Method of undetermined coefficients

Consider the system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right] \mathbf{x}+e^{t} \mathbf{a}
$$

where \mathbf{a} is an arbitrary constant vector.
Which of the following possibilities would you choose as the most economic \mathbf{x}_{p} using the method of undetermined coefficients?
A. $\mathbf{x}_{p}=\mathbf{u} e^{t}$
B. $\mathbf{x}_{p}=\mathbf{u} t e^{t}+\mathbf{v} e^{t}$
C. $\mathbf{x}_{p}=\mathbf{u}\left(t e^{t}+e^{t}\right)$
D. $\mathbf{x}_{p}=\mathbf{u} t e^{t}$
E. $\mathbf{x}_{p}=\mathbf{u} t^{2} e^{t}+\mathbf{v} t e^{t}+\mathbf{w} e^{t}$

Undetermined coefficients (ctd)

Consider the system in the previous example.

- Suppose that $\mathbf{a}=\binom{2}{-1}$. Show that $\mathbf{x}_{p}=\mathbf{a} t e^{t}$.
- Suppose that $\mathbf{a}=\binom{1}{1}$. Show that \mathbf{x}_{p} cannot be of the form $\mathbf{u} t e^{t}$.
- Now show that for $\mathbf{a}=\binom{1}{1}$

$$
\mathbf{x}_{p}=\binom{4}{-2} t e^{t}+\binom{-3}{0} e^{t}
$$

What is the source of the disparity in the forms for \mathbf{x}_{p} in the two examples above?

Critical points, linearizations and stability

How many critical points does the following system have?

$$
x^{\prime}=(2+x)(y-x), \quad y^{\prime}=(4-x)(y+x)
$$

A. 0
B. 1
C. 2
D. 3
E. 4

Find the linearizations of each of the critical points, and use it to identify the nature of the critical points.

