
Midterm 1 Review: Practice Problems Solution Hints

The title says it all. These are hints only. Use them to write out complete solutions.

1. We used the following lemma in the proof of the Stone-Weierstrass theorem. Prove it.

“Let A be an algebra of real-valued functions on some set X and suppose that A separates
points and vanishes at no point of X. Then given any two points x0, y0 in X, x0 6= y0 and
a, b ∈ R, we can find a function f ∈ A with f(x0) = a and f(y0) = b.”

Keep in mind that X need not be compact and the functions in A need not be continuous.

Hint. Since A separates points and vanishes at no point, there exist g, h, k ∈ A such that
g(x0) 6= g(y0), h(x0) 6= 0, k(y0) 6= 0. Define

u(x) = [g(x)− g(y0)]h(x) v(x) = [g(x)− g(x0)] k(x).

Then u, v ∈ A (why?), with u(x0) 6= 0, u(y0) = 0, and v(x0) = 0, v(y0) 6= 0. Check that
the function f given by

f(x) = a
u(x)

u(x0)
+ b

v(x)

v(y0)

lies in A and obeys all the desired properties. �

2. The proof of Stone-Weierstrass theorem also involved the following proposition. Prove it.

“Given any metric space X, let A ⊆ B(X;R) denote a subalgebra of the space of bounded
real-valued functions on R. Show that the closure A of A is both a subalgebra and a
sublattice (i.e., if f ∈ A, then |f | ∈ A).”

Verify also that the same statement holds with B(X;R) replaced by Cb(X;R), the space
of bounded, continuous real-valued functions on X.

Hint. It is up to you to check that A is a subalgebra. We will verify that A is a sublattice:
given f ∈ A, we have |f | ∈ A. In other words, for any ε > 0, we need to find g ∈ A such
that |||f | − g||∞ < ε.

Set M = ||f ||∞, so that f(x) ∈ [−M,M ]. Since the function x 7→ |x| is continuous, by
the classical Weierstrass theorem, we can find a polynomial P : [−M,M ] → R with real
coefficients, namely

(1) P (t) =
n∑
k=0

akt
k such that sup

t∈[−M,M ]

∣∣|t| − P (t)
∣∣ < ε.

Now set t = f(x), and g(x) = P ◦ f(x) =
∑n

k=0 ak(f(x))k. Since f ∈ A and A is an

algebra, we have that g ∈ A. Further∣∣∣∣|f | − g∣∣∣∣∞ = sup
x∈X

∣∣|f(x)| − P ◦ f(x)
∣∣ ≤ sup

t∈[−M,M ]

∣∣|t| − P (t)
∣∣ < ε,

completing the proof. �
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3. Given an arbitrary metric space X, verify whether the following statement is true or false:
C(X;R) always separates points and vanishes at no point.

Hint. Try the functions x 7→ d(x, x0), for any fixed x0 ∈ X. Use the triangle inequality
to show that these functions are continuous. �

4. Find a compact metric space (X, d) and algebras A,B ⊆ C(X;R) such that

(a) A separates points but vanishes at some point.

(b) B vanishes at no point but fails to separate points.

Hint. Verify that these work.

A = {f ∈ C[0, 1] : f(1/2) = 0}, B = {f ∈ C[0, 1] : f(0) = f(1)}.

�

5. Evaluate with justification

lim
n→∞

∫ π

0

n+ sinnx

3n− sin2 nx
dx.

Hint. Since∣∣∣∣ n+ sinnx

3n− sin2 nx
− 1

3

∣∣∣∣ =

∣∣∣∣3 sinnx+ sin2 nx

3(3n− sin2 nx)

∣∣∣∣ ≤ 4

3(3n− 1)
→ 0 as n→∞,

we conclude that the integrand converges uniformly to the constant function 1/3. Since
uniform convergence permits interchange of limit and integration, the integral is π/3. �

6. For each n ∈ N, you are given a differentiable function fn : R→ R that satisfies

fn(0) = 2019, |f ′n(t)| ≤ 321 + |t|201 for all t ∈ R.

Prove that there exists f : R→ R and a subsequence fnk
with the following property: for

every compact subset K of R, fnk
→ f uniformly on K. Clearly identify the principal

theorems and methods that you apply.

Hint. Prove that the family of functions {fn : n ≥ 1} is equicontinous. Use Arzela-Ascoli
to find susequences S1 ⊃ S2 ⊃ · · · ⊃ Sj ⊃ · · · such that {fn : n ∈ Sj} is uniformly
convergent on [−j, j]. Diagonalize. �

7. The Arzela-Ascoli theorem can be rephrased as: “if {fn : n ≥ 1} is a sequence of real-
valued, equicontinuous and uniformly bounded functions on a compact metric space X,
then {fn} has a uniformly convergent subsequence”. A website you found claims that the
following is a proof of this theorem. Determine whether the proof is correct or incorrect.

Proof. Let F = {fn : n ≥ 1}. Since F is equicontinuous and X is compact, given ε > 0,
there is δ > 0 such that

(2) d(x, y) < δ =⇒ |fn(x)− fn(y)| < ε

3
for all n.
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Compact also implies totally bounded, so X is totally bounded. Hence we can find finitely
many points {xk : 1 ≤ k ≤ K} ⊆ X such that

X =
K⋃
k=1

B(xk; δ).

Recall that F is known to be uniformly bounded (say by the finite constant M), so each
one of the K sequences {fn(xk) : n ≥ 1} is an infinite sequence in [−M,M ]. By the
compactness of [−M,M ], and we can find subsequence n1 < n2 < · · · < n` < · · · → ∞
such that

lim
`→∞

fn`
(xk) exists for all 1 ≤ k ≤ K.

Since any convergent sequence is Cauchy, we can find N such that for all n`, n`′ ≥ N ,

(3) |fn`
(xk)− fn`′

(xk)| <
ε

3
for all n`, n`′ ≥ N and for all 1 ≤ k ≤ K.

We claim that {fn`
: ` ≥ 1} is the desired uniformly convergent subsequence. This will

follow if we can show that {fn`
: ` ≥ 1} is uniformly Cauchy. To see this, given x ∈ X,

first identify the index k such that d(x, xk) < δ. Then for all n`, n`′ ≥ N ,

|fn`
(x)− fn`′

(x)| ≤ |fn`
(x)− fn`

(xk)|+ |fn`
(xk)− fn`′

(xk)|+ |fn`′
(xk)− fn`′

(x)|

<
ε

3
+
ε

3
+
ε

3
= ε.

In the estimation above, we have used the equicontinuity criteron (2) to bound the first
and the third term, and the pointwise Cauchy criterion (3) to bound the second. This
allows us to conclude that ||fn`

− fn`′
||∞ < ε for all n`, n`′ ≥ N , and we are done. �

Hint. The subsequence n` depends on ε; it should be chosen at the outset and should work
for all ε. �


