The Heaviside function

Express

$$f(t) = egin{cases} t & ext{if } 0 \leq t < 1 \ t-1 & ext{if } 1 \leq t < 2 \ t-2 & ext{if } 2 \leq t < 3 \ 0 & ext{if } t \geq 3. \end{cases}$$

in terms of the Heaviside function.

A.
$$f(t) = -u_1(t) - u_2(t) - u_3(t)(t-2)$$
.
B. $f(t) = t - u_1(t) - u_2(t) - u_3(t)$.
C. $f(t) = t - u_1(t) - u_2(t) - u_3(t)(t-2)$.
D. $f(t) = t - u_1(t) + u_2(t) - u_3(t)(t-2)$.
E. $f(t) = t + u_1(t) - u_2(t) - u_3(t)(t-2)$.

- 一司

.∃ >

Resonance in a vibrating system

Consider the vibrating system described by the initial value problem

$$ku'' + 9ku = \sin(\omega t), \qquad u(0) = 1, \quad u'(0) = 1.$$

Does there exist a value of k and ω for which the solution will become unbounded as $t \to \infty$?

- A. No such k exists, $\omega = 3$
- B. No such k or ω exist
- C. ω could be arbitrary, k=1
- D. k could be any nonzero constant, $\omega = 3$
- E. $\omega = 3k$

Second order ODE with variable coefficients

Find the general solution of the equation

$$t^{2}y'' - t(t+2)y' + (t+2)y = 2t^{3}.$$

Answer: $y(t) = C_1 t + C_2 t e^t - 2t^2$

Impulse Functions

Find the solution of the initial value problem

$$y'' + 2y' + 2y = \delta(t - \pi), \qquad y(0) = 1, \quad y'(0) = 0.$$

Answer:
$$y = e^{-t} \cos t + e^{-t} \sin t + u_{\pi}(t) e^{-(t-\pi)} \sin(t-\pi)$$
.

Image: A matrix

→ 3 → 4 3