1. Let c_0 denote the linear space, equipped with sup norm, of all real sequences that tend to zero. Describe the spaces c_0^* and c_0^{**} , and use these to determine whether c_0 is reflexive.

Solution. We will show that c_0^* is isometrically isomorphic to $\ell^1(\mathbb{N})$, the space of all absolutely summable real sequences. By a theorem stated in class, we then have that $c_0^{**} = (\ell^1(\mathbb{N}))^* \cong \ell^{\infty}(\mathbb{N})$. Since the latter space is strictly larger than c_0 , this shows that c_0 is not reflexive.

Let $\Phi: \ell^1(\mathbb{N}) \to c_0^*$ be given by

$$\Phi(\boldsymbol{\alpha}) = T_{\boldsymbol{\alpha}}, \quad \text{where} \quad T_{\boldsymbol{\alpha}}(\mathbf{x}) = \sum_{n} \alpha_n x_n, \quad \mathbf{x} = (x_n) \in c_0, \; \boldsymbol{\alpha} = (\alpha_n) \in \ell^1.$$

Clearly, $T_{\boldsymbol{\alpha}}$ is linear, with $|T_{\boldsymbol{\alpha}}(\mathbf{x})| \leq ||\mathbf{x}||_{\infty} ||\boldsymbol{\alpha}||_1$, so $||T_{\boldsymbol{\alpha}}||_{\text{op}} \leq ||\boldsymbol{\alpha}||_1$. Choosing sequences $\mathbf{x}^{(N)}$ whose entries are of the form

$$x_n^{(N)} = \begin{cases} 1 & \text{if } n \le N \text{ and } \alpha_n > 0, \\ -1 & \text{if } n \le N \text{ and } \alpha_n < 0, \\ 0 & \text{otherwise,} \end{cases}$$

we see that $||\mathbf{x}^{(N)}||_{\infty} = 1$ for all sufficiently large N and that

$$T_{\boldsymbol{\alpha}}(\mathbf{x}^{(N)}) = \sum_{n=1}^{N} |\alpha_n| \longrightarrow ||\boldsymbol{\alpha}||_1 \quad \text{as } N \to \infty.$$

This shows that $||T_{\boldsymbol{\alpha}}|| \geq ||\boldsymbol{\alpha}||_1$, and hence $||T_{\boldsymbol{\alpha}}||_{\text{op}} = ||\boldsymbol{\alpha}||_1$.

It remains to show that Φ is surjective, i.e., any $T \in c_0^*$ is of the form $T = T_{\alpha}$ for some $\alpha \in \ell^1(\mathbb{N})$. Define $\alpha_n = T(\mathbf{e}_n)$, where \mathbf{e}_n is the *n*-th canonical basis vector. Let \mathcal{E} denote the span of the vectors $\{\mathbf{e}_n\}$, i.e., the vector space of all sequences that have only finitely many nonzero terms. We observe that for each $x \in \mathcal{E}$,

$$T(\mathbf{x}) = T(\sum_{n} x_n \mathbf{e}_n) = \sum_{n} x_n T(\mathbf{e}_n) = \sum_{n} x_n \alpha_n = T_{\boldsymbol{\alpha}}(\mathbf{x}).$$

Choosing sequences $\mathbf{x}^{(N)}$ as above and recalling that T is bounded, we see that for all sufficiently large $N \ge 1$,

$$\sum_{n=1}^{N} |\alpha_n| = T_{\boldsymbol{\alpha}}(\mathbf{x}^{(N)}) = T(\mathbf{x}^{(N)}) \le ||T|| < \infty, \quad \text{hence } \boldsymbol{\alpha} \in \ell^1(\mathbb{N}).$$

Since the two bounded linear operators T and T_{α} agree on the dense subspace \mathcal{E} of c_0 , we conclude that $T = T_{\alpha}$ as claimed.