- 1. Let X be an infinite-dimensional Banach space. Show that every Hamel basis of X is uncountable.
- 2. (a) Show that the vector space of polynomials is dense in C[0,1] equipped with the sup norm, but the monomials $\{x^n : n \ge 0\}$ do not form a Schauder basis of C[0,1].
 - (b) Does C[0,1] have a Schauder basis? If yes, find one. If not, explain why not.
- 3. (a) Let X be a normed space, and Y a proper subspace. Denote by X^* the space of all bounded linear functionals on X. Show that if $\ell \in Y^*$, then there exists $L \in X^*$ such that $L|_Y \equiv \ell$ and $||L|| = ||\ell||$.
 - (b) Use the above to show that if X is a normed vector space and $x \in X$, then $||x|| = \sup \{|\ell(x)| : \ell \in X^* \text{ and } ||\ell|| \le 1\}.$
- 4. Here is another "separation" theorem for you to prove: Let Y be a proper closed subspace of X, $u \in X \setminus Y$ and $\rho = \operatorname{dist}(u, Y)$. Show that there exists a linear functional $\ell \in X^*$ such that $\ell(u) = 1$, $\ell \equiv 0$ on Y, and $||\ell|| = \rho^{-1}$.
- 5. Show that there is a linear functional ℓ of norm 1 on the space of real bounded sequences that generalizes the concept of limits, in the following sense:
 - ℓ is shift-invariant, i.e. $\ell(x_1, x_2, \cdots) = \ell(x_2, x_3, \cdots),$
 - $\ell(x) = \lim_{n \to \infty} x_n$ for convergent sequences $x = (x_1, x_2, \cdots),$
 - ℓ is nonnegative for nonnegative sequences.
 - A linear functional of this type is called a *Banach limit*.