MATH 215/255 QUIZ 1: SOLUTIONS (SUMMER 2015, T1)

QUESTION 1

(i) Solve:

$$
\begin{gathered}
\frac{d y}{d t}=y-y^{2} \\
\frac{d y}{y(1-y)}=d t
\end{gathered}
$$

Partial Fraction expansion

$$
\left(\frac{1}{y}+\frac{1}{(1-y)}\right) d y=d t
$$

Integrate of both sides

$$
\begin{gathered}
\int\left(\frac{1}{y}+\frac{1}{(1-y)}\right) d y=\int d t \\
\ln |y|-\ln |1-y|=t+C \\
\ln \frac{|y|}{|1-y|}=t+C \\
\frac{|y|}{|1-y|}=A e^{t} \\
\text { where }, A=e^{C}>0
\end{gathered}
$$

Eliminate absolute value.

$$
\begin{aligned}
y(0) & =\frac{1}{2}<1 \\
\text { pick } & : \frac{y}{1-y}
\end{aligned}
$$

Determine "A"

$$
\begin{gathered}
\frac{y(0)}{1-y(0)}=A e^{0} \\
1=A
\end{gathered}
$$

which simplifies to ,

$$
\begin{gathered}
\frac{y}{1-y}=e^{t} \\
y(t)=\frac{e^{t}}{1+e^{t}}
\end{gathered}
$$

(ii) Limiting behaviour as $t \rightarrow \infty$ (2 pts)

Rewrite $y(t)$:

$$
y(t)=\frac{1}{1+e^{-t}}
$$

As $t \rightarrow \infty$ then $e^{-t} \rightarrow 0$. So,

$$
\underline{\underline{\lim _{t \rightarrow \infty}} y(t)=1}
$$

QUESTION 2

Let the amount of salt in side the tank be denoted by $S(\mathrm{t})$ [in grams] and the concentration of the Brine be A g/l. Since the inflow rate $(1 \mathrm{l} / \mathrm{min})=$ outflow rate $(1 \mathrm{l} / \mathrm{min})$, volume of the solution in the tank remains constant (20 liters)
(i) Setup differential equation:

$$
\begin{gathered}
\frac{d s}{d t}=A\left(\frac{g}{l}\right) \times 1\left(\frac{l}{\min }\right)-\frac{s(t)}{20} \times 1\left(\frac{l}{\min }\right) \\
\frac{d s}{d t}=A-\frac{s(t)}{20} \\
\frac{d s}{d t}+\frac{1}{20} s(t)=A
\end{gathered}
$$

(ii) Find integrating factor: where $p(x)=\frac{1}{20}$

$$
\begin{gathered}
r(t)=e^{\int \frac{1}{20} d t} \\
r(t)=e^{\frac{t}{20}}
\end{gathered}
$$

(iii) Multiply both sides by the integrating factor and solve the equation:

$$
\begin{gathered}
{\left[s(t) e^{\frac{t}{20}}\right]^{\prime}=A e^{\frac{t}{20}}} \\
s(t) e^{\frac{t}{20}}=20 A e^{\frac{t}{20}}+C(\text { constant }) \\
s(t)=20 A+\frac{C}{e^{\frac{t}{20}}}
\end{gathered}
$$

(iv) Plug in initial condition and the amount of salt present at the end of the 20 minutes:

$$
\begin{align*}
5 & =20 A+C \tag{1}\\
15 & =20 A+\frac{C}{e} \tag{2}
\end{align*}
$$

(v) Multiple (2) by " e " and subtract (1):

$$
\begin{gathered}
15 e-5=20 A(e-1) \\
A=\frac{1}{4}\left(\frac{3 e-1}{e-1}\right)\left(\frac{g}{l}\right)
\end{gathered}
$$

QUESTION 3

(a) Find $y(h)$ and $y(2 h)$

$$
y(h)=y(0)+y^{\prime}(0) \times h
$$

Given $y^{\prime}=y \& y(0)=1$, we will have

$$
y(h)=1+h
$$

Similarly

$$
\begin{gathered}
y(2 h)=y(h)+y^{\prime}(h) \times h \\
y(2 h)=1+h+(1+h) \times h \\
y(2 h)=(1+h)^{2}
\end{gathered}
$$

(b) From the above solutions we can see that, for $\mathrm{n}=1,2,3 \ldots$.

$$
y(n h)=(1+h)^{n}
$$

Fix $x=n h_{n}$, such that $y(n h)=y_{n}(x)$ and $h_{n}=\frac{x}{n}$

$$
y_{n}(x)=\left(1+\frac{x}{n}\right)^{n}
$$

If we let $n \rightarrow \infty$, we get

$$
\begin{gathered}
y(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \\
\underline{\underline{y(x)=e^{x}}}
\end{gathered}
$$

