Math 321 Midterm 2 Solutions

1. (a) When is a function « : [a,b] — R said to be of bounded variation?

Solution. A function « : [a,b] — R is said to be of bounded variation if its total
variation V2« is finite. The total variation is defined to be

Via=sup Y |a(z:) —alri)],

=1

where the supremum is taken over all partitions P = {a = z9 < 1 < -+ < z,, = b}
of [a, b]. O

Determine whether the function o : [0,1] — R given by

lo x)sin (& if ©
alx) = {O g(1+2) (z) Z}px 7: 8»

15 of bounded variation.

Solution. The given function « is not of bounded variation. To see this, let us choose,
for every large integer N, a partition Py of [0, 1] of the form

2
PN:{1:t0>t1>t2>"'t2N>t2N+1:0}, Wheretk:k—,lngQN
s

Since sin(1/tx) vanishes for even k and equals 1 for odd k, one of the terms in any
pair (a(tx), a(tgy1)) must vanish. This means that

t if k£ is odd ,

la(ty) — altg)] = log(1 + sg) where s, = S
tgyr  if Kk is even.

In other words,

N N N 2
; |aty) — altk-1)] = ;10?;(1 +tog-1) = ;bg <1 + T2k = 1)) :

We know that

log(1
M —lasz —0.
x
Therefore by limit comparison test, the last series in (1) is comparable to the partial
sum Zszl 1/k of the harmonic series, which diverges to oo as N — oo. O

A linear functional L : C[0,1] — R obeys the following property: for every continu-
ously differentiable g : [0,1] — R,

L(g) = — /01 g'(x) cos(mx) du.
Does there exist « € BVI]0,1] such that
L(f) = /1 f(z)da(z), for every f € C[0,1]?
If yes, find such a functioon a. If not, explain why not. Clearly state any result you

need to use.
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Solution. Integrating by parts, we find that for every continuously differentiable function

9,

L(g) = — cos(rz)g(x)

=91 +90) =7 [ (o) sin(ra) da

:mw+gmrgégmmwwww»

The last expression is linear in g, is meaningful for every continuous function g (not merely
continuously differentiable), and is bounded above in absolute value by a constant multiple
of ||g]lcc. Thus by the Riesz representation theorem, L is given by a Riemann-Stieltjes
integral with respect to an integrator o € BV[0,1]. In this case, one possible choice of «
is the following:

0 ifx=0,
a(z) =cos(rz)+q¢1 if0<z<l,
2 ifzx=1.

0

. For each of the following statements, determine whether it is true or false. The answer
should be in the form of a short proof or an example, as appropriate.

(a)

There exists a bounded function on [a,b] that fails to be Riemann-Stieltjes integrable
with respect to every nondecreasing non-constant integrator c.

Proof. True. The function

if
w={s i

is such a function. For any nondecreasing « such that a(a) < a(b), and any partition
P of [a,b],

Lo(P, f) =0, but Uy(P, f) = a(b) — a(a).
Hence Riemann’s condition fails. U

The class Cla,b] consists of all functions that are Riemann-Stieltjes integrable on [a, b]
with respect to every nondecreasing integrator c.

Proof. True. Let R,la,b] denote the class of functions that are Riemann-Stieltjes
integrable with respect to the integrator a. Using Riemann’s condition, we have
shown in class that Cla,b] C R,[a, b] for every nondecreasing . Conversely, suppose
f is discontinuous at a point xy € [a, b]. This means that

sup{|f(z) — f(y)| : z,y € (xg — 0,20 +0)} = €g>0asd — 0+.

Let a be a nondecreasing step function with a unit jump only at the point zy, with
the same-sided discontinuity as f. Then for any sufficiently fine partition P with z
as a partition point, we have

UO&(Paf)_LOé(Pvf)ZE()v

which violates Riemann’s condition. O
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(c) The Fourier series of a continuous 2m-periodic function f converges to f in the L*

norm || - ||1. Recall
1 s
1Al =5 [ 7@ da

—T

Proof. True. By the Cauchy-Schwarz inequality, ||g||l1 < ||g|]2 for any Riemann-
integrable function g. Let Sy f denote the Nth partial Fourier sum of f. Since we
know that ||[Syf — f|l]2 = 0 by Plancherel’s theorem, it follows from the inequality
above that ||[Syf — f|l1 — 0 as N — oc. O

(d) For any bounded, Riemann integrable function f, the sequence of Fourier coefficients
{f(k): k> 0} converges to zero.

Proof. True. Since a bounded Riemann-integrable function is square-integrable, we
know by Plancherel’s theorem that

SRR = o [ If@)Pdr <o

keZ i
Thus the left hand side is a summable series, and hence the kth summand goes to
zero as k — oo. U

(e) Let f be a bounded Riemann integrable function on [, 7]. Then |lonf — f|]1 = 0
as N — oo. Here oy f denotes the Nth partial Cesaro sum of f.

Solution. Fix e > 0. By HW 7 Problem 4(a) we know that there exists a continuous
2m-periodic function g such that ||f — g|]o < e. By Fejer’s theorem, we know that
llong — glloc = 0 as N — 0o. Combining these steps together and using the triangle
inequality, we find that
lonf = fllv < llon(f = DIl + I1f = glli + llovg = gllx
<2[|f =gl +llong — gll
<2+ |long — glloc = 2¢ as N — o0.

The estimate ||on(f — g)|l1 < ||f — gl|1 used in the second step follows from the fact
that for any function h,

llowh{ly = || Kn * hll =

/ Kn(x —y)h(y) dy| dx
< HKNHthHI = |[Al]x,
where K denotes the Fejer kernel. O

3. Let a, 8 > 0. Evaluate the sum

S = Z/w/—n **y?* cos(m(z + y)) dy d.

meZ

Solution. Let us define 2r-periodic functions f, and fz as follows:

falz) = (=2)**,  fa(z) =2,  we[-mm)



We first simplify S as follows:

sone |3 [ [ s mwdydx]
= Re Z {/ r2eime dw} {/ y2Be—imy dy}]
Lmez \/ =7 -
= Re Z {/ (—x)**eme da:} {/ y2Be—imy dy}]
_mEZ —Tr —Tr
=4n’Re Y fu(m) fa(m)
meZ
— 4rRe [{fus Fabe] = Am°Re (fus fa)o) =27 [ fola) oo o
27T2a+2ﬁ+1
— 1_ _1 2a+26+1 .
sa g 2g et (=) )
The third last inequality is a consequence of the fact that inner product is preserved under
the Fourier transform. O

Remark: If we assume that «, [ are positive integers, then the proof permits an
additional simplification. Now the functions f,(z) = z°¥, fs(z) = 2*° are even, and
hence their Fourier series do not contain any terms involving sines. Combining this fact
with the trig identity cos(a + b) = cosacosb — sinasin b, we find that

S = Z/ / 2228 cos(mar) cos(my) dy dx

meZ
— g Zfa _47'[' <fa7f5>
meZ
i 4 2(a+p+1)
= A fo fy) 1o = 2”/_ Fola) o) = gy

The fourth inequality is a consequence of the fact that inner product is preserved under
the Fourier transform.

. (Eztra credit) Define the frequency support of a function f to be
wupp(F) = {n € Z: Flw £0}.

where J?(n) denotes the n-th Fourier coefficient. Let F denote the class of all continuous
functions whose frequency support is contained in [—10,10]. Given any “gap” sequence
{dp : k > 1} C N, find a continuous function g with the following frequency-replicating
feature: for every f € F,

—

supp((fg9)] = | Ax, with

k=1
Ay ={ar+n:ne supp(f)} for some integer ay, and
diSt(Ak, Ak/) > dk + -+ dk’—l fOT all k < K.



Solution. For a sequence {ay} specified by
CLl:O, a2:20—|—d1, a3:40—|—d1+d2,--~,
ar =20+ ap_1 +di_1 = 20(k3 — 1) +dy+ - d_q,

set

o tagt

k=1
By the Weierstrass M-test, g is a continuous function. By construction, supp(g) = {ay :
k > 1}. We will now show that g has the required properties.

(&

Since every f € F is a trigonometric polynomial, it matches its Fourier series:

fly=" > Jlmye™.

meZN[—10,10]
Substituting this into the integral expression for E we find that
fg(n) =2m > f(m)g(n —m).

MmEZ

For this last expression to be nonzero, there must exist m € supp(f) such that n —m €

-~

supp(g9) = {ay : k > 1}. This means that n = (n —m) +m € a; + supp(f) = A;, for some
k, as desired. Finally we verify that for k < &/,

dist(Ay, Ag) > dist(ax + [—10,10], a + [—10, 10])
> (ap —10) — (ax + 10)
=ap —ap—20=20k"—k—1)+dp+ - +dp_
>dp+ - dpo



