6e−t

Question 5
1.Given dT

dt = k(T − Ts) where Ts = 18 is a constant
T (0) = 95
when T = 70, dTdt = −2

−2 = k(70− 18)

k = − 1

26

2.By inspection, we can see that

dT

dt
= k(T − Ts) = − 1

26
(T − Ts) = 0
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only when T = Ts = 18

3.
TIP:
Most differential equations cannot be solved exactly/analytically, so we use
methods (i.e. Euler’s Method) to approximate solutions.

Suppose yi is an approximation to y(ti) Then yi+1 is:

yi+1 = yi + f(yi, ti)(ti+1 − ti)

Using Euler’s with h=2, for a total length of 10 minutes.
We are given that T (0) = 95.
T (2) = T (0) + 2T ′(0) = 95− 2

26(95− 18) ≈ 89.0769
T (4) = T (2) + 2T ′(2) = 89.0769− 2

26(89.0769− 18) ≈ 83.6094
T (6) = T (4) + 2T ′(4) = 83.6094− 2

26(83.6094− 18) ≈ 78.5625
T (8) = T (6) + 2T ′(6) = 78.5625− 2

26(78.5625− 18) ≈ 73.9039
T (10) = T (8) + 2T ′(8) = 73.9039− 2

26(73.9039− 18) ≈ 69.60

Question 6

Taking Laplace transform of both sides of the equation and taking the
initial conditions into consideration, we obtain the transformed ODE

s2Y (s) + 2sY (s) + 2Y (s) =
s

s2 + 1
+ e−

π
2
s,

so that

Y (s) =
s

(s2 + 1)(s2 + 2s+ 2)
+

e−
π
2
s

s2 + 2s+ 2
.

Using partial fractions

Y1(s) =
s

(s2 + 1)(s2 + 2s+ 2))
=

1

5

[
s

s2 + 1
+

2

s2 + 1
− s+ 4

s2 + 2s+ 2

]
.

We can also write
s+ 4

s2 + 2s+ 2
=

(s+ 1) + 3

(s+ 1)2 + 1
,

therefore

L−1
[
Y1(s)

]
=

1

5
cos t+

2

5
sin t− 1

5
e−t
[
cos t+ 3 sin t

]
.
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On the other hand,

L−1
[

e−
π
2
s

s2 + 2s+ 2

]
= e−(t−π2 ) sin

(
t− π

2

)
uπ

2
(t).

Hence the solution of the IVP is

y(t) =
1

5
cos t+

2

5
sin t− 1

5
e−t
[
cos t+ 3 sin t

]
− e−(t−

π
2
) cos t uπ

2
(t).

Question 7
Set x1 = u, x2 = u′, x3 = u”, x4 = u′′′, so that the given equation takes the
form

x′1 = x2, x′2 = x3, x′3 = x4, x′4 = x1.

This is represented by the system x′ = Ax + g(t), where

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 and g(t) =


0
0
0

sin t

 .

Question 8
The characteristic equation of the coefficient matrix is r3−3r2 + 3r−1 = 0,
with a single root r = 1 of multiplicity 3. Setting r = 1, we obtain the
eigenvalue equation  4 −3 −2

8 −6 −4
−4 3 2

ξ1ξ2
ξ3

 =

0
0
0

 .

This system of linear equations reduces to single equation

4ξ1 − 3ξ2 − 2ξ3 = 0.

Since the equation has two free variables, we have two linearly independent
eigenvectors, for instance

ξξξ(1) =

1
0
2

 and ξξξ(2) =

 0
2
−3

 .
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Therefore two linearly independent solutions are obtained as

x(1) =

1
0
2

 et and x(2) =

 0
2
−3

 et.

To find a third solution, we try a function of the form x = ξξξtet + ηηηet. It
follows that

x′ = ξξξtet + ξξξet + ηηηet.

Hence the coefficient vectors must satisfy ξξξtet + ξξξet + ηηηet = Aξξξtet + Aηηηet.
Rearranging the terms we have

ξξξet = (A− I)ξξξtet + (A− I)ηηηet.

Matching coefficients, it follows that (A− I)ξξξ = 0 and (A− I)ηηη = ξξξ. Thus
ξξξ is an eigenvector A, i.e.

ξξξ = α

1
0
2

+ β

 0
2
−3

 =

 α
2β

2α− 3β

 .

The system of equations (A− I)ηηη = ξξξ then reduces to

4η1− 3η2− 2η3 = α, 8η1− 6η2− 4η3 = 2β, −4η1 + 3η2 + 2η3 = 2α− 3β.

This is consistent provided α = β. We have to be careful in choosing a value
of α = β and the free variables η1, η2 of the resulting equation; for instance
choosing α = β = 0 would result in x being linearly dependent on x(1) and
x(2). A convenient choice is α = β = −2 and η1 = η2 = 0, η3 = 1. Therefore
the third linearly independent solution is

x(3) =

−2
−4
2

 tet +

0
0
1

 et.

Question 9

(a) The critical points are the solutions of the system

x(a− σx− αy) = 0, y(−c+ γx) = 0.
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If x = 0, then y = 0. If y = 0, then x = a
σ . The third solution is

found by substituting x = c/γ into the first equation. This implies
that y = a/α − σc/(γα). So the critical points are (0, 0), ( aσ , 0) and
( cγ ,

a
γ −

σc
γα). When σ is increasing, the critical point ( aσ , 0) moves to

the left and the critical point ( cγ ,
a
γ −

σc
γα) moves down. The assumption

a > σc
γ is necessary for the third critical point to be in the first quadrant.

(b,c) The Jacobian of the system is

J =

(
a− 2σx− αy −αx

γy −c+ γx

)
.

This implies that at the origin

J(0, 0) =

(
a 0
0 −c

)
,

which implies that the origin is a saddle point (since a > 0 and c > 0
by our assumption).

At the critical point ( aσ , 0)

J
(a
σ
, 0
)

=

(
−a −αa

σ
0 −c+ γa

σ

)
,

which implies that this critical point is also a saddle as long as our
assumption a > σc

γ is valid.

At the critical point ( cγ ,
a
α −

σc
γα),

J

(
c

γ
,
a

α
− σc

γα

)
=

(
−σc

γ −αc
γ

γa
α −

σc
α 0

)
.

The eigenvalues of the matrix are

−cσ ±
√
c2σ2 + 4c2γσ − 4acγ2

2γ

We set the discriminant equal to zero and find that the greater solution
is

σ1 = −2γ +
2γ

c

√
ac+ c2.

First note that σ1 > 0, since
√
ac+ c2 > c. Next we note that σ1 <

aγ
c .

Since √
ac+ c2 <

√
a2

4
+ ac+ c2 =

a

2
+ c,
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we see that

σ1 = −2γ+
2γ

c

√
ac+ c2 < −2γ+

2γ

c

(a
2

+ c
)

= −2γ+
aγ

c
+2γ =

aγ

c
.

For 0 < σ < σ1, the eigenvalues will be complex conjugates with
negative real part, so the critical point will be an asymptotically stable
spiral point. For σ = σ1, the eigenvalues will be repeated and negative,
so the critical point will be an asymptotically stable spiral point or
node. For σ1 < σ < ac

γ , the eigenvalues will be distinct and negative,
so the critical point will be an asymptotically stable node.

(d) Since the third critical point is asymptotically stable for 0 < σ < ac
γ , and

the other critical points are saddle points, the populations will coexist
for all such values of σ.
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