Review Questions Solutions

Question 1

$$
\begin{gathered}
\frac{d y}{d x}+y \cos (x)=4 \cos (x) \\
\frac{d y}{d x}=\cos (x)(4-y) \\
\text { TIP: treat } \frac{d y}{d x} \text { like a fraction } \\
\frac{1}{4-y} d y=\cos (x) d x \\
\int \frac{1}{4-y} d y=\int \cos (x) d x \\
-\ln (4-y)=\sin (x)+C \\
4-y=e^{-\sin (x)-C}
\end{gathered}
$$

Let $C^{*}=e^{-C}$

$$
y=4-\left(C^{*}\right)\left(e^{\sin (x)}\right)
$$

$y(0)=6 \rightarrow$

$$
\begin{gathered}
6=4-C^{*} \\
C^{*}=-2
\end{gathered}
$$

Therefore

$$
y=4+2 e^{-\sin (x)}
$$

Question 2

$$
y^{\prime}+5 y=e^{4 x}
$$

since it isn't separable, use integrating factor

$$
\mu=e^{\int_{0}^{x} 5 d t}=e^{5 x}
$$

TIP:
given a first order linear ODE

$$
a(x) y^{\prime}(x)+b(x) y(x)=c(x)
$$

with initial condition x_{0}

$$
y^{\prime}(x)+p(x) y(x)=q(x)
$$

where $p(x)=b(x) / a(x), q(x)=c(x) / a(x)$
then the integrating factor is:

$$
\mu=e^{\int_{x_{o}}^{x} p(t) d t}
$$

Therefore

$$
\begin{gathered}
e^{5 x}\left(y^{\prime}+5 y\right)=e^{5 x} e^{4 x} \\
\frac{d}{d x}\left(e^{5 x} y\right)=e^{9 x} \\
e^{5 x} y=\int_{0}^{x} e^{9 x} d x \\
e^{5 x} y=\frac{1}{9} e^{9 x}-\frac{1}{9}+C \\
y=\frac{1}{9} e^{4 x}-\frac{1}{9} e^{-5 x}+C e^{-5 x}
\end{gathered}
$$

$y(0)=3 \rightarrow$

$$
\begin{gathered}
3=\frac{1}{9}-\frac{1}{9}+C \\
C=3
\end{gathered}
$$

Therefore

$$
\begin{gathered}
y=\frac{1}{9} e^{4 x}+\left(3-\frac{1}{9}\right) e^{-5 x} \\
y=\frac{1}{9} e^{4 x}+\frac{26}{9} e^{-5 x}
\end{gathered}
$$

Question 3

$$
\lambda=\frac{-10 \pm \sqrt{100-(4 \times 25)}}{2}
$$

$$
\lambda=-5
$$

Therefore

$$
y=C_{1} e^{-5 t}+C_{2} t e^{-5 t}
$$

TIP:

For constant coefficient second order linear ODE's, there are 3 cases based on the roots.

CASE 1: $\lambda^{ \pm}$real, $\lambda^{+} \neq \lambda^{-}$

$$
y=C_{1} e^{\lambda^{+} t}+C_{2} e^{\lambda^{-} t}
$$

CASE 2: $\lambda^{+}=\lambda^{-}=\lambda$

$$
y=C_{1} e^{\lambda t}+C_{2} t e^{\lambda t}
$$

CASE 3: $\lambda^{ \pm}=\mu \pm \omega i$ (complex)

$$
y=C_{1} e^{\mu t} \cos (\omega t)+C_{2} e^{\mu t} \sin (\omega t)
$$

$y(1)=0 y^{\prime}(1)=1$

$$
\begin{gathered}
y(1)=C_{1} e^{-5}+C_{2} e^{-5}=e^{-5}\left(C_{1}+C_{2}\right)=0 \\
C_{2}=-C_{1}
\end{gathered}
$$

$$
\begin{aligned}
& y^{\prime}=e^{-5 t}\left(-5 C_{1}+C_{2}(1-5)\right) \\
& \qquad y^{\prime}(1)=e^{-5}\left(-5 C_{1}-4 C_{2}\right)=-e^{-5} C_{1}=1
\end{aligned}
$$

Therefore $C_{1}=-e^{5}, C_{2}=e^{5}$

$$
y=-e^{5} e^{-5 t}+e^{5} t e^{-5 t}
$$

Question 4

$x(0)=11$ and $y(0)=-9$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
-10 & -12 \\
9 & 11
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

SHORTCUT:

for a 2 x 2 matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the characteristic polynomial is:

$$
\lambda^{2}-\operatorname{tr}(\mathbf{A})+\operatorname{det}(\mathbf{A})=0
$$

where trace: $\operatorname{tr}(\mathbf{A})=a+d$, determinant: $\operatorname{det}(\mathbf{A})=a d-b c$
trace $=-10+11=1$
determinant $=(-10 \times 11)-(9 \times-12)=-2$

$$
\lambda^{2}-\lambda-2=0
$$

Therefore $\lambda=2,-1$

For $\lambda=2: \mathbf{A}-\lambda \mathbf{I}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-12 & -12 \\
9 & 9
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& -12 v_{1}-12 v_{2}=0 \rightarrow\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

For $\lambda=-1: \mathbf{A}-\lambda \mathbf{I}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-9 & -12 \\
9 & 12
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& -9 v_{1}-12 v_{2}=0 \rightarrow\left[\begin{array}{c}
4 \\
-3
\end{array}\right]
\end{aligned}
$$

$\mathbf{P}=\left[\begin{array}{cc}1 & 4 \\ -1 & -3\end{array}\right], \mathbf{D}=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$
$x_{0}=\left[\begin{array}{c}11 \\ -9\end{array}\right]$
SHORTCUT: Let

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then:

$$
\begin{gathered}
\mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
\mathbf{P}^{-1}=\left[\begin{array}{cc}
-3 & -4 \\
1 & 1
\end{array}\right] \\
\mathbf{P} e^{\mathbf{D} t}=\left[\begin{array}{cc}
e^{2 t} & 4 e^{-t} \\
-e^{2 t} & -3 e^{-t}
\end{array}\right] \\
\mathbf{P}^{-1} \underline{x_{0}}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{gathered}
$$

Therefore the solution $\underline{x(t)}=\mathbf{P} e^{\mathbf{D} t} \mathbf{P}^{-1}$ is:

$$
3\left[\begin{array}{c}
e^{2 t} \\
-e^{2 t}
\end{array}\right]+2\left[\begin{array}{c}
4 e^{-t} \\
-3 e^{-t}
\end{array}\right]
$$

Therefore

$$
\begin{gathered}
x(t)=3 e^{2 t}+8 e^{-t} \\
y(t)=-3 e^{2 t}-6 e^{-t}
\end{gathered}
$$

Question 5

1. Given $\frac{d T}{d t}=k\left(T-T_{s}\right)$ where $T_{s}=18$ is a constant $T(0)=95$
when $T=70, \frac{d T}{d t}=-2$

$$
\begin{gathered}
-2=k(70-18) \\
k=-\frac{1}{26}
\end{gathered}
$$

2.By inspection, we can see that

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)=-\frac{1}{26}\left(T-T_{s}\right)=0
$$

only when $T=T_{s}=18$
3.

TIP:
Most differential equations cannot be solved exactly/analytically, so we use methods (i.e. Euler's Method) to approximate solutions.

Suppose y_{i} is an approximation to $y\left(t_{i}\right)$ Then y_{i+1} is:

$$
y_{i+1}=y_{i}+f\left(y_{i}, t_{i}\right)\left(t_{i+1}-t_{i}\right)
$$

Using Euler's with $\mathrm{h}=2$, for a total length of 10 minutes.
We are given that $T(0)=95$.
$T(2)=T(0)+2 T^{\prime}(0)=95-\frac{2}{26}(95-18) \approx 89.0769$
$T(4)=T(2)+2 T^{\prime}(2)=89.0769-\frac{2}{26}(89.0769-18) \approx 83.6094$
$T(6)=T(4)+2 T^{\prime}(4)=83.6094-\frac{2}{26}(83.6094-18) \approx 78.5625$
$T(8)=T(6)+2 T^{\prime}(6)=78.5625-\frac{2}{26}(78.5625-18) \approx 73.9039$
$T(10)=T(8)+2 T^{\prime}(8)=73.9039-\frac{2}{26}(73.9039-18) \approx 69.60$

Question 6

Taking Laplace transform of both sides of the equation and taking the initial conditions into consideration, we obtain the transformed ODE

$$
s^{2} Y(s)+2 s Y(s)+2 Y(s)=\frac{s}{s^{2}+1}+e^{-\frac{\pi}{2} s}
$$

so that

$$
Y(s)=\frac{s}{\left(s^{2}+1\right)\left(s^{2}+2 s+2\right)}+\frac{e^{-\frac{\pi}{2} s}}{s^{2}+2 s+2} .
$$

Using partial fractions

$$
Y_{1}(s)=\frac{s}{\left.\left(s^{2}+1\right)\left(s^{2}+2 s+2\right)\right)}=\frac{1}{5}\left[\frac{s}{s^{2}+1}+\frac{2}{s^{2}+1}-\frac{s+4}{s^{2}+2 s+2}\right] .
$$

We can also write

$$
\frac{s+4}{s^{2}+2 s+2}=\frac{(s+1)+3}{(s+1)^{2}+1},
$$

therefore

$$
\mathcal{L}^{-1}\left[Y_{1}(s)\right]=\frac{1}{5} \cos t+\frac{2}{5} \sin t-\frac{1}{5} e^{-t}[\cos t+3 \sin t] .
$$

On the other hand,

$$
\mathcal{L}^{-1}\left[\frac{e^{-\frac{\pi}{2} s}}{s^{2}+2 s+2}\right]=e^{-\left(t-\frac{\pi}{2}\right)} \sin \left(t-\frac{\pi}{2}\right) u_{\frac{\pi}{2}}(t)
$$

Hence the solution of the IVP is

$$
y(t)=\frac{1}{5} \cos t+\frac{2}{5} \sin t-\frac{1}{5} e^{-t}[\cos t+3 \sin t]-e^{-\left(t-\frac{\pi}{2}\right)} \cos t u_{\frac{\pi}{2}}(t)
$$

Question 7

Set $x_{1}=u, x_{2}=u^{\prime}, x_{3}=u ", x_{4}=u^{\prime \prime \prime}$, so that the given equation takes the form

$$
x_{1}^{\prime}=x_{2}, \quad x_{2}^{\prime}=x_{3}, \quad x_{3}^{\prime}=x_{4}, \quad x_{4}^{\prime}=x_{1}
$$

This is represented by the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{g}(t)$, where

$$
\mathbf{A}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \mathbf{g}(t)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\sin t
\end{array}\right)
$$

Question 8

The characteristic equation of the coefficient matrix is $r^{3}-3 r^{2}+3 r-1=0$, with a single root $r=1$ of multiplicity 3 . Setting $r=1$, we obtain the eigenvalue equation

$$
\left(\begin{array}{ccc}
4 & -3 & -2 \\
8 & -6 & -4 \\
-4 & 3 & 2
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This system of linear equations reduces to single equation

$$
4 \xi_{1}-3 \xi_{2}-2 \xi_{3}=0
$$

Since the equation has two free variables, we have two linearly independent eigenvectors, for instance

$$
\boldsymbol{\xi}^{(1)}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \quad \text { and } \quad \boldsymbol{\xi}^{(2)}=\left(\begin{array}{c}
0 \\
2 \\
-3
\end{array}\right)
$$

Therefore two linearly independent solutions are obtained as

$$
\mathbf{x}^{(1)}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) e^{t} \quad \text { and } \quad \mathbf{x}^{(2)}=\left(\begin{array}{c}
0 \\
2 \\
-3
\end{array}\right) e^{t}
$$

To find a third solution, we try a function of the form $\mathbf{x}=\boldsymbol{\xi} t e^{t}+\boldsymbol{\eta} e^{t}$. It follows that

$$
\mathbf{x}^{\prime}=\boldsymbol{\xi} t e^{t}+\boldsymbol{\xi} e^{t}+\boldsymbol{\eta} e^{t}
$$

Hence the coefficient vectors must satisfy $\boldsymbol{\xi} t e^{t}+\boldsymbol{\xi} e^{t}+\boldsymbol{\eta} e^{t}=\mathbf{A} \boldsymbol{\xi} t e^{t}+\mathbf{A} \boldsymbol{\eta} e^{t}$. Rearranging the terms we have

$$
\boldsymbol{\xi} e^{t}=(\mathbf{A}-\mathbf{I}) \boldsymbol{\xi} t e^{t}+(\mathbf{A}-\mathbf{I}) \boldsymbol{\eta} e^{t}
$$

Matching coefficients, it follows that $(\mathbf{A}-\mathbf{I}) \boldsymbol{\xi}=\mathbf{0}$ and $(\mathbf{A}-\mathbf{I}) \boldsymbol{\eta}=\boldsymbol{\xi}$. Thus $\boldsymbol{\xi}$ is an eigenvector A, i.e.

$$
\boldsymbol{\xi}=\alpha\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+\beta\left(\begin{array}{c}
0 \\
2 \\
-3
\end{array}\right)=\left(\begin{array}{c}
\alpha \\
2 \beta \\
2 \alpha-3 \beta
\end{array}\right)
$$

The system of equations $(\mathbf{A}-\mathbf{I}) \boldsymbol{\eta}=\boldsymbol{\xi}$ then reduces to

$$
4 \eta_{1}-3 \eta_{2}-2 \eta_{3}=\alpha, \quad 8 \eta_{1}-6 \eta_{2}-4 \eta_{3}=2 \beta, \quad-4 \eta_{1}+3 \eta_{2}+2 \eta_{3}=2 \alpha-3 \beta
$$

This is consistent provided $\alpha=\beta$. We have to be careful in choosing a value of $\alpha=\beta$ and the free variables η_{1}, η_{2} of the resulting equation; for instance choosing $\alpha=\beta=0$ would result in \mathbf{x} being linearly dependent on $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$. A convenient choice is $\alpha=\beta=-2$ and $\eta_{1}=\eta_{2}=0, \eta_{3}=1$. Therefore the third linearly independent solution is

$$
\mathbf{x}^{(3)}=\left(\begin{array}{c}
-2 \\
-4 \\
2
\end{array}\right) t e^{t}+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{t}
$$

Question 9

(a) The critical points are the solutions of the system

$$
x(a-\sigma x-\alpha y)=0, \quad y(-c+\gamma x)=0
$$

If $x=0$, then $y=0$. If $y=0$, then $x=\frac{a}{\sigma}$. The third solution is found by substituting $x=c / \gamma$ into the first equation. This implies that $y=a / \alpha-\sigma c /(\gamma \alpha)$. So the critical points are $(0,0),\left(\frac{a}{\sigma}, 0\right)$ and $\left(\frac{c}{\gamma}, \frac{a}{\gamma}-\frac{\sigma c}{\gamma \alpha}\right)$. When σ is increasing, the critical point $\left(\frac{a}{\sigma}, 0\right)$ moves to the left and the critical point $\left(\frac{c}{\gamma}, \frac{a}{\gamma}-\frac{\sigma c}{\gamma \alpha}\right)$ moves down. The assumption $a>\frac{\sigma c}{\gamma}$ is necessary for the third critical point to be in the first quadrant.
(b,c) The Jacobian of the system is

$$
\mathbf{J}=\left(\begin{array}{cc}
a-2 \sigma x-\alpha y & -\alpha x \\
\gamma y & -c+\gamma x
\end{array}\right)
$$

This implies that at the origin

$$
\mathbf{J}(0,0)=\left(\begin{array}{cc}
a & 0 \\
0 & -c
\end{array}\right)
$$

which implies that the origin is a saddle point (since $a>0$ and $c>0$ by our assumption).
At the critical point $\left(\frac{a}{\sigma}, 0\right)$

$$
\mathbf{J}\left(\frac{a}{\sigma}, 0\right)=\left(\begin{array}{cc}
-a & -\frac{\alpha a}{\sigma} \\
0 & -c+\frac{\gamma a}{\sigma}
\end{array}\right)
$$

which implies that this critical point is also a saddle as long as our assumption $a>\frac{\sigma c}{\gamma}$ is valid.
At the critical point $\left(\frac{c}{\gamma}, \frac{a}{\alpha}-\frac{\sigma c}{\gamma \alpha}\right)$,

$$
\mathbf{J}\left(\frac{c}{\gamma}, \frac{a}{\alpha}-\frac{\sigma c}{\gamma \alpha}\right)=\left(\begin{array}{cc}
-\frac{\sigma c}{\gamma} & -\frac{\alpha c}{\gamma} \\
\frac{\gamma a}{\alpha}-\frac{\sigma c}{\alpha} & 0
\end{array}\right)
$$

The eigenvalues of the matrix are

$$
\frac{-c \sigma \pm \sqrt{c^{2} \sigma^{2}+4 c^{2} \gamma \sigma-4 a c \gamma^{2}}}{2 \gamma}
$$

We set the discriminant equal to zero and find that the greater solution is

$$
\sigma_{1}=-2 \gamma+\frac{2 \gamma}{c} \sqrt{a c+c^{2}}
$$

First note that $\sigma_{1}>0$, since $\sqrt{a c+c^{2}}>c$. Next we note that $\sigma_{1}<\frac{a \gamma}{c}$. Since

$$
\sqrt{a c+c^{2}}<\sqrt{\frac{a^{2}}{4}+a c+c^{2}}=\frac{a}{2}+c
$$

we see that
$\sigma_{1}=-2 \gamma+\frac{2 \gamma}{c} \sqrt{a c+c^{2}}<-2 \gamma+\frac{2 \gamma}{c}\left(\frac{a}{2}+c\right)=-2 \gamma+\frac{a \gamma}{c}+2 \gamma=\frac{a \gamma}{c}$.
For $0<\sigma<\sigma_{1}$, the eigenvalues will be complex conjugates with negative real part, so the critical point will be an asymptotically stable spiral point. For $\sigma=\sigma_{1}$, the eigenvalues will be repeated and negative, so the critical point will be an asymptotically stable spiral point or node. For $\sigma_{1}<\sigma<\frac{a c}{\gamma}$, the eigenvalues will be distinct and negative, so the critical point will be an asymptotically stable node.
(d) Since the third critical point is asymptotically stable for $0<\sigma<\frac{a c}{\gamma}$, and the other critical points are saddle points, the populations will coexist for all such values of σ.

