The Heaviside function

Express

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<1 \\ t-1 & \text { if } 1 \leq t<2 \\ t-2 & \text { if } 2 \leq t<3 \\ 0 & \text { if } t \geq 3\end{cases}
$$

in terms of the Heaviside function.
A. $f(t)=-u_{1}(t)-u_{2}(t)-u_{3}(t)(t-2)$.
B. $f(t)=t-u_{1}(t)-u_{2}(t)-u_{3}(t)$.
C. $f(t)=t-u_{1}(t)-u_{2}(t)-u_{3}(t)(t-2)$.
D. $f(t)=t-u_{1}(t)+u_{2}(t)-u_{3}(t)(t-2)$.
E. $f(t)=t+u_{1}(t)-u_{2}(t)-u_{3}(t)(t-2)$.

Resonance in a vibrating system

Consider the vibrating system described by the initial value problem

$$
k u^{\prime \prime}+9 k u=\sin (\omega t), \quad u(0)=1, \quad u^{\prime}(0)=1
$$

Does there exist a value of k and ω for which the solution will become unbounded as $t \rightarrow \infty$?
A. No such k exists, $\omega=3$
B. No such k or ω exist
C. ω could be arbitrary, $k=1$
D. k could be any nonzero constant, $\omega=3$
E. $\omega=3 k$

Second order ODE with variable coefficients

Find the general solution of the equation

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}
$$

Answer: $y(t)=C_{1} t+C_{2} t e^{t}-2 t^{2}$

Impulse Functions

Find the solution of the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t-\pi), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Answer: $\quad y=e^{-t} \cos t+e^{-t} \sin t+u_{\pi}(t) e^{-(t-\pi)} \sin (t-\pi)$.

