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1. Given any point t0 ∈ [0, 2π], show using the uniform boundedness principle that
there exists a continuous 2π-periodic function whose Fourier series diverges at t0.
We sketched a proof of this result in class. Fill in the details.

Proof. Consider the N -th Dirichlet kernel

DN(t) :=
N∑

n=−N

eint.

It is a fact that the partial sum sequence SNf(t) = (DN ∗ f)(t), where the integral
defining the convolution is normalized by a factor 1/2π:

SNf(t) =
1

2π

∫ π

−π
DN(t− s)f(s)ds.

We show this in several steps, using contradiction. Suppose for all f ∈ C[−π, π],
we have SNf(t0)→ f(t0). Then:

(a) The mapping lN : f 7→ SNf(t0) is linear and bounded from C[−π, π] :=
(C[−π, π], ‖·‖∞) to C, with a supN‖lN‖ ≤ C < ∞. This is a result of the
uniform boundedness principle.

(b) We show that this implies that SN is bounded from C[−π, π] to C[−π, π],
with the bound independent of N . Indeed, given f ∈ C[−π, π], suppose |SNf |
attains its maximum at t1. Consider the translated function g(t) := f(t+ t1−
t0), which has ‖g‖∞ = ‖f‖∞ and SNg(t0) = SNf(t1). Hence

‖SNf‖∞ = |SNf(t1)| = |SNg(t0)| ≤ C‖g‖∞ = C‖f‖∞.

(c) We state a special case of the Young’s convolution theorem:

Theorem 1. Let (X,µ) be a measure space, and g be a measurable function.
The convolution operator T : f 7→ f ∗ g is bounded from L∞ to L∞ if and only
if g ∈ L1. Moreover, ‖T‖L∞→L∞ = ‖g‖L1

.

Now in our situation, supN‖SN‖ <∞ implies that supN‖DN‖1 <∞.
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(d) Lastly, we show the above cannot happen. Direct computation shows that

DN(x) =
sin
(
N + 1

2

)
x

sin
(
1
2
x
) .

By considering the integral over |x| ∈ [kπ/(N + 1
2
), (k + 1)π/(N + 1

2
)] for each

k, we see ‖DN‖1 is bounded below by a constant times the first N terms of the
harmonic series. Letting N → ∞, we have ‖DN‖1 → ∞, contradiction to the
conclusion above.

2. In class, we introduced the concept of a locally convex space, whose topology is
generated by a family of seminorms. When is such a topology equivalent to a
metric topology? A norm topology?

Note: If X is locally convex, it separates points by definition taught in class.

(a) We claim such a topology is a metric topology if and only if it is generated by
a countable family of seminorms.

Proof. (“⇐= ”) Let {pi}∞i=1 be the countable family of seminorms that gener-
ates a topology on X. Then we define a metric by

d(x, y) :=
∞∑
i=1

2−i
pi(x− y)

1 + pi(x− y)
.

It is direct to check that d is a metric. Indeed, d(x, y) ≥ 0, and if d(x, y) = 0,
then pi(x− y) = 0 for all i. Since {pi} separates points, we have x = y.

Symmetry is trivial. For the triangle inequality, refer to the following question:

https://math.stackexchange.com/questions/309198/if-d-is-a-metric-

then-d-1d-is-also-a-metric.

It remains to show d generates the same topology as {pi}∞i=1 does. By transla-
tion invariance, it suffice to consider their neighbourhood bases at 0:

Bd(ε) := {x ∈ X : d(x, 0) < ε},
n⋂
i=1

Bi(εi) := {x ∈ X : pi(x) < εi ∀1 ≤ i ≤ n}.

• Given ε > 0, take N such that
∑∞

i=N+1 2−i < ε/2. Take εi := ε/2 for all
1 ≤ i ≤ N . Thus if pi(x) < ε/2 for all 1 ≤ i ≤ N , we have

d(x, 0) ≤
N∑
i=1

2−i
ε

2
+

∞∑
i=N+1

2−i <
ε

2
+
ε

2
= ε.

This implies that
N⋂
i=1

Bi(εi) ⊆ Bd(ε).
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• On the other hand, given εi > 0 for i = 1, 2, . . . , n, then d(x, 0) < ε :=
min{εi : 1 = 1, 2, . . . , n} implies that pi(x) < εi. Hence

Bd(ε) ⊆
n⋂
i=1

Bi(εi).

Therefore they generate the same topology.

(“ =⇒ ”) Note that {Bd(1/n)}∞n=1 forms a neighbourhood base at 0. For each
n, there is Bi,n(εi,n), i = 1, 2, . . . , Kn such that

Bd

(
0,

1

n

)
⊇

Kn⋂
i=1

Bi,n(εi,n).

Relabel the countable collection {pi,n : 1 ≤ i ≤ Kn, n ∈ N} as {pj}∞j=1. Then
{pj}∞j=1 generates the metric topology d.

(b) We claim such a topology is a norm topology if and only if it is generated by
a finite collection of seminorms.

Proof. (“ ⇐= ”) Let P := {pi}Ni=1 be the finite collection of seminorms that
generates a topology on X. Then we define a norm by

‖x‖ := max{pi(x), i = 1, 2, . . . , N}.

It is direct to check that ‖·‖ is a norm. Indeed, ‖x‖ ≥ 0, and if ‖x‖ = 0, then
pi(x) = 0 for all i. Since {pi} separates points, we have x = 0.

Homogeneity and the triangle inequality follows from the corresponding prop-
erties of the seminorms.

It remains to show ‖·‖ generates the same topology as {pi}Ni=1 does. But this
is similar and easier than the countable case.

(“ =⇒ ”) This is trivial.

3. Let (X,Ω, µ) be a σ-finite measure space, 1 ≤ p <∞. Suppose that K : X×X → F
is an Ω× Ω-measurable function such that for f ∈ Lp(µ) and almost every x ∈ X,
the function K(x, ·)f(·) ∈ L1(µ) and

Kf(x) =

∫
K(x, y)f(y)dµ(y)

defines an element Kf ∈ Lp(µ). Show that K is a bounded operator on Lp(µ).

Proof. We first prove a lemma:

Lemma 1. Let (X,Ω, µ) be a measure space, and f be a measurable function. Sup-
pose

∫
X
fg converges absolutely for every f ∈ Lp, 1 ≤ p ≤ ∞. Then g ∈ Lp′ , where

p′ is the dual exponent of p.
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Proof of the Lemma. Suppose, towards contradiction, that g /∈ Lp′ . By duality, this
is to say that there is a sequence fn ∈ Lp with ‖fn‖p = 1 such that

∣∣∫
X
fng
∣∣ > 4n.

In particular,
∫
X
|fng| > 4n.

Now we define f :=
∑∞

n=1 2−n|fn|. We have ‖f‖p ≤
∑∞

n=1 2−n‖fn‖p = 1, by the
triangle inequality. However, we see that∫

X

|fg| ≥
∞∑
n=1

2−n
∫
X

|fng| >
∞∑
n=1

2−n4n =∞,

so fg /∈ L1, a contradiction. Hence g ∈ Lp′ .

By the lemma, K(x, ·) ∈ Lp′ for a.e. x ∈ X. By Hölder’s inequality, f 7→ Kf(x) is
a bounded linear functional on Lp for a.e. x ∈ X.

We will use the closed graph theorem to show that K is bounded on Lp. Let
fn → f in Lp, Kfn → g in Lp. Since f 7→ Kf(x) is continuous on Lp for a.e. x,
Kfn(x)→ Kf(x) a.e. By uniqueness of limits, we have g = Kf(x), which completes
the proof.

4. (a) Show that the weak topology on X is the weakest topology for which all l ∈ X∗
is continuous.

Proof. We take the definition of weak topology on X as the topology generated
by the seminorms p(x) := |l(x)| over l ∈ X∗.
Recall that a linear functional l : X → F is continuous if and only if there
exists finitely many seminorms pi, 1 ≤ i ≤ n, and a constant C such that for
all x ∈ X,

|l(x)| ≤ C
n∑
i=1

pi(x).

Now we take C = 1 and a single p1 = |l| to finish the proof.

On the other hand, given any topology on X such that each l ∈ X∗ is contin-
uous. Since taking modulus on the scalar field is continuous, we see that each
x 7→ p(x) = |l(x)| is continuous. Hence the weak topology is weaker than any
topology such that each l ∈ X∗ is continuous. Lastly, by taking intersection
of all such topologies, we see that the weak topology on X is unique, so it is
indeed the weakest topology such that each l ∈ X∗ is continuous.

(b) Show that the weak-star topology is the smallest topology on X∗ such that for
each x ∈ X, the map l 7→ l(x) is continuous.

Proof. We take the definition of weak-star topology on X∗ as the topology
generated by the seminorms qx(l) := |l(x)| over x ∈ X.

Recall that a linear functional q : X∗ → F is continuous if and only if there
exists finitely many seminorms qxi , 1 ≤ i ≤ n, and a constant C such that for
all l ∈ X∗,

|q(l)| ≤ C

n∑
i=1

qxi(l) = C

n∑
i=1

|l(xi)|.
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Now for each x ∈ X, q(l) = qx(l) is the mapping l 7→ |l(x)|. We take C = 1
and a single x1 = x to finish the proof.

On the other hand, given any topology on X∗ such that for each x ∈ X,
l 7→ l(x) is continuous. Since taking modulus on the scalar field is continuous,
we see that each l 7→ qx(l) = |l(x)| is continuous. Hence the weak star topology
is weaker than any topology with the aforesaid property. Uniqueness is similar
as the above.

5. (a) If H is a Hilbert space and {hn} ⊆ H is a sequence such that hn → h weakly
and ‖hn‖ → ‖h‖, then show that hn → h strongly.

Proof. Since H is self dual, hn → h weakly if and only if for all g ∈ H, we have
〈hn, g〉 → 〈h, g〉. Taking g = h, we have 〈hn, h〉 → 〈h, h〉.
By assumption, 〈hn, hn〉 = ‖hn‖2 =→ ‖h‖2 = 〈h, h〉. Therefore

〈hn − h, hn − h〉 = 〈hn, hn〉 − 〈hn, h〉 − 〈h, hn〉+ 〈h, h〉
→ 〈h, h〉 − 〈h, h〉 − 〈h, h〉+ 〈h, h〉
= 0.

(b) Prove the same statement for the Lebesgue spaces Lp(µ), 1 < p <∞.

Proof. We will use the fact that Lp(µ) is uniformly convex for 1 < p < ∞,
that is, for each 0 < ε < 1, there is δ > 0 such that for all ‖f‖p = 1 = ‖g‖p,
‖f − g‖p > ε implies that ‖(f + g)/2‖p < 1 − δ. This is a direct result of the
Clarkson’s inequalities (an elementary calculation with ε− δ involved):∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g2

∥∥∥∥p
p

≤ 1

2
(‖f‖pp + ‖g‖pp), if 2 ≤ p <∞; (1)

∥∥∥∥f + g

2

∥∥∥∥p′
p

+

∥∥∥∥f − g2

∥∥∥∥p′
p

≤
(

1

2
‖f‖pp +

1

2
‖g‖pp

) p′
p

, if 1 < p < 2; (2)

where 1/p+ 1/p′ = 1.

For those who are interested in the proof of Clarkson’s inequalities, you can find
one on Page 15 in the following lecture notes: http://www.math.cuhk.edu.

hk./course_builder/1718/math5011/MATH5011_Chapter_4.2017%20.pdf

We still need another tool, namely, Fatou’s lemma on weakly convergent se-
quences:

Lemma 2. Let xn ⇀ x in a normed space X. Then ‖x‖ ≤ lim infn→∞‖xn‖.

Proof of the Lemma. Using duality, we have ‖x‖ = sup‖f‖X∗=1 |f(x)|. Now let
f ∈ X∗ with ‖f‖X∗ = 1. We have

|f(x)| = | lim
n→∞

f(xn)| = lim
n→∞

|f(xn)| ≤ lim inf
n→∞

‖f‖X∗‖xn‖ = lim inf
n→∞

‖xn‖.

Since f ∈ X∗, ‖f‖X∗ = 1 is arbitrary, we have ‖x‖ ≤ lim infn→∞‖xn‖.
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We now come to the proof of the analogous statement as above. Since fn ⇀ f ,
(fn + f)/2 ⇀ f . By Fatou’s lemma on weakly convergent sequences, we have

‖f‖p ≤ lim inf
n→∞

∥∥∥∥fn + f

2

∥∥∥∥
p

.

On the other hand, we also have∥∥∥∥fn + f

2

∥∥∥∥
p

≤ 1

2
‖fn‖p +

1

2
‖f‖p → ‖f‖p,

which follows from the assumption that ‖fn‖p → ‖f‖p. This forces that all the
above inequalites should be equalities, whence we have

lim
n→∞

∥∥∥∥fn + f

2

∥∥∥∥
p

= ‖f‖p.

Lastly, either using the uniform convexity, or just plugging g = fn in the
Clarkson’s inequality which is simpler in this case, and taking limits n → ∞,
we have ‖f − fn‖p → 0.

6. Suppose that X is an infinite-dimensional normed space. Find the weak closure of
the unit sphere.

Proof. (Credit to Jeffrey Dawson for this solution)

We claim that the weak closure of the unit sphere S is the closed unit ball B :=
{x ∈ X : ‖x‖ ≤ 1}. (Remark: for a normed space, the closed unit ball is equal to
the closure of the (open) unit ball, which is not true for a general metric space.)

We claim that
B =

⋂
‖l‖=1

{x : |l(x)| ≤ 1}.

Indeed, if ‖x‖ ≤ 1, then |l(x)| ≤ 1 whenever ‖l‖ = 1; on the other hand, if ‖x‖ > 1,
then by the Hahn-Banach theorem, there is l ∈ X∗ such that ‖l‖ = 1 and l(x) =
‖x‖ > 1. This proves the claim above.

Since each {x : |l(x)| ≤ 1} is weakly closed, so is any intersection over ‖l‖ = 1.
Hence B is a weakly closed set containing S, so B contains the weak closure of S.

On the other hand, let x0 ∈ B; we want to show that x0 is in the weak closure of S.
To do this, let G be a weakly open set containing x0, and without loss of generality,
assume G is a basic weakly open neighbourhood of x0, that is, there are li ∈ X∗,
δi > 0, 1 ≤ i ≤ n, such that

G =
n⋂
i=1

{x : |li(x− x0)| < δi}.

Now we take 0 6= y ∈ ∩ni=1Ker(li); this is possible since the right hand side has
codimension n < ∞ while X is infinite-dimensional. The functions λ 7→ ‖λy + x0‖
is a continuous function which sends 0 to ‖x0‖ ≤ 1 and tends to ∞ as λ → ∞.
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By the intermediate value theorem, there is λ ≥ 0 such that ‖λy + x0‖ = 1. Let
x = λy + x0, then ‖x‖ = 1 and li(x− x0) = li(λy) = 0 for all i, so x ∈ G, and thus
G ∩ S 6= ∅. Since G is arbitrary, x0 is in the weak closure of S.

Combining two sides finishes the proof.
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