MATH 215/255 QUIZ 3: SOLUTIONS (SUMMER 2015, T1)

QUESTION 1

(i) Set:

$$
\left|\begin{array}{cc}
0-r & -5 \\
1 & \alpha-r
\end{array}\right|=0
$$

(ii) Characteristic equation:

$$
r^{2}-\alpha r+5=0
$$

(iii) Solve for $r_{1,2}$:

$$
r_{1,2}=\frac{\alpha \pm \sqrt{\alpha^{2}-20}}{2}
$$

(iv) The phase portrait changes as α varies as follows:

$$
\begin{aligned}
& \alpha \leq-\sqrt{20}: \text { Stable node } \\
& -\sqrt{20}<\alpha<0: \text { Stable spiral } \\
& \alpha=0: \text { Center } \\
& 0<\alpha<\sqrt{20}: \text { Untable spiral } \\
& \alpha \geq \sqrt{20}: \text { Unstable node }
\end{aligned}
$$

(v) Therefore Answer is (D)

QUESTION 2

(a) Find Homogeneous solution

Find eigen values

$$
\begin{gathered}
\left|\begin{array}{cc}
2-r & -1 \\
3 & -2-r
\end{array}\right|=0 \\
r^{2}-1=0
\end{gathered}
$$

$$
r_{1}=-1, r_{2}=1
$$

Find eigen vectors for the corresponding eigen values

$$
\begin{array}{r}
r_{1}=-1: \\
\left.\qquad \begin{array}{lr}
3 & -1 \\
3 & -1
\end{array}\right]\binom{v_{1 x}}{v_{1 y}}=\binom{0}{0} \\
\left.r_{1} I\right) \overrightarrow{v_{1}}=0 \\
r_{2}=1: \quad \overrightarrow{v_{1}}=\binom{1}{3} \\
\left(A-r_{2} I\right) \overrightarrow{v_{2}}=0 \\
{\left[\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right]\binom{v_{2 x}}{v_{2 y}}=\binom{0}{0}} \\
\overrightarrow{v_{2}}=\binom{1}{1}
\end{array}
$$

The homogeneous solution is:

$$
\xlongequal{\overrightarrow{x_{h}}=c_{1}\binom{1}{3} e^{-t}+c_{2}\binom{1}{1} e^{t}}
$$

(b) Find Particular solution

Guess the form of the particular solution:

$$
\overrightarrow{x_{p}}=\vec{a} e^{t}+\vec{b} t e^{t}
$$

$$
\overrightarrow{x_{p}^{\prime}}=(\vec{a}+\vec{b}) e^{t}+\vec{b} t e^{t}
$$

Plug into initial equation and collect like terms
$t e^{t}$ terms:

$$
\binom{b_{1}}{b_{2}}=\binom{2 b_{1}-b_{2}}{3 b_{1}-2 b_{2}}
$$

e^{t} terms:

$$
\binom{a_{1}+b_{1}}{a_{2}+b_{2}}=\binom{2 a_{1}-a_{2}}{3 a_{1}-2 a_{2}}+\binom{1}{-1}
$$

Combining the two we have the following sets of equations:

$$
\begin{gathered}
-a_{1}+a_{2}+b_{1}=1 \\
-3 a_{1}+3 a_{2}+b_{2}=-1 \\
-b_{1}+b_{2}=0 \\
-3 b_{1}+3 b_{2}=0
\end{gathered}
$$

Put it in matrix form and find the row reduced echelon form:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
-1 & 1 & 1 & 0 \\
-3 & 3 & 0 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & -3 & 3
\end{array}\right]\left(\begin{array}{l}
a_{1} \\
b_{1} \\
a_{2} \\
b_{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)} \\
\left(\begin{array}{cccc|c}
-1 & 1 & 1 & 0 & 1 \\
-3 & 3 & 0 & 1 & -1 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -3 & 3 & 0
\end{array}\right)
\end{gathered}
$$

Row Reduced Echelon Form (RREF):

$$
\left(\begin{array}{cccc|c}
-1 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore we get:

$$
\begin{gathered}
b_{1}=b_{2}=2 \\
a_{1}=a_{2}+1 \\
\vec{b}=\binom{2}{2} \\
\vec{a}=c\binom{1}{1}+\binom{1}{0}
\end{gathered}
$$

Any " c " would work, but let us pick $\mathrm{c}=0$, then our particular solution would be:

$$
\xlongequal{\overrightarrow{x_{p}}=\binom{1}{0} e^{t}+\binom{2}{2} t e^{t}}
$$

