1. Let \mathcal{S} denote the set of functions in $\mathcal{C}[-\pi,\pi]$ of the form

 $f(x) = a\sin x + b\sin 2x$

where a and b are arbitrary real numbers. Let g(x) = x for $x \in [-\pi, \pi]$. Find $f \in S$ for which $||g - f||_2$ is smallest.

(Answer:
$$f(x) = 2\sin x - \sin 2x$$
.)

2. Let $f: [0,1] \times [0,1] \to \mathbb{R}$ be the function

$$f(x,y) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 2y & \text{if } x \notin \mathbb{Q}. \end{cases}$$

(a) Compute the lower and upper Riemann integrals

$$\int_{\underline{0}}^{1} f(x,y) \, dx \quad \text{and} \quad \overline{\int_{0}^{1}} f(x,y) \, dx$$

in terms of y.

(b) Show that

$$\int_0^1 f(x, y) \, dy \text{ exists for each fixed } x.$$

Compute

$$\int_0^t f(x,y) \, dy \text{ in terms of } (x,t) \in [0,1] \times [0,1].$$

(c) Define

$$F(x) = \int_0^1 f(x, y) \, dy.$$

Show that $\int_0^1 F(x) dx$ exists and find its value.

(d) There must be a moral to this long-winded story. What is it?

3. A certain Riemann-integrable function $f: [-\pi, \pi] \to \mathbb{C}$ and a complex sequence $\{c_k\}$ obey

$$\left| \left| f(t) - \sum_{k=-n}^{n} c_k e^{ikt} \right| \right|_2 \longrightarrow 0 \quad \text{as} \quad n \to \infty.$$

Prove the following statements:

(a) For any
$$g: [-\pi, \pi] \to \mathbb{C}$$
 with $g \in \mathcal{R}[-\pi, \pi]$,
 $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)\overline{g(t)} dt = \sum_{k=-\infty}^{\infty} c_k \overline{\widehat{g}(k)}$, where $\widehat{g}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(t) e^{-ikt} dt$.

(b) $c_k = \widehat{f}(k)$ and $\sum_k |c_k|^2 < \infty$.

4. Evaluate the following, with careful justification of all steps:

$$\sum_{n=-\infty}^{\infty} \left| \int_{-\pi}^{\pi} t^5 e^{-int} \, dt \right|^2$$
(Answer: $\frac{4\pi^{12}}{11}$.)

(Answer: No.)

- 5. Let $g : [0,1] \to \mathbb{R}$ be bounded and $\alpha : [0,1] \to \mathbb{R}$ be nondecreasing. Assume that $g \in \mathcal{R}_{\alpha}[\delta,1]$ for every $\delta > 0$.
 - (a) Show that $g \in \mathcal{R}_{\alpha}[0,1]$ if α is continuous at 0.
 - (b) Give an example of a pair (g, α) which shows that the conclusion of part (a) is false if α is not assumed to be continuous at 0.
- 6. Let

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

be the Fourier series of a function $f \in BV[-\pi,\pi]$. Show that $\{na_n\}$ and $\{nb_n\}$ are bounded sequences.

7. Determine whether or not the following functions f are of bounded variation on [0, 1].

(a)
$$f(x) = x^2 \sin(\frac{1}{x})$$
 if $x \neq 0$, $f(0) = 0$.
(Answer: Yes.)

- (b) $f(x) = \sqrt{x} \sin(\frac{1}{x})$ if $x \neq 0, f(0) = 0.$
- 8. A function $f : [a, b] \to \mathbb{R}$ is said to satisfy a Lipschitz or Hölder condition of order $\alpha > 0$ if there exists M > 0 such that

 $|f(x) - f(y)| < M|x - y|^{\alpha} \text{ for all } x, y \in [a, b].$

- (a) If f is such a function, show that $\alpha > 1$ implies that f is constant on [a, b], whereas $\alpha = 1$ implies $f \in BV[a, b]$.
- (b) Give an example of a function not of bounded variation satisfying a Hölder condition of order $\alpha < 1$.
- (c) Give an example of a function of bounded variation on [a, b] that satisfies no Lipschitz condition on [a, b].