Homework 1 - Math 541, Spring 2016

Due February 12 at the beginning of the lecture

Instructions: Your homework will be graded both on mathematical correctness and quality of exposition. Please pay attention to the presentation of your solutions.

1. Let M denote the Hardy-Littlewood maximal function. Show that if f is not identically zero, then $M f$ is never integrable on \mathbb{R}^{n}.
2. We proved in class that for any $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$, the family of averages

$$
\begin{equation*}
\frac{1}{|B(x ; r)|} \int_{B(x ; r)} f(y) d y \tag{1}
\end{equation*}
$$

admits a limit for almost every $x \in \mathbb{R}^{n}$ as $r \rightarrow 0$. Modify that argument to show that, in fact, the complement of the set

$$
\begin{equation*}
L(f)=\left\{x \in \mathbb{R}^{n}: \lim _{r \rightarrow 0} \frac{1}{|B(x ; r)|} \int_{B(x ; r)}|f(y)-f(x)| d y=0\right\} \tag{2}
\end{equation*}
$$

is of null Lebesgue measure. Hence deduce that for almost every x, the limit of (1) as $r \rightarrow 0$ is $f(x)$. The set in (2) is called the Lebesgue set of f.
3. For each of the criteria specified below, find an example of a Borel set $E \subseteq \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$ with this property.
(a) the limiting value of the averages in (1) does not exist with $f=\mathbf{1}_{E}$ as $r \rightarrow 0$.
(b) Given any number $\alpha \in(0,1)$ and $f=\mathbf{1}_{E}$, the limiting value exists and equals α.
4. Let μ be any regular complex measure on \mathbb{R}^{n}. Discuss the limiting behaviour, as $r \rightarrow 0$, of the averages $\mu(B(x ; r) /|B(x ; r)|$, possibly excluding a class of points x of zero Lebesgue measure.
5. Let \mathcal{S} be a family of measurable sets in \mathbb{R}^{n} with the following property: for each $x \in \mathbb{R}^{n}$ and $r>0$, there exists $S_{r}(x) \in \mathcal{S}$ satisfying

$$
S_{r}(x) \subseteq B(x ; r) \quad \text { and } \quad|B(x ; r)| \leq C\left|S_{r}(x)\right|
$$

for some constant $C>0$ independent of r and x.
(a) Give at least two distinct examples of families of sets \mathcal{S} that meets the two requirements described above. Also provide at least two examples of \mathcal{S} which satisfies the first condition but does not meet the second.
(b) Show that

$$
\lim _{r \rightarrow 0} \frac{1}{\left|S_{r}(x)\right|} \int_{S_{r}(x)}|f(y)-f(x)| d y=0
$$

for every point x in the Lebesgue set of f.
6. The Hardy Littlewood maximal operator M is of fundamental importance in part because it controls many other operators of interest arising in a variety of contexts. We illustrate this in the context of the Dirichlet problem for Laplace's equation.
(a) Suppose that $g: \mathbb{R}^{d} \rightarrow[0, \infty]$ is radial and nonincreasing. In other words, $g(x)=$ $h(|x|)$ with $h\left(r_{1}\right) \geq h\left(r_{2}\right)$ for $0 \leq r_{1} \leq r_{2}$. Show that $f * g(x) \leq\|g\|_{1} M f(x)$ for all x and all non-negative f.
(b) Recall the Poisson kernel for the upper half-space $\mathbb{R}_{+}^{n+1}=\left\{(x, t): x \in \mathbb{R}^{n}, t>0\right\}$:

$$
p_{t}(x)=c_{n} t^{-n}\left(1+\left|t^{-1} x\right|^{2}\right)^{-\frac{n+1}{2}} .
$$

Verify that for any bounded continuous f or for $f \in L^{p}, p \in[1, \infty]$, the function $u(x, t)=f * p_{t}(x)$ obeys Laplace's equation $\Delta u=0$ on \mathbb{R}_{+}^{n+1}.
(c) Let's focus now on the boundary behaviour of u. Show that $u(x, t) \rightarrow f(x)$ as $t \rightarrow 0$ uniformly on compact sets if f is a bounded continuous function. Prove convergence in L^{p} as $t \rightarrow 0$ if $f \in L^{p}\left(\mathbb{R}^{n}\right)$.
(d) What can we say about the pointwise convergence of u to f ? Show that $u(x, t) \rightarrow f(x)$ as $t \rightarrow 0$ non-tangentially for almost every $x \in \mathbb{R}^{n}$. This means that for almost every x, and every $r>0$,

$$
\begin{aligned}
& u(y, t) \rightarrow f(x) \quad \text { as }(y, t) \rightarrow(x, 0), \text { with } \\
& (y, t) \in \Gamma_{r}(x)=\left\{(y, t) \in \mathbb{R}_{+}^{n+1}:|x-y|<r t\right\}
\end{aligned}
$$

