MATH 421/510 Assignment 1

Suggested Solutions

January 2018

All exercises from Folland, section 5.1. "Problem 1 (6)" below, for instance, indicates that the first problem on this assignment is Exercise 5.1.6 in Folland.

Problem 1 (6). Suppose that X is a finite-dimensional normed space. Let e_1, e_2, \ldots, e_n be a basis for X, and define $\|\sum_{j=1}^{n} a_j e_j\|_1 = \sum_{j=1}^{n} |a_j|$.

- a) $\|\cdot\|_1$ is a norm on X.
- b) The map $(a_1, \ldots, a_n) \mapsto \sum_{j=1}^n a_j e_j$ is continuous from K^n with the usual Euclidean topology to X with the topology defined by $\|\cdot\|_1$.
- c) $\{x \in X : ||x||_1 = 1\}$ is compact in X.
- d) All norms on X are equivalent. (Compare any norm to $\|\cdot\|_{1}$.)

Solution.

- a) As always, we need to check positivity, homogeneity, and subadditivity.
 - Positivity:

Let $x = \sum_{j=1}^{n} a_j e_j$. Then $||x||_1 \ge 0$. Suppose that $x \ne 0$. Then $a_j \ne 0$ for some $1 \le j \le n$, and hence

$$||x||_1 = \sum_{i=1}^n |a_i| \ge |a_j| > 0$$

Conversely, suppose that x = 0. Then $a_j = 0$ for each $1 \le j \le n$, so $||x||_1 = 0$.

• Homogeneity: Let $x = \sum_{j=1}^{n} a_j e_j$ as before and let $c \in K$. We compute directly:

$$\|cx\|_{1} = \left\|c\sum_{j=1}^{n} a_{j}e_{j}\right\|_{1} = \left\|\sum_{j=1}^{n} (ca_{j})e_{j}\right\|_{1} = \sum_{j=1}^{n} |ca_{j}| = |c|\sum_{j=1}^{n} |a_{j}| = |c|\|x\|_{1}$$

as required.

• Subadditivity: If $x = \sum_{j=1}^{n} a_j e_j$ and $b = \sum_{j=1}^{n} b_j e_j$, then

$$\|x+y\|_{1} = \left\|\sum_{j=1}^{n} (a_{j}+b_{j})e_{j}\right\|_{1} = \sum_{j=1}^{n} |a_{j}+b_{j}| \le \sum_{j=1}^{n} |a_{j}| + \sum_{j=1}^{n} |b_{j}| = \|x\|_{1} + \|y\|_{1}.$$

b) Let $\|\cdot\|_2$ denote the Euclidean norm on K^n .

Since the map $\phi(a_1, \ldots, a_n) := \sum_{i=1}^n a_j e_j$ is linear, it suffices to show that the map is continuous at the origin. Let $0 < \varepsilon < 1$, and let $\delta = \varepsilon / \sqrt{n}$. Let $\vec{a} = (a_1, \ldots, a_n)$ and suppose that $\|\vec{a}\|_2 < \delta$. Then by the Cauchy-Schwarz inequality,

$$\sum_{j=1}^{n} |a_j| \le \left(\sum_{j=1}^{n} |a_j|^2\right)^{\frac{1}{2}} \cdot \left(\sum_{j=1}^{n} 1^2\right)^{\frac{1}{2}} < \delta\sqrt{n} = \varepsilon.$$

This finishes to proof.

c) Consider the continuous mapping $\phi : (a_1, \ldots, a_n) \to \sum_{j=1}^n a_j e_j$ defined in (b). If we denote $S := \{x \in X : ||x||_1 = 1\}$ and the "polyhedron"

$$P = \{(a_1, a_2, \dots, a_n) \in K^n : \sum_{j=1}^n |a_j| = 1\},\$$

which is compact by the Heine-Borel Theorem, we see that $S = \phi(P)$ is compact.

d) Given any norm $\|\cdot\|$ on X, it suffices to show that there are $c > 0, C < \infty$ such that for all $x \in S$ (recall $S := \{x \in X : \|x\|_1 = 1\}$), we have

$$c \le \|x\| \le C.$$

Write $x = \sum_{j=1}^{n} a_j e_j$. Then

$$||x|| = \left\|\sum_{j=1}^{n} a_j e_j\right\| \le \sum_{j=1}^{n} |a_j| ||e_j|| \le C \sum_{j=1}^{n} |a_j| = C ||x||_1 = C.$$

Here, $C := \max_{j=1}^{n} ||e_j|| < \infty$.

To prove the lower bound, let $I : (X, \|\cdot\|_1) \to (X, \|\cdot\|)$ be the identity map. The above shows that I is a bounded linear map, and hence continuous. Since taking norm is continuous, the map $\sigma : (X, \|\cdot\|_1) \to \mathbb{R}$ by $\sigma(x) := \|I(x)\|$ is continuous.

But S is compact and σ is continuous, hence $\sigma(S)$ is compact in \mathbb{R} , and thus has a minimum. Since I(S) = S does not contain the origin, we have $0 \notin \sigma(S)$, which means that $c := \min \sigma(S)$ is strictly positive. This shows the lower bound. **Problem 2** (8). Let (X, \mathcal{M}) be a measurable space, and let M(X) be the space of complex measures on (X, \mathcal{M}) . Then $\|\mu\| = |\mu|(X)$ is a norm on M(X) that makes M(X) into a Banach space. (Use Theorem 5.1., which states that a normed vector space X is complete if and only if every absolutely convergent series in X converges. Also, $|\mu|$ is the total variation of the measure μ .)

Solution. The properties of a norm are easily satisfied (consult Rudin if you have any questions).

- **Positivity**: The total variation $||\mu||$ of a measure μ is always nonnegative, and $|\mu|(X) = 0$ if and only μ is the zero measure.
- Homogeneity: This is direct.
- **Subadditivity**: This follows from the triangle inequality for complex numbers as well as for suprema.

To show that M(X) is complete, we use Theorem 5.1.

Let ν_n be a sequence of complex measures on X such that $\sum_{n=1}^{\infty} \|\nu_n\| < \infty$. If we define $\nu(A) = \sum_{n=1}^{\infty} \nu_n(A)$ for every $A \in \mathcal{M}$ and show that ν is indeed a complex measure to which the series $\sum_{n=1}^{\infty} \nu_n$ converges in M(X), then we are done.

Let $A \in M(X)$, then the series defining A converges absolutely since $|\nu_n(A)| \leq ||\nu_n||$. ν is a complex measure: let $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{M}$ be disjoint. Then

$$\sum_{i=1}^{\infty} \nu(A_i) = \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \nu_n(A_i)$$

(by Fubini's theorem) =
$$\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \nu_n(A_i)$$

=
$$\sum_{n=1}^{\infty} \nu_n(A)$$

= $\nu(A).$

Lastly, we show $\sum_{n=1}^{\infty} \nu_n$ converges to ν in M(X). Let $\{A_i\}_{i=1}^{\infty}$ be a measurable partition of X. Then

$$\sum_{i=1}^{\infty} \left| \sum_{n=1}^{N} \nu_n(A_i) - \nu(A_i) \right| = \sum_{i=1}^{\infty} \left| \sum_{n=N+1}^{\infty} \nu_n(A_i) \right|$$
$$\leq \sum_{i=1}^{\infty} \sum_{n=N+1}^{\infty} |\nu_n(A_i)|$$
(by Fubini's theorem)
$$= \sum_{n=N+1}^{\infty} \sum_{i=1}^{\infty} |\nu_n(A_i)|$$
(by definition of total variation)
$$\leq \sum_{n=N+1}^{\infty} ||\nu_n||.$$

Taking supremum with respect to the partition $\{A_i\}$, we have

$$\left\|\sum_{n=1}^{N}\nu_n - \nu\right\| \le \sum_{n=N+1}^{\infty} \|\nu_n\|.$$

However, since the last series is absolutely convergent, letting $N \to \infty$, we are done.

Problem 3 (9). Let $C^k([0,1])$ be the space of functions on [0,1] possessing continuous derivatives of order up to and including k, including one-sided derivatives at the endpoints.

- a) If $f \in C([0,1])$, then $f \in C^k([0,1])$ iff f is k times continuously differentiable on (0,1) and $\lim_{x \searrow 0} f^{(j)}(x)$ and $\lim_{x \nearrow 1} f^{(j)}(x)$ exist for $j \le k$. (The mean value theorem is useful.)
- b) $||f|| = \sum_{0}^{k} ||f^{(j)}||_{u}$ is a norm on $C^{k}([0,1])$ that makes $C^{k}([0,1])$ into a Banach space. (Use induction on k. The essential point is that if $\{f_{n}\} \subset C^{1}([0,1]), f_{n} \to f$ uniformly, and $f'_{n} \to g$ uniformly, then $f \in C^{1}([0,1])$ and f' = g. The easy way to prove this is to show that $f(x) f(0) = \int_{0}^{x} g(t) dt$.)

Solution.

a) Assume that f is real for the moment.

For the case k = 1, we need to show that for $f \in C([0,1])$ with a continuous derivative on (0,1), the limit

$$f'(0) := \lim_{x \searrow 0} \frac{f(x) - f(0)}{x}$$

exists and is equal to $l := \lim_{x \searrow 0} f'(x)$; the result for higher k follows by induction. Since $l = \lim_{x \searrow 0} f'(x)$ exists, for any $\varepsilon > 0$, there is $\delta > 0$ such that $|f'(x) - l| < \varepsilon$ for all $0 < x < \delta$.

Let $0 < x < \delta$. Since f is continuous on [0, 1] and differentiable on (0, 1), by the mean value theorem, there is $c \in (0, x)$ such that

$$f(x) - f(0) = xf'(c),$$

whence

$$\left|\frac{f(x) - f(0)}{x} - l\right| = |f'(c) - l| < \varepsilon.$$

This shows that $f \in C^1([0, 1])$.

A very similar argument establishes the same result for f'(1); in fact, we can just apply the same argument to g(x) = f(1-x). Furthermore, suppose the result is true for all $j \leq k$, and choose $f \in C^k([0,1])$ such that f is continuously differentiable to order k+1 on (0,1) and such that $\lim_{x \searrow 0} f^{(k+1)}(x)$ and $\lim_{x \nearrow 1} f^{(k+1)}(x)$ both exist. Then we can apply the above argument to $f^{(k)}$ to conclude that $f^{(k)} \in C^1([0,1])$, and hence that $f \in C^{k+1}([0,1])$. This completes the proof of sufficiency, while necessity is indeed part of the definition of C^k .

Lastly, if f is complex valued, then we split $f = \operatorname{Re}(f) + i\operatorname{Im}(f)$ and apply the above arguments to $\operatorname{Re}(f)$, $\operatorname{Im}(f)$ respectively to get the result.

Remark: The mean value theorem fails for complex valued functions. Consider the example $f(x) := e^{ix}$ defined on $[0, 2\pi]$. We have $f(0) = f(2\pi) = 1$, but there is no $c \in (0, 2\pi)$ with $2\pi f'(c) = 0$.

b) The properties of a norm are easily satisfied.

- **Positivity**: The zero function has all its derivatives identically zero; conversely, any continuous function f on [0, 1] that is not identically zero has $||f|| \ge ||f||_u > 0$.
- **Homogeneity**: This follows from the homogeneity of the derivative, which follows from that of limits.
- Subadditivity: Every term in the sum defining the C^k norm is subadditive, so the sum must be as well.

The difficulty is completeness, which will finish off the requirements for $C^{k}([0,1])$ to qualify as a Banach space.

The proof, as suggested, proceeds by induction. The case k = 0 is well known, i.e. C([0,1]) is complete. Assume that the result is true for $C^k([0,1])$ for some $k \ge 0$, and choose a Cauchy sequence $(f_n) \subset C^{k+1}([0,1])$. This means in particular that $(f_n)_{n\ge 1}$ is a Cauchy sequence in $C^k([0,1])$. Since $C^k([0,1])$ is complete by the inductive hypothesis, there exists some $f \in C^k([0,1])$ with $f_n \to f$ in the topology of $C^k([0,1])$. In particular, this means that $f_n^{(k)} \to f^{(k)}$ uniformly. We also know that the sequence of continuous functions $(f_n^{(k+1)})_{n\ge 1}$ is uniformly Cauchy, which implies that there exists some function $g \in C([0,1])$ with $f_n^{(k+1)} \to g$ uniformly.

We can thus apply the C^1 result in the hint to the sequence $(f_n^{(k)})_{n\geq 1}$ to get $f^{(k+1)} = g$. Thus

$$\|f_n - f\|_{C^{k+1}} = \|f_n - f\|_{C^k} + \|f_n^{(k+1)} - f^{(k+1)}\|_u \to 0.$$

A great deal is now riding on the proof for C^1 . Consider a Cauchy sequence $(f_n) \subset C^1([0,1])$. We know that there exist continuous functions f, g such that $f_n \to f$ and $f'_n \to g$ uniformly. Furthermore, by the triangle inequality and the fundamental theorem of calculus, we have

$$f_n(x) - f_n(0) = \int_0^x f'_n(t) dt.$$

Letting $n \to \infty$ and by uniform convergence of $f'_n \to g$, we have

$$f(x) - f(0) = \int_0^x g(t)dt.$$

Using the fundamental theorem of calculus again, we have for all x,

$$f'(x) = g(x).$$

The desired result, that C^k , $k \ge 0$ is a Banach space with respect to the given norm, has been proved.

Problem 4 (13). If $\|\cdot\|$ is a seminorm on the vector space X, let $M = \{x \in X : \|x\| = 0\}$. Then M is a subspace, and the map $x + M \mapsto \|x\|$ is a norm on X/M.

Solution. Recall that a if X is a linear space, then we say that a function $\|\cdot\| : X \to [0, \infty)$ is a seminorm on X if it satisfies the homogeneity and subadditivity requirements for a norm, and sends $0 \in X$ to $0 \in \mathbb{R}$, but might also vanish elsewhere in X.

First we need to show that M is a subspace. Indeed, $0 \in M$, and if $c \in K$, $x, y \in M$, then $||cx + y|| \le |c|||x|| + ||y|| = 0$, so $cx + y \in M$.

Then we need to show that the map $x+M \mapsto ||x||$ is well-defined, that is, that if $x-y \in M$, then ||x|| = ||y||. But x = y + (x - y), and

$$||x|| = |y + x - y|$$

$$\leq ||y|| + ||(x - y)||$$

$$= ||y||.$$

By symmetry, we also have $||x|| \ge ||y||$. Hence ||x|| = ||y||, and the map $x + M \mapsto ||x||$ is indeed well-defined.

By the assumption that $\|\cdot\|$ is a seminorm, we have homogeneity and subadditivity for free. Furthermore, the zero element of the quotient vector space X/M is simply the subspace M. Any nonzero element of X/M can be written x + M where $x \notin M$. We then have $x + M \mapsto ||x|| \neq 0$, since $x \notin M = \{x' \in X : ||x'|| = 0\}$ by assumption. It follows that the given map is positive, homogeneous, and subadditive on X/M, and therefore defines a norm.

Acknowledgement.

I thank Kyle Macdonald for providing his original latex file for the solution.