Homework 1 - Math 541, Spring 2016

Due February 12 at the beginning of the lecture

Instructions: Your homework will be graded both on mathematical correctness and quality of exposition. Please pay attention to the presentation of your solutions.

- 1. Let M denote the Hardy-Littlewood maximal function. Show that if f is not identically zero, then Mf is never integrable on \mathbb{R}^n .
- 2. We proved in class that for any $f \in L^1_{loc}(\mathbb{R}^n)$, the family of averages

(1)
$$\frac{1}{|B(x;r)|} \int_{B(x;r)} f(y) \, dy$$

admits a limit for almost every $x \in \mathbb{R}^n$ as $r \to 0$. Modify that argument to show that, in fact, the complement of the set

(2)
$$L(f) = \left\{ x \in \mathbb{R}^n : \lim_{r \to 0} \frac{1}{|B(x;r)|} \int_{B(x;r)} |f(y) - f(x)| \, dy = 0 \right\}$$

is of null Lebesgue measure. Hence deduce that for almost every x, the limit of (1) as $r \to 0$ is f(x). The set in (2) is called the *Lebesgue set* of f.

- 3. For each of the criteria specified below, find an example of a Borel set $E \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$ with this property.
 - (a) the limiting value of the averages in (1) does not exist with $f = \mathbf{1}_E$ as $r \to 0$.
 - (b) Given any number $\alpha \in (0, 1)$ and $f = \mathbf{1}_E$, the limiting value exists and equals α .
- 4. Let μ be any regular complex measure on \mathbb{R}^n . Discuss the limiting behaviour, as $r \to 0$, of the averages $\mu(B(x;r)/|B(x;r)|$, possibly excluding a class of points x of zero Lebesgue measure.
- 5. Let \mathcal{S} be a family of measurable sets in \mathbb{R}^n with the following property: for each $x \in \mathbb{R}^n$ and r > 0, there exists $S_r(x) \in \mathcal{S}$ satisfying

$$S_r(x) \subseteq B(x;r)$$
 and $|B(x;r)| \le C|S_r(x)|,$

for some constant C > 0 independent of r and x.

- (a) Give at least two distinct examples of families of sets S that meets the two requirements described above. Also provide at least two examples of S which satisfies the first condition but does not meet the second.
- (b) Show that

$$\lim_{r \to 0} \frac{1}{|S_r(x)|} \int_{S_r(x)} |f(y) - f(x)| \, dy = 0$$

for every point x in the Lebesgue set of f.

- 6. The Hardy Littlewood maximal operator M is of fundamental importance in part because it controls many other operators of interest arising in a variety of contexts. We illustrate this in the context of the Dirichlet problem for Laplace's equation.
 - (a) Suppose that $g : \mathbb{R}^d \to [0, \infty]$ is radial and nonincreasing. In other words, g(x) = h(|x|) with $h(r_1) \ge h(r_2)$ for $0 \le r_1 \le r_2$. Show that $f * g(x) \le ||g||_1 M f(x)$ for all x and all non-negative f.
 - (b) Recall the Poisson kernel for the upper half-space $\mathbb{R}^{n+1}_+ = \{(x,t) : x \in \mathbb{R}^n, t > 0\}$:

$$p_t(x) = c_n t^{-n} (1 + |t^{-1}x|^2)^{-\frac{n+1}{2}}.$$

Verify that for any bounded continuous f or for $f \in L^p$, $p \in [1, \infty]$, the function $u(x,t) = f * p_t(x)$ obeys Laplace's equation $\Delta u = 0$ on \mathbb{R}^{n+1}_+ .

- (c) Let's focus now on the boundary behaviour of u. Show that $u(x,t) \to f(x)$ as $t \to 0$ uniformly on compact sets if f is a bounded continuous function. Prove convergence in L^p as $t \to 0$ if $f \in L^p(\mathbb{R}^n)$.
- (d) What can we say about the pointwise convergence of u to f? Show that $u(x,t) \to f(x)$ as $t \to 0$ non-tangentially for almost every $x \in \mathbb{R}^n$. This means that for almost every x, and every r > 0,

$$u(y,t) \to f(x)$$
 as $(y,t) \to (x,0)$, with
 $(y,t) \in \Gamma_r(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |x-y| < rt\}.$