
Midterm 1 Solutions

1. (a) Let (X, d) be a metric space, and let C(X;C) denote the space of continuous,
complex-valued functions on X. When is a family of functions F ⊆ C(X;C)
said to be equicontinuous at a point x0 ∈ X?

Solution. We say that a family of functions F ⊆ C(X;C) is equicontinuous at a point
x0 ∈ X if for every ε > 0, there exists a positive number δ, depending only on x0 and
ε, such that for all f ∈ F ,

(1) |f(x)− f(x0)| < ε whenever d(x, x0) < δ.

�

(b) Give an example, with justification, of an infinite family of non-constant
functions that is equicontinuous at a point.

Solution. Suppose that X = [0, 1], equipped with the standard Euclidean metric.
Then the class of functions F = {fn : n ≥ 1} given by

fn(x) =
xn

n
, x ∈ [0, 1]

We claim that F is equicontinuous at every point x0 ∈ [0, 1]. To see this, fix any
ε > 0. Then for all n > 2/ε, we have

|fn(x)− fn(x0)| ≤ |fn(x)|+ |fn(x0)| ≤
2

n
.

On the other hand, each fn, being a monomial, is continuous at x0; so there exists
δn > 0 such that

|fn(x)− fn(x0)| < ε whenever |x− x0| < δn.

Choosing δ = min{δn : 1 ≤ n ≤ 2/ε} ensures that the requirement (1) is met for all
f ∈ F . �

(c) State the Arzelà-Ascoli theorem with all accompanying hypotheses. Define
any terminology you need to use to state this theorem.

Solution. Let (X, d) be a compact metric space. Let us note that in this case C(X;C)
is a metric space endowed with the sup norm.

The Arzela-Ascoli theorem asserts that any set F ⊆ C(X;C) is compact if and only
if it is closed, uniformly bounded and equicontinuous.

Recall that F is said to be uniformly bounded if sup{|f(x)| : x ∈ X, f ∈ F} < ∞.
Equicontinuity has been defined in part (a) of this problem. �

(d) Give an example of a metric space X, and a subalgebra of C(X;R) that fails
to separate points and also vanishes at some point.

Solution. Let X = [0, 2π]. The subalgebra A of C(X;R) generated by sinx is given
by

A =
{
f : f(x) =

n∑
j=1

aj(sinx)j for some choice of a1, · · · , an ∈ R and n ≥ 1
}
.

This algebra
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• fails to separate points because f(0) = f(2π) for all f ∈ A;
• vanishes at 0, since f(0) = 0 for all f ∈ A.

�

2. Give brief answers to the following questions. The answer should be in the
form of a short proof or an example, as appropriate.

(a) Determine whether the following statement is true or false: Every contin-
uous function f in C[1, 2] can be uniformly approximated by a sequence of
even polynomials.

Solution. The statement is true.

The class of even polynomials restricted to [1, 2] is a subalgebra of C[1, 2] that sep-
arates points (eg f(x) = x2) and vanishes at no point (same f). Thus by Stone-
Weierstrass theorem, it is dense in C[1, 2], i.e., every continuous function on [1, 2] can
be uniformly approximated on this interval by a sequence of even polynomials. �

(b) Determine whether the following statement is true or false: Every contin-
uous function f in C[1, 2] can be uniformly approximated by a sequence of
odd polynomials.

Solution. The statement is true.

Given any f ∈ C[1, 2], set g(t) = f(t)/t. Then g ∈ C[1, 2]. By part (a), there exists
an even polynomial P of the form

P (t) =
n∑

j=0

ajx
2j such that |g(t)− P (t)| < ε/2 for all t ∈ [1, 2].

Multiplying both sides of the inequality by t, we find that

|f(t)− tP (t)| < t
ε

2
< ε for all t ∈ [1, 2].

Since tP (t) is an odd polynomial, we are done. �

(c) Would your answers to parts (a) and (b) change if f lies in C[0, 1]? State
your answers clearly and prove them.

Solution. The answer to part (a) would not change since the class of even polynomials
on [0, 1] remains an algebra that separates points and vanishes at no point. The answer
to (b) would change since any odd polynomial must vanish at the origin, so it would
not be possible to approximate a continuous function that is nonvanishing at the
origin by a sequence of odd polynomials. �

(d) Let {fn : n ≥ 1} be a sequence in C([a, b];R) with no uniformly convergent
subsequence. Define a function Fn as

Fn(x) =

∫ x

a

sin(fn(t)) dt, x ∈ [a, b].

Does {Fn : n ≥ 1} have a uniformly convergent subsequence?

Proof. Yes. We observe that the family of functions F = {Fn : n ≥ 1} is

• uniformly bounded, since ||Fn||∞ ≤ (b− a);
• equicontinuous, since |Fn(x)− Fn(y)| ≤ |x− y|.
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Thus by Arzela-Ascoli theorem, F is compact; in other words every infinite sequence
in F has a convergent subsequence. �

3. Evaluate with justification

lim
n→∞

∫ 1

0

πn+ sinnx

2n+ cos(n2x)
dx.

(20 points)

Solution. If we can prove that the integrand converges uniformly to π/2 on [0, 1], then we
can interchange limit and integration to conclude that the limit is π/2. To prove uniform
convergence, we observe that∣∣∣ πn+ sinnx

2n+ cos(n2x)
− π

2

∣∣∣ =
∣∣∣2 sinnx− π cos(n2x)

2n+ cos(n2x)

∣∣∣ ≤ 2 + π

2n− 1
.

The right hand side is independent of x, and converges to 0 as n → ∞, establishing the
desired uniform convergence. �

4. Let f : Rn → R denote the function

f(x) = e−|x|
2

, x = (x1, · · · , xn), |x| =
√
x21 + · · ·+ x2n.

Can there exist a sequence {pk} of polynomials in n variables that converges
to f uniformly on every compact subset of Rn?

Solution. Such a sequence of polynomials exists. By the Stone-Weierstrass theorem, poly-
nomials in n variables are dense in C[−k, k]n for every k ≥ 1. Since f is continuous on
Rn, we can therefore find a polynomial pk such that

(2) |f(x)− pk(x)| < 1

k
for all x ∈ Rk = [−k, k]n.

We claim that pk → f uniformly on every compact subset of Rn. Indeed given any
compact set R ⊆ Rn, there exists k0 such that R ⊆ Rk for all k ≥ k0. The condition (2)
then implies that for all k ≥ k0,

sup
x∈R
|f(x)− pk(x)| ≤ sup

x∈Rk

|f(x)− pk(x)| < 1

k
→ 0 as k →∞,

proving the claim. �


