Math 421/510 Quiz 5 Solution

1. Is it possible to define an inner product on $C[0,1]$ which induces the sup norm? Recall that the sup norm is given by

$$
\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)| .
$$

(10 points)
Solution. If the sup norm was indeed generated by an inner product, then it would have to obey the parallelogram law:

$$
\left\|f_{1}+f_{2}\right\|_{\infty}^{2}+\left\|f_{1}-f_{2}\right\|_{\infty}^{2}=2\left(\left\|f_{1}\right\|_{\infty}^{2}+\left\|f_{2}\right\|_{\infty}^{2}\right)
$$

It is easy to check that this identity is fase; try for example $f_{1} \equiv 1, f_{2}(x)=x$.
Here is a related question: does there exist an inner product on $C[0,1]$ there generates the same topology as that of the sup norm? Note that the above solution does not suffice in this case.

