Math 321 Midterm 2 Solutions

1. (a) When is a function $\alpha:[a, b] \rightarrow \mathbb{R}$ said to be of bounded variation?

Solution. A function $\alpha:[a, b] \rightarrow \mathbb{R}$ is said to be of bounded variation if its total variation $V_{a}^{b} \alpha$ is finite. The total variation is defined to be

$$
V_{a}^{b} \alpha=\sup _{P} \sum_{i=1}^{n}\left|\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right|
$$

where the supremum is taken over all partitions $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ of $[a, b]$.
(b) Determine whether the function $\alpha:[0,1] \rightarrow \mathbb{R}$ given by

$$
\alpha(x)= \begin{cases}\log (1+x) \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is of bounded variation.
Solution. The given function α is not of bounded variation. To see this, let us choose, for every large integer N, a partition P_{N} of $[0,1]$ of the form

$$
P_{N}=\left\{1=t_{0}>t_{1}>t_{2}>\cdots t_{2 N}>t_{2 N+1}=0\right\}, \text { where } t_{k}=\frac{2}{k \pi}, 1 \leq k \leq 2 N
$$

Since $\sin \left(1 / t_{k}\right)$ vanishes for even k and equals ± 1 for odd k, one of the terms in any pair $\left(\alpha\left(t_{k}\right), \alpha\left(t_{k+1}\right)\right)$ must vanish. This means that

$$
\left|\alpha\left(t_{k}\right)-\alpha\left(t_{k+1}\right)\right|=\log \left(1+s_{k}\right) \text { where } s_{k}= \begin{cases}t_{k} & \text { if } k \text { is odd } \\ t_{k+1} & \text { if } k \text { is even }\end{cases}
$$

In other words,

$$
\begin{equation*}
\sum_{k=1}^{N}\left|\alpha\left(t_{k}\right)-\alpha\left(t_{k-1}\right)\right| \geq \sum_{k=1}^{N} \log \left(1+t_{2 k-1}\right)=\sum_{k=1}^{N} \log \left(1+\frac{2}{\pi(2 k-1)}\right) \tag{1}
\end{equation*}
$$

We know that

$$
\frac{\log (1+x)}{x} \rightarrow 1 \text { as } x \rightarrow 0
$$

Therefore by limit comparison test, the last series in (1) is comparable to the partial $\operatorname{sum} \sum_{k=1}^{N} 1 / k$ of the harmonic series, which diverges to ∞ as $N \rightarrow \infty$.
(c) A linear functional $L: C[0,1] \rightarrow \mathbb{R}$ obeys the following property: for every continuously differentiable $g:[0,1] \rightarrow \mathbb{R}$,

$$
L(g)=-\int_{0}^{1} g^{\prime}(x) \cos (\pi x) d x
$$

Does there exist $\alpha \in B V[0,1]$ such that

$$
L(f)=\int_{0}^{1} f(x) d \alpha(x), \text { for every } f \in C[0,1] ?
$$

If yes, find such a function α. If not, explain why not. Clearly state any result you need to use.

Solution. Integrating by parts, we find that for every continuously differentiable function g,

$$
\begin{aligned}
L(g) & =-\left.\cos (\pi x) g(x)\right|_{x=0} ^{x=1}+\int_{0}^{1}(-\pi) \sin (\pi x) g(x) d x \\
& =g(1)+g(0)-\pi \int_{0}^{1} g(x) \sin (\pi x) d x \\
& =g(1)+g(0)+\int_{0}^{1} g(x) d(\cos (\pi x)) .
\end{aligned}
$$

The last expression is linear in g, is meaningful for every continuous function g (not merely continuously differentiable), and is bounded above in absolute value by a constant multiple of $\|g\|_{\infty}$. Thus by the Riesz representation theorem, L is given by a Riemann-Stieltjes integral with respect to an integrator $\alpha \in B V[0,1]$. In this case, one possible choice of α is the following:

$$
\alpha(x)=\cos (\pi x)+ \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } 0<x<1 \\ 2 & \text { if } x=1\end{cases}
$$

2. For each of the following statements, determine whether it is true or false. The answer should be in the form of a short proof or an example, as appropriate.
(a) There exists a bounded function on $[a, b]$ that fails to be Riemann-Stieltjes integrable with respect to every nondecreasing non-constant integrator α.

Proof. True. The function

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

is such a function. For any nondecreasing α such that $\alpha(a)<\alpha(b)$, and any partition P of $[a, b]$,

$$
L_{\alpha}(P, f)=0, \text { but } U_{\alpha}(P, f)=\alpha(b)-\alpha(a)
$$

Hence Riemann's condition fails.
(b) The class $C[a, b]$ consists of all functions that are Riemann-Stieltjes integrable on $[a, b]$ with respect to every nondecreasing integrator α.

Proof. True. Let $\mathcal{R}_{\alpha}[a, b]$ denote the class of functions that are Riemann-Stieltjes integrable with respect to the integrator α. Using Riemann's condition, we have shown in class that $C[a, b] \subseteq \mathcal{R}_{\alpha}[a, b]$ for every nondecreasing α. Conversely, suppose f is discontinuous at a point $x_{0} \in[a, b]$. This means that

$$
\sup \left\{|f(x)-f(y)|: x, y \in\left(x_{0}-\delta, x_{0}+\delta\right)\right\} \rightarrow \epsilon_{0}>0 \text { as } \delta \rightarrow 0+
$$

Let α be a nondecreasing step function with a unit jump only at the point x_{0}, with the same-sided discontinuity as f. Then for any sufficiently fine partition P with x_{0} as a partition point, we have

$$
U_{\alpha}(P, f)-L_{\alpha}(P, f) \geq \epsilon_{0}
$$

which violates Riemann's condition.
(c) The Fourier series of a continuous 2π-periodic function f converges to f in the L^{1} norm $\|\cdot\|_{1}$. Recall

$$
\|f\|_{1}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)| d x
$$

Proof. True. By the Cauchy-Schwarz inequality, $\|g\|_{1} \leq\|g\|_{2}$ for any Riemannintegrable function g. Let $S_{N} f$ denote the N th partial Fourier sum of f. Since we know that $\left\|S_{N} f-f\right\|_{2} \rightarrow 0$ by Plancherel's theorem, it follows from the inequality above that $\left\|S_{N} f-f\right\|_{1} \rightarrow 0$ as $N \rightarrow \infty$.
(d) For any bounded, Riemann integrable function f, the sequence of Fourier coefficients $\{\widehat{f}(k): k \geq 0\}$ converges to zero.

Proof. True. Since a bounded Riemann-integrable function is square-integrable, we know by Plancherel's theorem that

$$
\sum_{k \in \mathbb{Z}}|\widehat{f}(k)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x<\infty
$$

Thus the left hand side is a summable series, and hence the k th summand goes to zero as $k \rightarrow \infty$.
(e) Let f be a bounded Riemann integrable function on $[-\pi, \pi]$. Then $\left\|\sigma_{N} f-f\right\|_{1} \rightarrow 0$ as $N \rightarrow \infty$. Here $\sigma_{N} f$ denotes the N th partial Cesaro sum of f.

Solution. Fix $\epsilon>0$. By HW 7 Problem 4(a) we know that there exists a continuous 2π-periodic function g such that $\|f-g\|_{2}<\epsilon$. By Fejer's theorem, we know that $\left\|\sigma_{N} g-g\right\|_{\infty} \rightarrow 0$ as $N \rightarrow \infty$. Combining these steps together and using the triangle inequality, we find that

$$
\begin{aligned}
\left\|\sigma_{N} f-f\right\|_{1} & \leq\left\|\sigma_{N}(f-g)\right\|_{1}+\|f-g\|_{1}+\left\|\sigma_{N} g-g\right\|_{1} \\
& \leq 2\|f-g\|_{1}+\left\|\sigma_{N} g-g\right\|_{\infty} \\
& \leq 2 \epsilon+\left\|\sigma_{N} g-g\right\|_{\infty} \rightarrow 2 \epsilon \text { as } N \rightarrow \infty .
\end{aligned}
$$

The estimate $\left\|\sigma_{N}(f-g)\right\|_{1} \leq\|f-g\|_{1}$ used in the second step follows from the fact that for any function h,

$$
\begin{aligned}
\left\|\sigma_{N} h\right\|_{1}=\left\|K_{N} * h\right\|_{1} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(x-y) h(y) d y\right| d x \\
& \leq\left\|K_{N}\right\|_{1}\|h\|_{1}=\|h\|_{1}
\end{aligned}
$$

where K_{N} denotes the Fejer kernel.
3. Let $\alpha, \beta>0$. Evaluate the sum

$$
S=\sum_{m \in \mathbb{Z}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} x^{2 \alpha} y^{2 \beta} \cos (m(x+y)) d y d x
$$

Solution. Let us define 2π-periodic functions f_{α} and f_{β} as follows:

$$
f_{\alpha}(x)=(-x)^{2 \alpha}, \quad f_{\beta}(x)=x^{2 \beta}, \quad x \in[-\pi, \pi) .
$$

We first simplify S as follows:

$$
\begin{aligned}
S & =\operatorname{Re}\left[\sum_{m \in \mathbb{Z}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} x^{2 \alpha} y^{2 \beta} e^{i m(x+y)} d y d x\right] \\
& =\operatorname{Re}\left[\sum_{m \in \mathbb{Z}}\left\{\int_{-\pi}^{\pi} x^{2 \alpha} e^{i m x} d x\right\} \overline{\left\{\int_{-\pi}^{\pi} y^{2 \beta} e^{-i m y} d y\right\}}\right] \\
& =\operatorname{Re}\left[\sum_{m \in \mathbb{Z}}\left\{\int_{-\pi}^{\pi}(-x)^{2 \alpha} e^{-i m x} d x\right\} \overline{\left\{\int_{-\pi}^{\pi} y^{2 \beta} e^{-i m y} d y\right\}}\right] \\
& =4 \pi^{2} \operatorname{Re} \sum_{m \in \mathbb{Z}} \widehat{f}_{\alpha}(m) \overline{\widehat{f}_{\beta}(m)} \\
& =4 \pi^{2} \operatorname{Re}\left[\left\langle\widehat{f}_{\alpha}, \widehat{f}_{\beta}\right\rangle_{\ell^{2}}\right]=4 \pi^{2} \operatorname{Re}\left[\left\langle f_{\alpha}, f_{\beta}\right\rangle_{L^{2}}\right]=2 \pi \int_{-\pi}^{\pi} f_{\alpha}(x) \overline{f_{\beta}(x)} d x \\
& =\frac{2 \pi^{2 \alpha+2 \beta+1}}{2 \alpha+2 \beta+1} \operatorname{Re}\left(1-(-1)^{2 \alpha+2 \beta+1}\right) .
\end{aligned}
$$

The third last inequality is a consequence of the fact that inner product is preserved under the Fourier transform.

Remark: If we assume that α, β are positive integers, then the proof permits an additional simplification. Now the functions $f_{\alpha}(x)=x^{2 \alpha}, f_{\beta}(x)=x^{2 \beta}$ are even, and hence their Fourier series do not contain any terms involving sines. Combining this fact with the trig identity $\cos (a+b)=\cos a \cos b-\sin a \sin b$, we find that

$$
\begin{aligned}
S & =\sum_{m \in \mathbb{Z}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} x^{2 \alpha} y^{2 \beta} \cos (m x) \cos (m y) d y d x \\
& =4 \pi^{2} \sum_{m \in \mathbb{Z}} \widehat{f}_{\alpha}(m) \widehat{f}_{\beta}(m)=4 \pi^{2}\left\langle\widehat{f}_{\alpha}, \widehat{f}_{\beta}\right\rangle_{\ell^{2}} \\
& =4 \pi^{2}\left\langle f_{\alpha}, f_{\beta}\right\rangle_{L^{2}}=2 \pi \int_{-\pi}^{\pi} f_{\alpha}(x) f_{\beta}(x) d x=\frac{4 \pi^{2(\alpha+\beta+1)}}{2(\alpha+\beta)+1} .
\end{aligned}
$$

The fourth inequality is a consequence of the fact that inner product is preserved under the Fourier transform.
4. (Extra credit) Define the frequency support of a function f to be

$$
\operatorname{supp}(\widehat{f}):=\{n \in \mathbb{Z}: \widehat{f}(n) \neq 0\},
$$

where $\widehat{f}(n)$ denotes the n-th Fourier coefficient. Let \mathcal{F} denote the class of all continuous functions whose frequency support is contained in $[-10,10]$. Given any "gap" sequence $\left\{d_{k}: k \geq 1\right\} \subseteq \mathbb{N}$, find a continuous function g with the following frequency-replicating feature: for every $f \in \mathcal{F}$,

$$
\begin{aligned}
& \operatorname{supp}[\widehat{(f g)}]=\bigcup_{k=1}^{\infty} A_{k}, \text { with } \\
& A_{k}:=\left\{a_{k}+n: n \in \operatorname{supp}(\widehat{f})\right\} \text { for some integer } a_{k}, \text { and } \\
& \operatorname{dist}\left(A_{k}, A_{k^{\prime}}\right) \geq d_{k}+\cdots+d_{k^{\prime}-1} \text { for all } k<k^{\prime} .
\end{aligned}
$$

Solution. For a sequence $\left\{a_{k}\right\}$ specified by

$$
\begin{aligned}
& a_{1}=0, \quad a_{2}=20+d_{1}, \quad a_{3}=40+d_{1}+d_{2}, \cdots, \\
& a_{k}=20+a_{k-1}+d_{k-1}=20(k-1)+d_{1}+\cdots d_{k-1},
\end{aligned}
$$

set

$$
g(t)=\sum_{k=1}^{\infty} \frac{e^{i a_{k} t}}{k^{2}}
$$

By the Weierstrass M-test, g is a continuous function. By construction, $\operatorname{supp}(\widehat{g})=\left\{a_{k}\right.$: $k \geq 1\}$. We will now show that g has the required properties.

Since every $f \in \mathcal{F}$ is a trigonometric polynomial, it matches its Fourier series:

$$
f(x)=\sum_{m \in \mathbb{Z} \cap[-10,10]} \widehat{f}(m) e^{i m x}
$$

Substituting this into the integral expression for $\widehat{f g}$ we find that

$$
\widehat{f g}(n)=2 \pi \sum_{m \in \mathbb{Z}} \widehat{f}(m) \overline{\widehat{g}(n-m)}
$$

For this last expression to be nonzero, there must exist $m \in \operatorname{supp}(\widehat{f})$ such that $n-m \in$ $\operatorname{supp}(\widehat{g})=\left\{a_{k}: k \geq 1\right\}$. This means that $n=(n-m)+m \in a_{k}+\operatorname{supp}(\widehat{f})=A_{k}$ for some k, as desired. Finally we verify that for $k<k^{\prime}$,

$$
\begin{aligned}
\operatorname{dist}\left(A_{k}, A_{k^{\prime}}\right) & \geq \operatorname{dist}\left(a_{k}+[-10,10], a_{k^{\prime}}+[-10,10]\right) \\
& \geq\left(a_{k^{\prime}}-10\right)-\left(a_{k}+10\right) \\
& =a_{k^{\prime}}-a_{k}-20=20\left(k^{\prime}-k-1\right)+d_{k}+\cdots+d_{k^{\prime}-1} \\
& \geq d_{k}+\cdots+d_{k^{\prime}-1} .
\end{aligned}
$$

