
Final Exam Practice Problems

1. Prove that the series
∞∑
n=0

[
x2n+1

2n+ 1
− xn+1

2n+ 2

]
converges pointwise but not uniformly on [0, 1].

2. Prove that the series
∞∑
n=1

x

nα(1 + nx2)

converges uniformly on every finite interval in R if α > 1
2
. Is the convergence uniform on

R?

3. Define two sequences fn and gn as follows:

fn(x) = x

(
1 +

1

n

)
if x ∈ R, n = 1, 2, · · ·

gn(x) =


1

n
if x = 0 or if x is irrational,

b+
1

n
if x is rational with x =

a

b
,


where, in the last line above, a, b are integers that are relatively prime, and b > 0. Set
hn(x) = fn(x)gn(x).

(a) Prove that fn and gn converge uniformly on every bounded interval.

(b) Prove that hn does not converge uniformly on any bounded interval.

4. Define the Fourier transform as follows:

f̂(ξ) =

∫
R
f(x)e−2πixξ dx.

(a) Assuming that all integrals are absolutely convergent, show that the inverse Fourier
transform is given by the formula:

f(x) =

∫
e2πixξf̂(ξ) dξ.

(b) Let f be a function that is both absolutely integrable and square integrable. State

and prove a version of Plancherel’s theorem connecting ||f ||2 and ||f̂ ||2. Here || · ||2 is
given by

||g||2 =

∫
R
|g(x)|2 dx.

(c) Prove the Riemann-Lebesgue lemma: given a function f that is absolutely integrable

on R, show that f̂(ξ)→ 0 as |ξ| → ∞.
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(d) In the second midterm, you used Plancherel’s theorem for a 2π-periodic Riemann
integrable function f to show that the Fourier coefficients of f tend to zero. Explore
whether a similar proof would work here. In other words, can (c) be deduced from
(b)?

5. Given a function f : ZN = {0, 1, · · · , N − 1}, define its discrete Fourier transform as
follows:

f̂(n) =
N−1∑
k=0

f(k)e−
2πik
N .

(a) Find a formula for the inverse of the discrete Fourier transform that expresses f in

terms of f̂ .

(b) State and prove analogues of Plancherel’s theorem and Parseval’s theorem for f and

f̂ .

6. Assume that f ∈ R[a, b]. Prove that

lim
n→∞

b− a
n

n∑
k=1

f

(
a+ k

b− a
n

)
exists and has the value

∫ b

a

f(x) dx.

Deduce that

lim
n→∞

n∑
k=1

n

k2 + n2
=
π

4
, lim

n→∞

n∑
k=1

(n2 + k2)−
1
2 = log(1 +

√
2).

7. Let pn be a polynomial of degree mn and suppose that pn converges uniformly to f on
the compact interval [a, b], where f is not a polynomial. Show that mn →∞.

8. Suppose that f : [1,∞) → C is continuous and that limx→∞ f(x) exists. True or false:
there exists a sequence of polynomials pn such that

pn(1/x) −→ f(x) uniformly on [1,∞).

9. Does there exist a sequence of polynomials pn such that pn → 0 pointwise on [0, 1], but∫ 1

0

pn(x) dx→ 3?

10. Fix α ∈ (0, 1]. Given a constant K > 0, let us recall that f ∈ Lipα([0, 1];K) if

|f(x)− f(y)| ≤ K|x− y|α for all x, y ∈ [0, 1].

Let us denote by Lipα the class of all functions on [0, 1] that belong to Lipα([0, 1];K) for
some K.

(a) Is Lipα a subspace of C[0, 1]? Is it a subalgebra?

(b) Show that Lipα is not closed in C[0, 1].
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(c) Show that Lipα is, on one hand, dense in C[0, 1], and also of first category (i.e. a
countable union of nowhere dense sets) in C[0, 1].

(d) Find a norm on Lipα under which the space is complete.

11. For K and α fixed, show that{
f ∈ Lipα([0, 1];K) : f(0) = 0

}
is a compact subset of C[0, 1].

12. Let f be a positive continuous function on the compact interval [a, b]. Determine whether
the following limit exists; if it does, find the limit

lim
n→∞

[∫ b

a

f(x)n dx

] 1
n

.

13. Suppose that βn is a bounded sequence in BV[a, b], with ||βn||BV ≤ K. Show that some
subsequence (αn) of (βn) converges pointwise to a function α ∈ BV[a, b] with ||α||BV ≤ K,
and that ∫ b

a

fdαn −→
∫ b

a

f dα for all f ∈ C[a, b].

14. Given a sequence (xn) of distinct points in (a, b) and a sequence (cn) of real numbers with∑
n |cn| <∞, define α by

α(x) =
∑
n

cnI(x− xn), where I(x) =

{
1 if x ≤ 0,

0 if x > 0.

Show that f ∈ Rα[a, b] for every f ∈ C[a, b]; then evaluate∫ b

a

f dα

in terms of cn and f(xn).

15. Determine whether the following statement is true or false: Let A be an open subset of
Rn. Suppose that f : A → Rn is a continuously differentiable function on A that has
nonvanishing Jacobian at every point in A. Then f is an open map, i.e., carries open sets
to open sets. Recall that the Jacobian of f is the determinant of the first derivative f ′ of
f .

16. Let α be non-decreasing and let f ∈ Rα[a, b]. Define

F (x) =

∫ x

a

f(x)dα(x).

Prove the following version of the fundamental theorem of calculus, adapted to Riemann-
Stieltjes integrals:

(a) F ∈ BV[a, b].
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(b) F is continuous at each point where α is continuous.

(c) F is differentiable at each point where α is differentiable and f is continuous. At any
such point F ′(x) = f(x)α′(x).

17. Determine whether the following statement is true or false. The series
∞∑
n=1

(−1)n√
n

sin
(

1 +
x

n

)
converges uniformly on R.

18. (a) Show that the Fejer kernel Kn can be written as

Kn(x) =
n∑

k=−n

(
1− |k|

n

)
eikx.

(b) Let σn(f) = Kn ∗ f . Show that for any continuous, 2π-periodic f ,

||σn(f)||2 ≤ ||f ||2 and ||σn(f)||∞ ≤ ||f ||∞.

(c) If f ∈ R[−π, π], show that σn(f)(x)→ f(x) for every point of continuity x of f .


