1. Prove that the series

$$\sum_{n=0}^{\infty} \left[\frac{x^{2n+1}}{2n+1} - \frac{x^{n+1}}{2n+2} \right]$$

converges pointwise but not uniformly on [0, 1].

2. Prove that the series

$$\sum_{n=1}^{\infty} \frac{x}{n^{\alpha}(1+nx^2)}$$

converges uniformly on every finite interval in \mathbb{R} if $\alpha > \frac{1}{2}$. Is the convergence uniform on \mathbb{R} ?

3. Define two sequences f_n and g_n as follows:

$$f_n(x) = x \left(1 + \frac{1}{n} \right) \text{ if } x \in \mathbb{R}, \ n = 1, 2, \cdots$$
$$g_n(x) = \begin{cases} \frac{1}{n} & \text{if } x = 0 \text{ or if } x \text{ is irrational,} \\ b + \frac{1}{n} & \text{if } x \text{ is rational with } x = \frac{a}{b}, \end{cases}$$

where, in the last line above, a, b are integers that are relatively prime, and b > 0. Set $h_n(x) = f_n(x)g_n(x)$.

- (a) Prove that f_n and g_n converge uniformly on every bounded interval.
- (b) Prove that h_n does not converge uniformly on any bounded interval.
- 4. Define the Fourier transform as follows:

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2\pi i x \xi} \, dx$$

(a) Assuming that all integrals are absolutely convergent, show that the inverse Fourier transform is given by the formula:

$$f(x) = \int e^{2\pi i x \xi} \widehat{f}(\xi) \, d\xi.$$

(b) Let f be a function that is both absolutely integrable and square integrable. State and prove a version of Plancherel's theorem connecting $||f||_2$ and $||\hat{f}||_2$. Here $||\cdot||_2$ is given by

$$||g||_2 = \int_{\mathbb{R}} |g(x)|^2 \, dx.$$

(c) Prove the Riemann-Lebesgue lemma: given a function f that is absolutely integrable on \mathbb{R} , show that $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

- (d) In the second midterm, you used Plancherel's theorem for a 2π -periodic Riemann integrable function f to show that the Fourier coefficients of f tend to zero. Explore whether a similar proof would work here. In other words, can (c) be deduced from (b)?
- 5. Given a function $f : \mathbb{Z}_N = \{0, 1, \dots, N-1\}$, define its discrete Fourier transform as follows:

$$\hat{f}(n) = \sum_{k=0}^{N-1} f(k) e^{-\frac{2\pi i k}{N}}$$

- (a) Find a formula for the inverse of the discrete Fourier transform that expresses f in terms of \hat{f} .
- (b) State and prove analogues of Plancherel's theorem and Parseval's theorem for f and \widehat{f} .
- 6. Assume that $f \in \mathcal{R}[a, b]$. Prove that

$$\lim_{n \to \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k\frac{b-a}{n}\right) \text{ exists and has the value } \int_{a}^{b} f(x) \, dx.$$

Deduce that

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{k^2 + n^2} = \frac{\pi}{4}, \qquad \lim_{n \to \infty} \sum_{k=1}^{n} (n^2 + k^2)^{-\frac{1}{2}} = \log(1 + \sqrt{2}).$$

- 7. Let p_n be a polynomial of degree m_n and suppose that p_n converges uniformly to f on the compact interval [a, b], where f is not a polynomial. Show that $m_n \to \infty$.
- 8. Suppose that $f : [1, \infty) \to \mathbb{C}$ is continuous and that $\lim_{x\to\infty} f(x)$ exists. True or false: there exists a sequence of polynomials p_n such that

$$p_n(1/x) \longrightarrow f(x)$$
 uniformly on $[1, \infty)$.

9. Does there exist a sequence of polynomials p_n such that $p_n \to 0$ pointwise on [0, 1], but

$$\int_0^1 p_n(x) \, dx \to 3?$$

10. Fix $\alpha \in (0,1]$. Given a constant K > 0, let us recall that $f \in \operatorname{Lip}_{\alpha}([0,1];K)$ if

 $|f(x) - f(y)| \le K |x - y|^{\alpha} \text{ for all } x, y \in [0, 1].$

Let us denote by $\operatorname{Lip}_{\alpha}$ the class of all functions on [0,1] that belong to $\operatorname{Lip}_{\alpha}([0,1];K)$ for some K.

- (a) Is $\operatorname{Lip}_{\alpha}$ a subspace of C[0, 1]? Is it a subalgebra?
- (b) Show that $\operatorname{Lip}_{\alpha}$ is not closed in C[0, 1].

- (c) Show that $\operatorname{Lip}_{\alpha}$ is, on one hand, dense in C[0,1], and also of first category (i.e. a countable union of nowhere dense sets) in C[0,1].
- (d) Find a norm on $\operatorname{Lip}_{\alpha}$ under which the space is complete.
- 11. For K and α fixed, show that

$$\{f \in \operatorname{Lip}_{\alpha}([0,1];K) : f(0) = 0\}$$

is a compact subset of C[0, 1].

12. Let f be a positive continuous function on the compact interval [a, b]. Determine whether the following limit exists; if it does, find the limit

$$\lim_{n \to \infty} \left[\int_a^b f(x)^n \, dx \right]^{\frac{1}{n}}.$$

13. Suppose that β_n is a bounded sequence in BV[a, b], with $||\beta_n||_{BV} \leq K$. Show that some subsequence (α_n) of (β_n) converges pointwise to a function $\alpha \in BV[a, b]$ with $||\alpha||_{BV} \leq K$, and that

$$\int_{a}^{b} f d\alpha_{n} \longrightarrow \int_{a}^{b} f d\alpha \quad \text{ for all } f \in C[a, b].$$

14. Given a sequence (x_n) of distinct points in (a, b) and a sequence (c_n) of real numbers with $\sum_n |c_n| < \infty$, define α by

$$\alpha(x) = \sum_{n} c_n I(x - x_n), \quad \text{where } I(x) = \begin{cases} 1 & \text{if } x \le 0, \\ 0 & \text{if } x > 0. \end{cases}$$

Show that $f \in \mathcal{R}_{\alpha}[a, b]$ for every $f \in C[a, b]$; then evaluate

$$\int_{a}^{b} f \, d\alpha$$

in terms of c_n and $f(x_n)$.

- 15. Determine whether the following statement is true or false: Let A be an open subset of \mathbb{R}^n . Suppose that $\mathbf{f} : A \to \mathbb{R}^n$ is a continuously differentiable function on A that has nonvanishing Jacobian at every point in A. Then \mathbf{f} is an open map, i.e., carries open sets to open sets. Recall that the Jacobian of \mathbf{f} is the determinant of the first derivative \mathbf{f}' of \mathbf{f} .
- 16. Let α be non-decreasing and let $f \in \mathcal{R}_{\alpha}[a, b]$. Define

$$F(x) = \int_{a}^{x} f(x) d\alpha(x)$$

Prove the following version of the fundamental theorem of calculus, adapted to Riemann-Stieltjes integrals:

(a) $F \in BV[a, b]$.

- (b) F is continuous at each point where α is continuous.
- (c) F is differentiable at each point where α is differentiable and f is continuous. At any such point $F'(x) = f(x)\alpha'(x)$.
- 17. Determine whether the following statement is true or false. The series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \sin\left(1 + \frac{x}{n}\right)$$

converges uniformly on \mathbb{R} .

18. (a) Show that the Fejer kernel K_n can be written as

$$K_n(x) = \sum_{k=-n}^n \left(1 - \frac{|k|}{n}\right) e^{ikx}.$$

- (b) Let $\sigma_n(f) = K_n * f$. Show that for any continuous, 2π -periodic f, $||\sigma_n(f)||_2 \le ||f||_2$ and $||\sigma_n(f)||_{\infty} \le ||f||_{\infty}$.
- (c) If $f \in \mathcal{R}[-\pi,\pi]$, show that $\sigma_n(f)(x) \to f(x)$ for every point of continuity x of f.