MATH 421/510 Assignment 1

Suggested Solutions

January 2018

All exercises from Folland, section 5.1. "Problem 1 (6)" below, for instance, indicates that the first problem on this assignment is Exercise 5.1.6 in Folland.

Problem 1 (6). Suppose that X is a finite-dimensional normed space. Let $e_{1}, e_{2}, \ldots, e_{n}$ be a basis for X, and define $\left\|\sum_{1}^{n} a_{j} e_{j}\right\|_{1}=\sum_{1}^{n}\left|a_{j}\right|$.
a) $\|\cdot\|_{1}$ is a norm on X.
b) The map $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{1}^{n} a_{j} e_{j}$ is continuous from K^{n} with the usual Euclidean topology to X with the topology defined by $\|\cdot\|_{1}$.
c) $\left\{x \in X:\|x\|_{1}=1\right\}$ is compact in X.
d) All norms on X are equivalent. (Compare any norm to $\|\cdot\|_{1}$.)

Solution.
a) As always, we need to check positivity, homogeneity, and subadditivity.

- Positivity:

Let $x=\sum_{j=1}^{n} a_{j} e_{j}$. Then $\|x\|_{1} \geq 0$.
Suppose that $x \neq 0$. Then $a_{j} \neq 0$ for some $1 \leq j \leq n$, and hence

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|a_{i}\right| \geq\left|a_{j}\right|>0
$$

Conversely, suppose that $x=0$. Then $a_{j}=0$ for each $1 \leq j \leq n$, so $\|x\|_{1}=0$.

- Homogeneity: Let $x=\sum_{j=1}^{n} a_{j} e_{j}$ as before and let $c \in K$. We compute directly:

$$
\|c x\|_{1}=\left\|c \sum_{j=1}^{n} a_{j} e_{j}\right\|_{1}=\left\|\sum_{j=1}^{n}\left(c a_{j}\right) e_{j}\right\|_{1}=\sum_{j=1}^{n}\left|c a_{j}\right|=|c| \sum_{j=1}^{n}\left|a_{j}\right|=|c|\|x\|_{1}
$$

as required.

- Subadditivity: If $x=\sum_{j=1}^{n} a_{j} e_{j}$ and $b=\sum_{j=1}^{n} b_{j} e_{j}$, then

$$
\|x+y\|_{1}=\left\|\sum_{j=1}^{n}\left(a_{j}+b_{j}\right) e_{j}\right\|_{1}=\sum_{j=1}^{n}\left|a_{j}+b_{j}\right| \leq \sum_{j=1}^{n}\left|a_{j}\right|+\sum_{j=1}^{n}\left|b_{j}\right|=\|x\|_{1}+\|y\|_{1}
$$

b) Let $\|\cdot\|_{2}$ denote the Euclidean norm on K^{n}.

Since the map $\phi\left(a_{1}, \ldots, a_{n}\right):=\sum_{1}^{n} a_{j} e_{j}$ is linear, it suffices to show that the map is continuous at the origin. Let $0<\varepsilon<1$, and let $\delta=\varepsilon / \sqrt{n}$. Let $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ and suppose that $\|\vec{a}\|_{2}<\delta$. Then by the Cauchy-Schwarz inequality,

$$
\sum_{j=1}^{n}\left|a_{j}\right| \leq\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{j=1}^{n} 1^{2}\right)^{\frac{1}{2}}<\delta \sqrt{n}=\varepsilon
$$

This finishes to proof.
c) Consider the continuous mapping $\phi:\left(a_{1}, \ldots, a_{n}\right) \rightarrow \sum_{1}^{n} a_{j} e_{j}$ defined in (b). If we denote $S:=\left\{x \in X:\|x\|_{1}=1\right\}$ and the "polyhedron"

$$
P=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in K^{n}: \sum_{j=1}^{n}\left|a_{j}\right|=1\right\}
$$

which is compact by the Heine-Borel Theorem, we see that $S=\phi(P)$ is compact.
d) Given any norm $\|\cdot\|$ on X, it suffices to show that there are $c>0, C<\infty$ such that for all $x \in S$ (recall $S:=\left\{x \in X:\|x\|_{1}=1\right\}$), we have

$$
c \leq\|x\| \leq C
$$

Write $x=\sum_{j=1}^{n} a_{j} e_{j}$. Then

$$
\|x\|=\left\|\sum_{j=1}^{n} a_{j} e_{j}\right\| \leq \sum_{j=1}^{n}\left|a_{j}\right|\left\|e_{j}\right\| \leq C \sum_{j=1}^{n}\left|a_{j}\right|=C\|x\|_{1}=C .
$$

Here, $C:=\max _{j=1}^{n}\left\|e_{j}\right\|<\infty$.
To prove the lower bound, let $I:\left(X,\|\cdot\|_{1}\right) \rightarrow(X,\|\cdot\|)$ be the identity map. The above shows that I is a bounded linear map, and hence continuous. Since taking norm is continuous, the map $\sigma:\left(X,\|\cdot\|_{1}\right) \rightarrow \mathbb{R}$ by $\sigma(x):=\|I(x)\|$ is continuous.
But S is compact and σ is continuous, hence $\sigma(S)$ is compact in \mathbb{R}, and thus has a minimum. Since $I(S)=S$ does not contain the origin, we have $0 \notin \sigma(S)$, which means that $c:=\min \sigma(S)$ is strictly positive. This shows the lower bound.

Problem 2 (8). Let (X, \mathcal{M}) be a measurable space, and let $M(X)$ be the space of complex measures on (X, \mathcal{M}). Then $\|\mu\|=|\mu|(X)$ is a norm on $M(X)$ that makes $M(X)$ into a Banach space. (Use Theorem 5.1., which states that a normed vector space X is complete if and only if every absolutely convergent series in X converges. Also, $|\mu|$ is the total variation of the measure μ.)

Solution. The properties of a norm are easily satisfied (consult Rudin if you have any questions).

- Positivity: The total variation $\|\mu\|$ of a measure μ is always nonnegative, and $|\mu|(X)=0$ if and only μ is the zero measure.
- Homogeneity: This is direct.
- Subadditivity: This follows from the triangle inequality for complex numbers as well as for suprema.

To show that $M(X)$ is complete, we use Theorem 5.1.
Let ν_{n} be a sequence of complex measures on X such that $\sum_{n=1}^{\infty}\left\|\nu_{n}\right\|<\infty$. If we define $\nu(A)=\sum_{n=1}^{\infty} \nu_{n}(A)$ for every $A \in \mathcal{M}$ and show that ν is indeed a complex measure to which the series $\sum_{n=1}^{\infty} \nu_{n}$ converges in $M(X)$, then we are done.
Let $A \in M(X)$, then the series defining A converges absolutely since $\left|\nu_{n}(A)\right| \leq\left\|\nu_{n}\right\|$. ν is a complex measure: let $\left\{A_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{M}$ be disjoint. Then

$$
\begin{aligned}
\sum_{i=1}^{\infty} \nu\left(A_{i}\right) & =\sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \nu_{n}\left(A_{i}\right) \\
\text { (by Fubini's theorem) } & =\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \nu_{n}\left(A_{i}\right) \\
& =\sum_{n=1}^{\infty} \nu_{n}(A) \\
& =\nu(A) .
\end{aligned}
$$

Lastly, we show $\sum_{n=1}^{\infty} \nu_{n}$ converges to ν in $M(X)$.
Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ be a measurable partition of X. Then

$$
\begin{aligned}
\qquad \sum_{i=1}^{\infty}\left|\sum_{n=1}^{N} \nu_{n}\left(A_{i}\right)-\nu\left(A_{i}\right)\right| & =\sum_{i=1}^{\infty}\left|\sum_{n=N+1}^{\infty} \nu_{n}\left(A_{i}\right)\right| \\
& \leq \sum_{i=1}^{\infty} \sum_{n=N+1}^{\infty}\left|\nu_{n}\left(A_{i}\right)\right| \\
\text { (by Fubini's theorem) } & =\sum_{n=N+1}^{\infty} \sum_{i=1}^{\infty}\left|\nu_{n}\left(A_{i}\right)\right| \\
\text { (by definition of total variation) } & \leq \sum_{n=N+1}^{\infty}\left\|\nu_{n}\right\| .
\end{aligned}
$$

Taking supremum with respect to the partition $\left\{A_{i}\right\}$, we have

$$
\left\|\sum_{n=1}^{N} \nu_{n}-\nu\right\| \leq \sum_{n=N+1}^{\infty}\left\|\nu_{n}\right\| .
$$

However, since the last series is absolutely convergent, letting $N \rightarrow \infty$, we are done.

Problem 3 (9). Let $C^{k}([0,1])$ be the space of functions on $[0,1]$ possessing continuous derivatives of order up to and including k, including one-sided derivatives at the endpoints.
a) If $f \in C([0,1])$, then $f \in C^{k}([0,1])$ iff f is k times continuously differentiable on $(0,1)$ and $\lim _{x \searrow 0} f^{(j)}(x)$ and $\lim _{x \not 11} f^{(j)}(x)$ exist for $j \leq k$. (The mean value theorem is useful.)
b) $\|f\|=\sum_{0}^{k}\left\|f^{(j)}\right\|_{u}$ is a norm on $C^{k}([0,1])$ that makes $C^{k}([0,1])$ into a Banach space. (Use induction on k. The essential point is that if $\left\{f_{n}\right\} \subset C^{1}([0,1]), f_{n} \rightarrow f$ uniformly, and $f_{n}^{\prime} \rightarrow g$ uniformly, then $f \in C^{1}([0,1])$ and $f^{\prime}=g$. The easy way to prove this is to show that $\left.f(x)-f(0)=\int_{0}^{x} g(t) d t.\right)$

Solution.

a) Assume that f is real for the moment.

For the case $k=1$, we need to show that for $f \in C([0,1])$ with a continuous derivative on $(0,1)$, the limit

$$
f^{\prime}(0):=\lim _{x \searrow 0} \frac{f(x)-f(0)}{x}
$$

exists and is equal to $l:=\lim _{x \searrow 0} f^{\prime}(x)$; the result for higher k follows by induction. Since $l=\lim _{x \searrow 0} f^{\prime}(x)$ exists, for any $\varepsilon>0$, there is $\delta>0$ such that $\left|f^{\prime}(x)-l\right|<\varepsilon$ for all $0<x<\delta$.

Let $0<x<\delta$. Since f is continuous on $[0,1]$ and differentiable on $(0,1)$, by the mean value theorem, there is $c \in(0, x)$ such that

$$
f(x)-f(0)=x f^{\prime}(c)
$$

whence

$$
\left|\frac{f(x)-f(0)}{x}-l\right|=\left|f^{\prime}(c)-l\right|<\varepsilon .
$$

This shows that $f \in C^{1}([0,1])$.
A very similar argument establishes the same result for $f^{\prime}(1)$; in fact, we can just apply the same argument to $g(x)=f(1-x)$. Furthermore, suppose the result is true for all $j \leq k$, and choose $f \in C^{k}([0,1])$ such that f is continuously differentiable to order $k+1$ on $(0,1)$ and such that $\lim _{x \searrow 0} f^{(k+1)}(x)$ and $\lim _{x \nearrow_{1}} f^{(k+1)}(x)$ both exist. Then we can apply the above argument to $f^{(k)}$ to conclude that $f^{(k)} \in C^{1}([0,1])$, and hence that $f \in C^{k+1}([0,1])$. This completes the proof of sufficiency, while necessity is indeed part of the definition of C^{k}.
Lastly, if f is complex valued, then we split $f=\operatorname{Re}(f)+i \operatorname{Im}(f)$ and apply the above arguments to $\operatorname{Re}(f), \operatorname{Im}(f)$ respectively to get the result.
Remark: The mean value theorem fails for complex valued functions. Consider the example $f(x):=e^{i x}$ defined on $[0,2 \pi]$. We have $f(0)=f(2 \pi)=1$, but there is no $c \in(0,2 \pi)$ with $2 \pi f^{\prime}(c)=0$.
b) The properties of a norm are easily satisfied.

- Positivity: The zero function has all its derivatives identically zero; conversely, any continuous function f on $[0,1]$ that is not identically zero has $\|f\| \geq\|f\|_{u}>$ 0.
- Homogeneity: This follows from the homogeneity of the derivative, which follows from that of limits.
- Subadditivity: Every term in the sum defining the C^{k} norm is subadditive, so the sum must be as well.

The difficulty is completeness, which will finish off the requirements for $C^{k}([0,1])$ to qualify as a Banach space.
The proof, as suggested, proceeds by induction. The case $k=0$ is well known, i.e. $C([0,1])$ is complete. Assume that the result is true for $C^{k}([0,1])$ for some $k \geq 0$, and choose a Cauchy sequence $\left(f_{n}\right) \subset C^{k+1}([0,1])$. This means in particular that $\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence in $C^{k}([0,1])$. Since $C^{k}([0,1])$ is complete by the inductive hypothesis, there exists some $f \in C^{k}([0,1])$ with $f_{n} \rightarrow f$ in the topology of $C^{k}([0,1])$. In particular, this means that $f_{n}^{(k)} \rightarrow f^{(k)}$ uniformly. We also know that the sequence of continuous functions $\left(f_{n}^{(k+1)}\right)_{n>1}$ is uniformly Cauchy, which implies that there exists some function $g \in C([0,1])$ with $f_{n}^{(k+1)} \rightarrow g$ uniformly.
We can thus apply the C^{1} result in the hint to the sequence $\left(f_{n}^{(k)}\right)_{n \geq 1}$ to get $f^{(k+1)}=$ g. Thus

$$
\left\|f_{n}-f\right\|_{C^{k+1}}=\left\|f_{n}-f\right\|_{C^{k}}+\left\|f_{n}^{(k+1)}-f^{(k+1)}\right\|_{u} \rightarrow 0
$$

A great deal is now riding on the proof for C^{1}. Consider a Cauchy sequence $\left(f_{n}\right) \subset$ $C^{1}([0,1])$. We know that there exist continuous functions f, g such that $f_{n} \rightarrow f$ and $f_{n}^{\prime} \rightarrow g$ uniformly. Furthermore, by the triangle inequality and the fundamental theorem of calculus, we have

$$
f_{n}(x)-f_{n}(0)=\int_{0}^{x} f_{n}^{\prime}(t) d t
$$

Letting $n \rightarrow \infty$ and by uniform convergence of $f_{n}^{\prime} \rightarrow g$, we have

$$
f(x)-f(0)=\int_{0}^{x} g(t) d t
$$

Using the fundamental theorem of calculus again, we have for all x,

$$
f^{\prime}(x)=g(x)
$$

The desired result, that $C^{k}, k \geq 0$ is a Banach space with respect to the given norm, has been proved.

Problem 4 (13). If $\|\cdot\|$ is a seminorm on the vector space X, let $M=\{x \in X:\|x\|=0\}$. Then M is a subspace, and the map $x+M \mapsto\|x\|$ is a norm on X / M.

Solution. Recall that a if X is a linear space, then we say that a function $\|\cdot\|: X \rightarrow[0, \infty)$ is a seminorm on X if it satisfies the homogeneity and subadditivity requirements for a norm, and sends $0 \in X$ to $0 \in \mathbb{R}$, but might also vanish elsewhere in X.

First we need to show that M is a subspace. Indeed, $0 \in M$, and if $c \in K, x, y \in M$, then $\|c x+y\| \leq|c|\|x\|+\|y\|=0$, so $c x+y \in M$.
Then we need to show that the map $x+M \mapsto\|x\|$ is well-defined, that is, that if $x-y \in M$, then $\|x\|=\|y\|$. But $x=y+(x-y)$, and

$$
\begin{aligned}
\|x\| & =|y+x-y| \\
& \leq\|y\|+\|(x-y)\| \\
& =\|y\| .
\end{aligned}
$$

By symmetry, we also have $\|x\| \geq\|y\|$. Hence $\|x\|=\|y\|$, and the map $x+M \mapsto\|x\|$ is indeed well-defined.

By the assumption that $\|\cdot\|$ is a seminorm, we have homogeneity and subadditivity for free. Furthermore, the zero element of the quotient vector space X / M is simply the subspace M. Any nonzero element of X / M can be written $x+M$ where $x \notin M$. We then have $x+M \mapsto\|x\| \neq 0$, since $x \notin M=\left\{x^{\prime} \in X:\left\|x^{\prime}\right\|=0\right\}$ by assumption. It follows that the given map is positive, homogeneous, and subadditive on X / M, and therefore defines a norm.

Acknowledgement.

I thank Kyle Macdonald for providing his original latex file for the solution.

