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January 2018

All exercises from Folland, section 5.1. “Problem 1 (6)” below, for instance, indicates
that the first problem on this assignment is Exercise 5.1.6 in Folland.

Problem 1 (6). Suppose that X is a finite-dimensional normed space. Lel ey, e, ... e,
be a basis for X, and define || Y] aze;li = > lajl.
a) || -1 2s @ norm on X.

b) The map (ay,...,a,) — Y. aze; is continuous from K™ with the usual Euclidean
topology to X with the topology defined by || - |1

c) {v € X :||z|y =1} is compact in X.
d) All norms on X are equivalent. (Compare any norm to || - ||1.)

Solution.

a) As always, we need to check positivity, homogeneity, and subadditivity.

e Positivity:
Let x = > ", aje;. Then [z]|, > 0.
Suppose that x # 0. Then a; # 0 for some 1 < j < n, and hence

n
lzlh = lail > Jay| > 0
i=1

Conversely, suppose that = 0. Then a; = 0 for each 1 < j <n, so ||z||; = 0.

e Homogeneity: Let z = Z?Zl a;e; as before and let ¢ € K. We compute
directly:

n

> (eaj)e;

Jj=1

lexll =

n
C E ajej
=1

n n
= leasl = lel Y laj| = |elll]lx
=1 j=1
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as required.



b)

e Subadditivity: If x = > "

i—1aje; and b= 37" | bje;, then

lz+ylh =D (a5 +b)es| =D lag+b1 <D lagl+ D 1651 = llzlh + Iyl
j=1 . =t j=1 j=1
Let || - ||2 denote the Euclidean norm on K™.
Since the map ¢(as,...,a,) := Y] aje; is linear, it suffices to show that the map
is continuous at the origin. Let 0 < e < 1, and let § = ¢/y/n. Let @ = (ay,...,a,)

and suppose that ||d]|2 < §. Then by the Cauchy-Schwarz inequality,

1

> layl < (Zw) - (Z 12) <ovn =

j=1 J=1
This finishes to proof.

Consider the continuous mapping ¢ : (ay,...,a,) — > 1 aje; defined in (b). If we
denote S :={z € X : ||z||, = 1} and the “polyhedron”

P={(a1,a3,....a,) € K" : 3 lag| = 1},
J=1

which is compact by the Heine-Borel Theorem, we see that S = ¢(P) is compact.

Given any norm ||-|| on X, it suffices to show that there are ¢ > 0,C' < oo such that
forall z € S (recall S := {x € X : ||z||; = 1}), we have

c< |l <C.

Write z = 37| aje;. Then

n
E :ajej
j=1

Here, C':= maxj_, [|e;]| < oo.

To prove the lower bound, let I : (X, |-[|;) = (X, ]]-||) be the identity map. The
above shows that I is a bounded linear map, and hence continuous. Since taking
norm is continuous, the map o : (X, ||-||;) = R by o(z) := ||I(z)] is continuous.

]l =

n n
<D lallesl < C Y lagl = Cllall, = C.
j=1 j=1

But S is compact and o is continuous, hence ¢(S) is compact in R, and thus has
a minimum. Since I(S) = S does not contain the origin, we have 0 ¢ ¢(.S), which
means that ¢ := mino(95) is strictly positive. This shows the lower bound.



Problem 2 (8). Let (X, M) be a measurable space, and let M (X) be the space of complex
measures on (X, M). Then ||p|| = |p|(X) is a norm on M(X) that makes M(X) into a
Banach space. (Use Theorem 5.1., which states that a normed vector space X is complete
if and only if every absolutely convergent series in X converges. Also, |u| is the total
variation of the measure f.)

Solution. The properties of a norm are easily satisfied (consult Rudin if you have any

questions).

e Positivity: The total variation ||| of a measure p is always nonnegative, and
|p|(X) = 0 if and only p is the zero measure.

e Homogeneity: This is direct.

e Subadditivity: This follows from the triangle inequality for complex numbers as
well as for suprema.

To show that M(X) is complete, we use Theorem 5.1.

Let v, be a sequence of complex measures on X such that Y~ ||v,]| < co. If we define
v(A) =307 v,(A) for every A € M and show that v is indeed a complex measure to
which the series Y7 | v, converges in M(X), then we are done.

Let A € M(X), then the series defining A converges absolutely since |v,(A)| < ||va||. v
is a complex measure: let {4;}3°, € M be disjoint. Then

D v(A) =2 > m(A)

(by Fubini’s theorem) = Z Z vn(A;)

Lastly, we show Y >, v,, converges to v in M(X).
Let {A;}32, be a measurable partition of X. Then

o N 0 00
22t A) =) =D | D v
i=1 [n=1 i=1 =N+1
<D D Ival4))]
i=1 n= N+1
(by Fubini’s theorem) Z Z | (A
n=N+1 =1

o0
(by definition of total variation) < Z |-
n=N+1



Taking supremum with respect to the partition {A4;}, we have

N 00
D2 va=v| < 3 Il
n=1

n=N-+1
However, since the last series is absolutely convergent, letting N — oo, we are done.




Problem 3 (9). Let C*([0,1]) be the space of functions on [0,1] possessing continuous
derivatives of order up to and including k, including one-sided derivatives at the endpoints.

a) If f € C([0,1]), then f € C*([0,1]) iff f is k times continuously differentiable
on (0,1) and lim,p f9(x) and lim, ~ f9(z) ezist for j < k. (The mean value
theorem is useful.)

b) Ifll = z]g I £, is a norm on C*([0,1]) that makes C*([0,1]) into a Banach
space. (Use induction on k. The essential point is that if {f,} € C'([0,1]), fu — f
uniformly, and f!, — g uniformly, then f € C1([0,1]) and f' = g. The easy way to
prove this is to show that f(x) — f(0) = [ g(t)dt.)

Solution.

a) Assume that f is real for the moment.

For the case k = 1, we need to show that for f € C([0,1]) with a continuous
derivative on (0, 1), the limit

z\,0 T

exists and is equal to [ := lim,\ o f'(2); the result for higher k follows by induction.

Since | = lim,\ o f/(x) exists, for any € > 0, there is 6 > 0 such that |f'(z) — | < ¢
forall 0 <z <.

Let 0 < & < 4. Since f is continuous on [0, 1] and differentiable on (0,1), by the
mean value theorem, there is ¢ € (0, x) such that

f(x) = £(0) = zf'(c),

whence

—f(e)— 1] <.

This shows that f € C1([0,1]).

A very similar argument establishes the same result for f’(1); in fact, we can just
apply the same argument to g(z) = f(1—=x). Furthermore, suppose the result is true
for all j < k, and choose f € C*([0,1]) such that f is continuously differentiable to
order k+1 on (0,1) and such that lim,~o f**V(z) and lim, ~ f**V(z) both exist.
Then we can apply the above argument to f*) to conclude that f* € C*([0,1]), and
hence that f € C*T1([0, 1]). This completes the proof of sufficiency, while necessity
is indeed part of the definition of C*.

Lastly, if f is complex valued, then we split f = Re(f)+iIm(f) and apply the above
arguments to Re(f),Im(f) respectively to get the result.

Remark: The mean value theorem fails for complex valued functions. Consider
the example f(z) := e defined on [0, 27]. We have f(0) = f(27) = 1, but there is
no ¢ € (0,27) with 27 f'(c) = 0.

b) The properties of a norm are easily satisfied.
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e Positivity: The zero function has all its derivatives identically zero; conversely,
any continuous function f on [0, 1] that is not identically zero has || f|| > || f|l. >
0.

e Homogeneity: This follows from the homogeneity of the derivative, which
follows from that of limits.

e Subadditivity: Every term in the sum defining the C* norm is subadditive,
so the sum must be as well.

The difficulty is completeness, which will finish off the requirements for C*([0,1])
to qualify as a Banach space.

The proof, as suggested, proceeds by induction. The case k = 0 is well known,
i.e. C([0,1]) is complete. Assume that the result is true for C*([0,1]) for some
k > 0, and choose a Cauchy sequence (f,,) C C**1([0,1]). This means in particular
that (f,)n>1 is a Cauchy sequence in C*([0,1]). Since C*([0,1]) is complete by the
inductive hypothesis, there exists some f € C*([0,1]) with f, — f in the topology
of C*([0,1]). In particular, this means that £ 0 yniformly. We also know
that the sequence of continuous functions ( j}gkﬂ))nzl is uniformly Cauchy, which
implies that there exists some function g € C([0, 1]) with S s g uniformly.

We can thus apply the C! result in the hint to the sequence ( fék))nzl to get f+1) =
g. Thus

||fn - f||ck+1 = ||fn - f”ck + vagkﬂ) - f(Hl)Hu — 0.

A great deal is now riding on the proof for C*. Consider a Cauchy sequence (f,) C
C1([0,1]). We know that there exist continuous functions f, g such that f, — f and
fl, — g uniformly. Furthermore, by the triangle inequality and the fundamental
theorem of calculus, we have

ful) = £a(0) = /O "t

Letting n — oo and by uniform convergence of f/ — g, we have

Using the fundamental theorem of calculus again, we have for all z,

f'(x) = g(x).

The desired result, that C*, k > 0 is a Banach space with respect to the given norm,
has been proved.



Problem 4 (13). If ||| is a seminorm on the vector space X, let M = {z € X : ||z|| = 0}.
Then M is a subspace, and the map x + M w— ||z|| is a norm on X/M.

Solution. Recall that a if X is a linear space, then we say that a function ||| : X — [0, c0)
is a seminorm on X if it satisfies the homogeneity and subadditivity requirements for a
norm, and sends 0 € X to 0 € R, but might also vanish elsewhere in X.

First we need to show that M is a subspace. Indeed, 0 € M, and if c € K, x,y € M,
then [jcz +y| < [c[llz| + [lyll =0, so cx +y € M.

Then we need to show that the map x+M — ||z|| is well-defined, that is, that if z—y € M,
then [|z]| = |ly||. But 2 =y + (z —y), and

lzll = ly+ = -yl
< lyll + Itz = »)l
= llyll-
By symmetry, we also have ||z|| > |ly||. Hence ||z|| = ||y||, and the map x + M — ||z is
indeed well-defined.
By the assumption that || - || is a seminorm, we have homogeneity and subadditivity for

free. Furthermore, the zero element of the quotient vector space X/M is simply the
subspace M. Any nonzero element of X/M can be written z + M where = ¢ M. We then
have x + M — ||z|| # 0, since ¢ M = {2/ € X : ||2/|| = 0} by assumption. It follows
that the given map is positive, homogeneous, and subadditive on X/M, and therefore
defines a norm.
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