MATH 215/255 QUIZ 2: SOLUTIONS (SUMMER 2015, T1)

QUESTION 1

(a) Solve ODE for $\mathrm{K} \& \mathrm{~F}(\mathrm{t})$

Set up differential equation

$$
2 x^{\prime \prime}+K x=F
$$

Find

$$
x^{\prime \prime}=-9 c_{1} \cos (3 t)-9 c_{2} \sin (3 t)=e^{t}
$$

Plug into differential equation

$$
(K-18)\left[c_{1} \cos (3 t)+c_{2} \sin (3 t)\right]+(2+K) e^{t}=F(t)
$$

From equation of motion for undamped systems we know:

$$
\begin{aligned}
& \omega=\sqrt{\frac{K}{m}} \\
& 3=\sqrt{\frac{K}{2}}
\end{aligned}
$$

Therefore,

$$
K=18
$$

Plug K=18 in the above Differential equation to get:

$$
F=20 e^{t}
$$

(b) Find $\mathcal{L}\left[\cos ^{2}(\omega t)\right]$

Trigonometric Identitiy

$$
\cos ^{2}(\omega t)=\frac{1}{2}+\frac{\cos (2 \omega t)}{2}
$$

Then

$$
\mathcal{L}\left[\cos ^{2}(\omega t)\right]=\mathcal{L}\left[\frac{1}{2}\right]+\mathcal{L}\left[\frac{\cos (2 \omega t)}{2}\right]
$$

Using the laplace transform tables we get

$$
\mathcal{L}\left[\cos ^{2}(\omega t)\right]=\frac{1}{2 s}+\frac{s}{2 s^{2}+8 \omega^{2}}
$$

QUESTION 2

(i) Find solution to the homogenous equation

$$
t^{2} y^{\prime \prime}-2 y=0
$$

Guess:

$$
\begin{gathered}
y(t)=t^{r} \\
y^{\prime}(t)=r t^{r-1} \\
y^{\prime \prime}(t)=r(r-1) t^{r-2}
\end{gathered}
$$

Plug values of $y(t)$ and $y "(t)$ into the above equation:

$$
t^{r}\left(r^{2}-r-2\right)=0
$$

Solve for " r ":

$$
r_{1}=-1, r_{2}=2
$$

Therefore, the solution to the homogenous equation is:

$$
y(t)=c_{1} \frac{1}{t}+c_{2} t^{2}
$$

(ii) Use variation of parameters to find a particular solution that solves

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}}
$$

Assume

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

where

$$
y_{1}(t)=t^{2}, y_{2}(t)=\frac{1}{t}
$$

Find the wronskian:

$$
\begin{gathered}
W(t)=\left|\begin{array}{rr}
t^{2} & \frac{1}{t} \\
2 t & \frac{-1}{t^{2}}
\end{array}\right| \\
W(t)=-3
\end{gathered}
$$

Find $u_{1}(t) \& u_{2}(t)$ using the equation:

$$
\begin{gathered}
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W(t)} d t \\
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W(t)} d t
\end{gathered}
$$

where $W(t)=-3 \& g(t)=3-\frac{1}{t^{2}}$
After plugging in the values for $\mathrm{W}(\mathrm{t})$ and $\mathrm{g}(\mathrm{t})$ then integrating, we get:

$$
\begin{gathered}
u_{1}(t)=\ln (t)+\frac{1}{6 t^{2}} \\
u_{2}(t)=\frac{-t^{3}}{3}+\frac{t}{3}
\end{gathered}
$$

Using the assumed form of:

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

we find that:

$$
y_{p}(t)=t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2}
$$

Combining the homogenous and particular solution, we get

$$
y(t)=c_{1} \frac{1}{t}+c_{2} t^{2}+t^{2} \ln (t)+\frac{1}{2}
$$

