1. Prove that the series

$$
\sum_{n=0}^{\infty}\left[\frac{x^{2 n+1}}{2 n+1}-\frac{x^{n+1}}{2 n+2}\right]
$$

converges pointwise but not uniformly on $[0,1]$.
2. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{x}{n^{\alpha}\left(1+n x^{2}\right)}
$$

converges uniformly on every finite interval in $\mathbb{R}$ if $\alpha>\frac{1}{2}$. Is the convergence uniform on $\mathbb{R}$ ?
3. Define two sequences $f_{n}$ and $g_{n}$ as follows:

$$
\begin{aligned}
& f_{n}(x)=x\left(1+\frac{1}{n}\right) \text { if } x \in \mathbb{R}, n=1,2, \cdots \\
& g_{n}(x)=\left\{\begin{array}{ll}
\frac{1}{n} & \text { if } x=0 \text { or if } x \text { is irrational, } \\
b+\frac{1}{n} & \text { if } x \text { is rational with } x=\frac{a}{b}
\end{array}\right\}
\end{aligned}
$$

where, in the last line above, $a, b$ are integers that are relatively prime, and $b>0$. Set $h_{n}(x)=f_{n}(x) g_{n}(x)$.
(a) Prove that $f_{n}$ and $g_{n}$ converge uniformly on every bounded interval.
(b) Prove that $h_{n}$ does not converge uniformly on any bounded interval.
4. Define the Fourier transform as follows:

$$
\widehat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-2 \pi i x \xi} d x
$$

(a) Assuming that all integrals are absolutely convergent, show that the inverse Fourier transform is given by the formula:

$$
f(x)=\int e^{2 \pi i x \xi} \widehat{f}(\xi) d \xi
$$

(b) Let $f$ be a function that is both absolutely integrable and square integrable. State and prove a version of Plancherel's theorem connecting $\|f\|_{2}$ and $\|\widehat{f}\|_{2}$. Here $\|\cdot\|_{2}$ is given by

$$
\|g\|_{2}=\int_{\mathbb{R}}|g(x)|^{2} d x
$$

(c) Prove the Riemann-Lebesgue lemma: given a function $f$ that is absolutely integrable on $\mathbb{R}$, show that $\widehat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.
(d) In the second midterm, you used Plancherel's theorem for a $2 \pi$-periodic Riemann integrable function $f$ to show that the Fourier coefficients of $f$ tend to zero. Explore whether a similar proof would work here. In other words, can (c) be deduced from (b)?
5. Given a function $f: \mathbb{Z}_{N}=\{0,1, \cdots, N-1\}$, define its discrete Fourier transform as follows:

$$
\widehat{f}(n)=\sum_{k=0}^{N-1} f(k) e^{-\frac{2 \pi i k}{N}}
$$

(a) Find a formula for the inverse of the discrete Fourier transform that expresses $f$ in terms of $\widehat{f}$.
(b) State and prove analogues of Plancherel's theorem and Parseval's theorem for $f$ and $\widehat{f}$.
6. Assume that $f \in \mathcal{R}[a, b]$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right) \text { exists and has the value } \int_{a}^{b} f(x) d x
$$

Deduce that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{k^{2}+n^{2}}=\frac{\pi}{4}, \quad \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(n^{2}+k^{2}\right)^{-\frac{1}{2}}=\log (1+\sqrt{2})
$$

7. Let $p_{n}$ be a polynomial of degree $m_{n}$ and suppose that $p_{n}$ converges uniformly to $f$ on the compact interval $[a, b]$, where $f$ is not a polynomial. Show that $m_{n} \rightarrow \infty$.
8. Suppose that $f:[1, \infty) \rightarrow \mathbb{C}$ is continuous and that $\lim _{x \rightarrow \infty} f(x)$ exists. True or false: there exists a sequence of polynomials $p_{n}$ such that

$$
p_{n}(1 / x) \longrightarrow f(x) \text { uniformly on }[1, \infty)
$$

9. Does there exist a sequence of polynomials $p_{n}$ such that $p_{n} \rightarrow 0$ pointwise on $[0,1]$, but

$$
\int_{0}^{1} p_{n}(x) d x \rightarrow 3 ?
$$

10. Fix $\alpha \in(0,1]$. Given a constant $K>0$, let us recall that $f \in \operatorname{Lip}_{\alpha}([0,1] ; K)$ if

$$
|f(x)-f(y)| \leq K|x-y|^{\alpha} \text { for all } x, y \in[0,1]
$$

Let us denote by $\operatorname{Lip}_{\alpha}$ the class of all functions on $[0,1]$ that belong to $\operatorname{Lip}_{\alpha}([0,1] ; K)$ for some $K$.
(a) Is $\operatorname{Lip}_{\alpha}$ a subspace of $C[0,1]$ ? Is it a subalgebra?
(b) Show that $\operatorname{Lip}_{\alpha}$ is not closed in $C[0,1]$.
(c) Show that $\operatorname{Lip}_{\alpha}$ is, on one hand, dense in $C[0,1]$, and also of first category (i.e. a countable union of nowhere dense sets) in $C[0,1]$.
(d) Find a norm on $\operatorname{Lip}_{\alpha}$ under which the space is complete.
11. For $K$ and $\alpha$ fixed, show that

$$
\left\{f \in \operatorname{Lip}_{\alpha}([0,1] ; K): f(0)=0\right\}
$$

is a compact subset of $C[0,1]$.
12. Let $f$ be a positive continuous function on the compact interval $[a, b]$. Determine whether the following limit exists; if it does, find the limit

$$
\lim _{n \rightarrow \infty}\left[\int_{a}^{b} f(x)^{n} d x\right]^{\frac{1}{n}} .
$$

13. Suppose that $\beta_{n}$ is a bounded sequence in $\operatorname{BV}[a, b]$, with $\left\|\beta_{n}\right\|_{\mathrm{BV}} \leq K$. Show that some subsequence $\left(\alpha_{n}\right)$ of $\left(\beta_{n}\right)$ converges pointwise to a function $\alpha \in \mathrm{BV}[a, b]$ with $\|\alpha\|_{\mathrm{BV}} \leq K$, and that

$$
\int_{a}^{b} f d \alpha_{n} \longrightarrow \int_{a}^{b} f d \alpha \quad \text { for all } f \in C[a, b]
$$

14. Given a sequence $\left(x_{n}\right)$ of distinct points in $(a, b)$ and a sequence $\left(c_{n}\right)$ of real numbers with $\sum_{n}\left|c_{n}\right|<\infty$, define $\alpha$ by

$$
\alpha(x)=\sum_{n} c_{n} I\left(x-x_{n}\right), \quad \text { where } I(x)= \begin{cases}1 & \text { if } x \leq 0 \\ 0 & \text { if } x>0\end{cases}
$$

Show that $f \in \mathcal{R}_{\alpha}[a, b]$ for every $f \in C[a, b]$; then evaluate

$$
\int_{a}^{b} f d \alpha
$$

in terms of $c_{n}$ and $f\left(x_{n}\right)$.
15. Determine whether the following statement is true or false: Let $A$ be an open subset of $\mathbb{R}^{n}$. Suppose that $\mathbf{f}: A \rightarrow \mathbb{R}^{n}$ is a continuously differentiable function on $A$ that has nonvanishing Jacobian at every point in $A$. Then $\mathbf{f}$ is an open map, i.e., carries open sets to open sets. Recall that the Jacobian of $\mathbf{f}$ is the determinant of the first derivative $\mathbf{f}^{\prime}$ of f.
16. Let $\alpha$ be non-decreasing and let $f \in \mathcal{R}_{\alpha}[a, b]$. Define

$$
F(x)=\int_{a}^{x} f(x) d \alpha(x)
$$

Prove the following version of the fundamental theorem of calculus, adapted to RiemannStieltjes integrals:
(a) $F \in \mathrm{BV}[a, b]$.
(b) $F$ is continuous at each point where $\alpha$ is continuous.
(c) $F$ is differentiable at each point where $\alpha$ is differentiable and $f$ is continuous. At any such point $F^{\prime}(x)=f(x) \alpha^{\prime}(x)$.
17. Determine whether the following statement is true or false. The series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \sin \left(1+\frac{x}{n}\right)
$$

converges uniformly on $\mathbb{R}$.
18. (a) Show that the Fejer kernel $K_{n}$ can be written as

$$
K_{n}(x)=\sum_{k=-n}^{n}\left(1-\frac{|k|}{n}\right) e^{i k x} .
$$

(b) Let $\sigma_{n}(f)=K_{n} * f$. Show that for any continuous, $2 \pi$-periodic $f$,

$$
\left\|\sigma_{n}(f)\right\|_{2} \leq\|f\|_{2} \quad \text { and }\left\|\sigma_{n}(f)\right\|_{\infty} \leq\|f\|_{\infty}
$$

(c) If $f \in \mathcal{R}[-\pi, \pi]$, show that $\sigma_{n}(f)(x) \rightarrow f(x)$ for every point of continuity $x$ of $f$.

