
MATH 421/510
Assignment 1

Suggested Solutions

January 2018

All exercises from Folland, section 5.1. “Problem 1 (6)” below, for instance, indicates
that the first problem on this assignment is Exercise 5.1.6 in Folland.

Problem 1 (6). Suppose that X is a finite-dimensional normed space. Let e1, e2, . . . , en
be a basis for X, and define ‖

∑n
1 ajej‖1 =

∑n
1 |aj|.

a) ‖ · ‖1 is a norm on X.

b) The map (a1, . . . , an) 7→
∑n

1 ajej is continuous from Kn with the usual Euclidean
topology to X with the topology defined by ‖ · ‖1.

c) {x ∈ X : ‖x‖1 = 1} is compact in X.

d) All norms on X are equivalent. (Compare any norm to ‖ · ‖1.)

Solution.

a) As always, we need to check positivity, homogeneity, and subadditivity.

• Positivity:

Let x =
∑n

j=1 ajej. Then ‖x‖1 ≥ 0.

Suppose that x 6= 0. Then aj 6= 0 for some 1 ≤ j ≤ n, and hence

‖x‖1 =
n∑

i=1

|ai| ≥ |aj| > 0

Conversely, suppose that x = 0. Then aj = 0 for each 1 ≤ j ≤ n, so ‖x‖1 = 0.

• Homogeneity: Let x =
∑n

j=1 ajej as before and let c ∈ K. We compute
directly:

‖cx‖1 =

∥∥∥∥∥c
n∑

j=1

ajej

∥∥∥∥∥
1

=

∥∥∥∥∥
n∑

j=1

(caj)ej

∥∥∥∥∥
1

=
n∑

j=1

|caj| = |c|
n∑

j=1

|aj| = |c|‖x‖1

as required.

1



• Subadditivity: If x =
∑n

j=1 ajej and b =
∑n

j=1 bjej, then

‖x+ y‖1 =

∥∥∥∥∥
n∑

j=1

(aj + bj)ej

∥∥∥∥∥
1

=
n∑

j=1

|aj + bj| ≤
n∑

j=1

|aj|+
n∑

j=1

|bj| = ‖x‖1 +‖y‖1.

b) Let ‖ · ‖2 denote the Euclidean norm on Kn.

Since the map φ(a1, . . . , an) :=
∑n

1 ajej is linear, it suffices to show that the map
is continuous at the origin. Let 0 < ε < 1, and let δ = ε/

√
n. Let ~a = (a1, . . . , an)

and suppose that ‖~a‖2 < δ. Then by the Cauchy-Schwarz inequality,

n∑
j=1

|aj| ≤

(
n∑

j=1

|aj|2
) 1

2

·

(
n∑

j=1

12

) 1
2

< δ
√
n = ε.

This finishes to proof.

c) Consider the continuous mapping φ : (a1, . . . , an) →
∑n

1 ajej defined in (b). If we
denote S := {x ∈ X : ‖x‖1 = 1} and the “polyhedron”

P = {(a1, a2, . . . , an) ∈ Kn :
n∑

j=1

|aj| = 1},

which is compact by the Heine-Borel Theorem, we see that S = φ(P ) is compact.

d) Given any norm ‖·‖ on X, it suffices to show that there are c > 0, C <∞ such that
for all x ∈ S (recall S := {x ∈ X : ‖x‖1 = 1}), we have

c ≤ ‖x‖ ≤ C.

Write x =
∑n

j=1 ajej. Then

‖x‖ =

∥∥∥∥∥
n∑

j=1

ajej

∥∥∥∥∥ ≤
n∑

j=1

|aj|‖ej‖ ≤ C

n∑
j=1

|aj| = C‖x‖1 = C.

Here, C := maxn
j=1‖ej‖ <∞.

To prove the lower bound, let I : (X, ‖·‖1) → (X, ‖·‖) be the identity map. The
above shows that I is a bounded linear map, and hence continuous. Since taking
norm is continuous, the map σ : (X, ‖·‖1)→ R by σ(x) := ‖I(x)‖ is continuous.

But S is compact and σ is continuous, hence σ(S) is compact in R, and thus has
a minimum. Since I(S) = S does not contain the origin, we have 0 /∈ σ(S), which
means that c := minσ(S) is strictly positive. This shows the lower bound.
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Problem 2 (8). Let (X,M) be a measurable space, and let M(X) be the space of complex
measures on (X,M). Then ‖µ‖ = |µ|(X) is a norm on M(X) that makes M(X) into a
Banach space. (Use Theorem 5.1., which states that a normed vector space X is complete
if and only if every absolutely convergent series in X converges. Also, |µ| is the total
variation of the measure µ.)

Solution. The properties of a norm are easily satisfied (consult Rudin if you have any
questions).

• Positivity: The total variation ‖µ‖ of a measure µ is always nonnegative, and
|µ|(X) = 0 if and only µ is the zero measure.

• Homogeneity: This is direct.

• Subadditivity: This follows from the triangle inequality for complex numbers as
well as for suprema.

To show that M(X) is complete, we use Theorem 5.1.

Let νn be a sequence of complex measures on X such that
∑∞

n=1 ‖νn‖ <∞. If we define
ν(A) =

∑∞
n=1 νn(A) for every A ∈ M and show that ν is indeed a complex measure to

which the series
∑∞

n=1 νn converges in M(X), then we are done.

Let A ∈ M(X), then the series defining A converges absolutely since |νn(A)| ≤ ‖νn‖. ν
is a complex measure: let {Ai}∞i=1 ⊆M be disjoint. Then

∞∑
i=1

ν(Ai) =
∞∑
i=1

∞∑
n=1

νn(Ai)

(by Fubini’s theorem) =
∞∑
n=1

∞∑
i=1

νn(Ai)

=
∞∑
n=1

νn(A)

= ν(A).

Lastly, we show
∑∞

n=1 νn converges to ν in M(X).

Let {Ai}∞i=1 be a measurable partition of X. Then

∞∑
i=1

∣∣∣∣∣
N∑

n=1

νn(Ai)− ν(Ai)

∣∣∣∣∣ =
∞∑
i=1

∣∣∣∣∣
∞∑

n=N+1

νn(Ai)

∣∣∣∣∣
≤

∞∑
i=1

∞∑
n=N+1

|νn(Ai)|

(by Fubini’s theorem) =
∞∑

n=N+1

∞∑
i=1

|νn(Ai)|

(by definition of total variation) ≤
∞∑

n=N+1

‖νn‖.
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Taking supremum with respect to the partition {Ai}, we have∥∥∥∥∥
N∑

n=1

νn − ν

∥∥∥∥∥ ≤
∞∑

n=N+1

‖νn‖.

However, since the last series is absolutely convergent, letting N →∞, we are done.
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Problem 3 (9). Let Ck([0, 1]) be the space of functions on [0, 1] possessing continuous
derivatives of order up to and including k, including one-sided derivatives at the endpoints.

a) If f ∈ C([0, 1]), then f ∈ Ck([0, 1]) iff f is k times continuously differentiable
on (0, 1) and limx↘0 f

(j)(x) and limx↗1 f
(j)(x) exist for j ≤ k. (The mean value

theorem is useful.)

b) ‖f‖ =
∑k

0 ‖f (j)‖u is a norm on Ck([0, 1]) that makes Ck([0, 1]) into a Banach
space. (Use induction on k. The essential point is that if {fn} ⊂ C1([0, 1]), fn → f
uniformly, and f ′n → g uniformly, then f ∈ C1([0, 1]) and f ′ = g. The easy way to
prove this is to show that f(x)− f(0) =

∫ x

0
g(t) dt.)

Solution.

a) Assume that f is real for the moment.

For the case k = 1, we need to show that for f ∈ C([0, 1]) with a continuous
derivative on (0, 1), the limit

f ′(0) := lim
x↘0

f(x)− f(0)

x

exists and is equal to l := limx↘0 f
′(x); the result for higher k follows by induction.

Since l = limx↘0 f
′(x) exists, for any ε > 0, there is δ > 0 such that |f ′(x)− l| < ε

for all 0 < x < δ.

Let 0 < x < δ. Since f is continuous on [0, 1] and differentiable on (0, 1), by the
mean value theorem, there is c ∈ (0, x) such that

f(x)− f(0) = xf ′(c),

whence ∣∣∣∣f(x)− f(0)

x
− l
∣∣∣∣ = |f ′(c)− l| < ε.

This shows that f ∈ C1([0, 1]).

A very similar argument establishes the same result for f ′(1); in fact, we can just
apply the same argument to g(x) = f(1−x). Furthermore, suppose the result is true
for all j ≤ k, and choose f ∈ Ck([0, 1]) such that f is continuously differentiable to
order k+ 1 on (0, 1) and such that limx↘0 f

(k+1)(x) and limx↗1 f
(k+1)(x) both exist.

Then we can apply the above argument to f (k) to conclude that f (k) ∈ C1([0, 1]), and
hence that f ∈ Ck+1([0, 1]). This completes the proof of sufficiency, while necessity
is indeed part of the definition of Ck.

Lastly, if f is complex valued, then we split f = Re(f)+iIm(f) and apply the above
arguments to Re(f), Im(f) respectively to get the result.

Remark: The mean value theorem fails for complex valued functions. Consider
the example f(x) := eix defined on [0, 2π]. We have f(0) = f(2π) = 1, but there is
no c ∈ (0, 2π) with 2πf ′(c) = 0.

b) The properties of a norm are easily satisfied.

5



• Positivity: The zero function has all its derivatives identically zero; conversely,
any continuous function f on [0, 1] that is not identically zero has ‖f‖ ≥ ‖f‖u >
0.

• Homogeneity: This follows from the homogeneity of the derivative, which
follows from that of limits.

• Subadditivity: Every term in the sum defining the Ck norm is subadditive,
so the sum must be as well.

The difficulty is completeness, which will finish off the requirements for Ck([0, 1])
to qualify as a Banach space.

The proof, as suggested, proceeds by induction. The case k = 0 is well known,
i.e. C([0, 1]) is complete. Assume that the result is true for Ck([0, 1]) for some
k ≥ 0, and choose a Cauchy sequence (fn) ⊂ Ck+1([0, 1]). This means in particular
that (fn)n≥1 is a Cauchy sequence in Ck([0, 1]). Since Ck([0, 1]) is complete by the
inductive hypothesis, there exists some f ∈ Ck([0, 1]) with fn → f in the topology

of Ck([0, 1]). In particular, this means that f
(k)
n → f (k) uniformly. We also know

that the sequence of continuous functions (f
(k+1)
n )n≥1 is uniformly Cauchy, which

implies that there exists some function g ∈ C([0, 1]) with f
(k+1)
n → g uniformly.

We can thus apply the C1 result in the hint to the sequence (f
(k)
n )n≥1 to get f (k+1) =

g. Thus
‖fn − f‖Ck+1 = ‖fn − f‖Ck +

∥∥f (k+1)
n − f (k+1)

∥∥
u
→ 0.

A great deal is now riding on the proof for C1. Consider a Cauchy sequence (fn) ⊂
C1([0, 1]). We know that there exist continuous functions f, g such that fn → f and
f ′n → g uniformly. Furthermore, by the triangle inequality and the fundamental
theorem of calculus, we have

fn(x)− fn(0) =

∫ x

0

f ′n(t)dt.

Letting n→∞ and by uniform convergence of f ′n → g, we have

f(x)− f(0) =

∫ x

0

g(t)dt.

Using the fundamental theorem of calculus again, we have for all x,

f ′(x) = g(x).

The desired result, that Ck, k ≥ 0 is a Banach space with respect to the given norm,
has been proved.
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Problem 4 (13). If ‖·‖ is a seminorm on the vector space X, let M = {x ∈ X : ‖x‖ = 0}.
Then M is a subspace, and the map x+M 7→ ‖x‖ is a norm on X/M .

Solution. Recall that a if X is a linear space, then we say that a function ‖·‖ : X → [0,∞)
is a seminorm on X if it satisfies the homogeneity and subadditivity requirements for a
norm, and sends 0 ∈ X to 0 ∈ R, but might also vanish elsewhere in X.

First we need to show that M is a subspace. Indeed, 0 ∈ M , and if c ∈ K, x, y ∈ M ,
then ‖cx+ y‖ ≤ |c|‖x‖+ ‖y‖ = 0, so cx+ y ∈M .

Then we need to show that the map x+M 7→ ‖x‖ is well-defined, that is, that if x−y ∈M ,
then ‖x‖ = ‖y‖. But x = y + (x− y), and

‖x‖ = |y + x− y|
≤ ‖y‖+ ‖(x− y)‖
= ‖y‖.

By symmetry, we also have ‖x‖ ≥ ‖y‖. Hence ‖x‖ = ‖y‖, and the map x + M 7→ ‖x‖ is
indeed well-defined.

By the assumption that ‖ · ‖ is a seminorm, we have homogeneity and subadditivity for
free. Furthermore, the zero element of the quotient vector space X/M is simply the
subspace M . Any nonzero element of X/M can be written x+M where x /∈M . We then
have x + M 7→ ‖x‖ 6= 0, since x /∈ M = {x′ ∈ X : ‖x′‖ = 0} by assumption. It follows
that the given map is positive, homogeneous, and subadditive on X/M , and therefore
defines a norm.
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