Math 321 Assignment 5 Due Wednesday, February 13 at 9AM on Canvas

Instructions

- (i) Solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- 1. Given a nonconstant, non-decreasing function $\alpha : [a, b] \to \mathbb{R}$, let $\mathcal{R}_{\alpha}[a, b]$ denote the collection of all bounded, real-valued functions on [a, b] that are Riemann-Stieltjes integrable with respect to α . Determine whether $\mathcal{R}_{\alpha}[a, b]$ is
 - (a) a vector space,
 - (b) a lattice (this means if $f \in \mathcal{R}_{\alpha}[a, b]$, then $|f| \in \mathcal{R}_{\alpha}[a, b]$),
 - (c) an algebra.
- 2. This problem focuses on computing the Riemann-Stieltjes integral for specific integrators.
 - (a) Let $x_0 = a < x_1 < x_2 < \cdots < x_n = b$ be a fixed collection of points in [a,b], and let α be a non-decreasing step function on [a,b] that is constant on each of the open intervals (x_{i-1},x_i) and has jumps of size $\alpha_i = \alpha(x_i+) \alpha(x_i-)$ at each of the points x_i . For i=0 and n, we make the obvious adjustments

$$\alpha_0 = \alpha(a+) - \alpha(a), \qquad \alpha_n = \alpha(b) - \alpha(b-).$$

If a bounded function $f:[a,b]\to\mathbb{R}$ is continuous at each of the points x_i , show that $f\in\mathcal{R}_{\alpha}[a,b]$ and

$$\int_{a}^{b} f \, d\alpha = \sum_{i=0}^{n} f(x_i) \alpha_i.$$

- (b) If a function f is continuous on [1, n], compute $\int_1^n f(x)d[x]$, where [x] is the greatest integer in x. What is the value of $\int_1^t f(x)d[x]$ if t is not an integer?
- (c) Suppose that $f \in C([a,b];\mathbb{R})$ and α is continuously differentiable on [a,b] with a non-negative first derivative. Express the Riemann-Stieltjes integral

$$\int_a^b f d\alpha$$

as a Riemann integral involving f and α' .

- 3. Explain whether each of the following statements is true or false.
 - (a) The function $\chi_{\mathbb{Q}}$ is Riemann integrable on [0,1]. Remark: Given any set E, the notation χ_E denotes the characteristic or indicator function on E: more precisely,

1

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{otherwise.} \end{cases}$$

- (b) The function χ_{Δ} is Riemann integrable on [0, 1], where Δ is the Cantor middle-third set.
- (c) $\bigcap_{\alpha} \{ \mathcal{R}_{\alpha}[a, b] : \alpha \text{ a non-decreasing integrator} \} = C([a, b]; \mathbb{R}).$
- (d) If f is a monotone function and α is both continuous and non-decreasing, then $f \in \mathcal{R}_{\alpha}[a, b]$.
- (e) There exists a non-decreasing function $\alpha : [a, b] \to \mathbb{R}$ and a function $f \in \mathcal{R}_{\alpha}[a, b]$ such that f and α share a common-sided point of discontinuity. Recall that f and α are said to share a left-sided (respectively right-sided) discontinuity at a point $x_0 \in [a, b]$ if both f and α are discontinuous from the left (respectively right) at x_0 .
- (f) Let $f \in \mathcal{R}_{\alpha}[a,b]$, and m,M be two constants such that $m \leq f(x) \leq M$ for all $x \in [a,b]$. If φ is continuous on [m,M], then $\varphi \circ f \in \mathcal{R}_{\alpha}[a,b]$.
- (g) Let $\mathrm{BV}[a,b]$ denote the space of real-valued functions on [a,b] that are of bounded variation. Then $\mathrm{BV}[a,b]$ is complete under the norm $||\cdot||_{\mathrm{BV}}$:

 $||f||_{\text{BV}} = |f(a)| + V_a^b f$, where $V_a^b f$ denotes the total variation of f.