6. The area of revolution of $y=\sqrt{x},(0 \leq x \leq 6)$, about the x-axis is

$$
\begin{aligned}
S & =2 \pi \int_{0}^{6} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =2 \pi \int_{0}^{6} \sqrt{x} \sqrt{1+\frac{1}{4 x}} d x \\
& =2 \pi \int_{0}^{6} \sqrt{x+\frac{1}{4}} d x \\
& =\left.\frac{4 \pi}{3}\left(x+\frac{1}{4}\right)^{3 / 2}\right|_{0} ^{6}=\frac{4 \pi}{3}\left[\frac{125}{8}-\frac{1}{8}\right]=\frac{62 \pi}{3} \text { sq. units. }
\end{aligned}
$$

15.

Fig. 4-15
Consider the area element which is the thin half-ring shown in the figure. We have

$$
d m=k s \pi s d s=k \pi s^{2} d s
$$

Thus, $m=\frac{k \pi}{3} a^{3}$.
Regard this area element as itself composed of smaller elements at positions given by the angle θ as shown. Then

$$
\begin{aligned}
d M_{y=0} & =\left(\int_{0}^{\pi}(s \sin \theta) s d \theta\right) k s d s \\
& =2 k s^{3} d s \\
M_{y=0} & =2 k \int_{0}^{a} s^{3} d s=\frac{k a^{4}}{2} .
\end{aligned}
$$

Therefore, $\bar{y}=\frac{k a^{4}}{2} \cdot \frac{3}{k \pi a^{3}}=\frac{3 a}{2 \pi}$. By symmetry, $\bar{x}=0$. Thus, the centre of mass of the plate is $\left(0, \frac{3 a}{2 \pi}\right)$.

1. a) The nth bead extends from $x=(n-1) \pi$ to $x=n \pi$, and has volume

$$
\begin{aligned}
& V_{n}=\pi \int_{(n-1) \pi}^{n \pi} e^{-2 k x} \sin ^{2} x d x \\
& =\frac{\pi}{2} \int_{(n-1) \pi}^{n \pi} e^{-2 k x}(1-\cos (2 x)) d x \\
& \quad \operatorname{Let} x=u+(n-1) \pi \\
& =\frac{\pi}{2} \int_{0}^{\pi} e^{-2 k u} e^{-2 k(n-1) \pi}[1-\cos (2 u+2(n-1) \pi)] d u \\
& =\frac{\pi}{2} e^{-2 k(n-1) \pi} \int_{0}^{\pi} e^{-2 k u}(1-\cos (2 u)) d u \\
& =e^{-2 k(n-1) \pi} V_{1} .
\end{aligned}
$$

Thus $\frac{V_{n+1}}{V_{n}}=\frac{e^{-2 k n \pi} V_{1}}{e^{-2 k(n-1) \pi} V_{1}}=e^{-2 k \pi}$, which depends on k but not n.
b) $V_{n+1} / V_{n}=1 / 2$ if $-2 k \pi=\ln (1 / 2)=-\ln 2$, that is, if $k=(\ln 2) /(2 \pi)$.
c) Using the result of Example 4 in Section 7.1, we calculate the volume of the first bead:

$$
\begin{aligned}
V_{1} & =\frac{\pi}{2} \int_{0}^{\pi} e^{-2 k x}(1-\cos (2 x)) d x \\
& =\left.\frac{\pi e^{-2 k x}}{-4 k}\right|_{0} ^{\pi}-\left.\frac{\pi}{2} \frac{e^{-2 k x}(2 \sin (2 x)-2 k \cos (2 x))}{4\left(1+k^{2}\right)}\right|_{0} ^{\pi} \\
& =\frac{\pi}{4 k}\left(1-e^{-2 k \pi}\right)-\frac{\pi}{4\left(1+k^{2}\right)}\left(k-k e^{-2 k \pi}\right) \\
& =\frac{\pi}{4 k\left(1+k^{2}\right)}\left(1-e^{-2 k \pi}\right)
\end{aligned}
$$

By part (a) and Theorem 1(d) of Section 6.1, the sum of the volumes of the first n beads is

$$
\begin{aligned}
S_{n}= & \frac{\pi}{4 k\left(1+k^{2}\right)}\left(1-e^{-2 k \pi}\right) \\
& \times\left[1+e^{-2 k \pi}+\left(e^{-2 k \pi}\right)^{2}+\cdots+\left(e^{-2 k \pi}\right)^{n-1}\right] \\
= & \frac{\pi}{4 k\left(1+k^{2}\right)}\left(1-e^{-2 k \pi}\right) \frac{1-e^{-2 k n \pi}}{1-e^{-2 k \pi}} \\
= & \frac{\pi}{4 k\left(1+k^{2}\right)}\left(1-e^{-2 k n \pi}\right)
\end{aligned}
$$

Thus the total volume of all the beads is

$$
V=\lim _{n \rightarrow \infty} S_{n}=\frac{\pi}{4 k\left(1+k^{2}\right)} \text { cu. units.. }
$$

12. $s=\int_{\pi / 6}^{\pi / 4} \sqrt{1+\tan ^{2} x} d x$

$$
\begin{aligned}
& =\int_{\pi / 6}^{\pi / 4} \sec x d x=\left.\ln |\sec x+\tan x|\right|_{\pi / 6} ^{\pi / 4} \\
& =\ln (\sqrt{2}+1)-\ln \left(\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right) \\
& =\ln \frac{\sqrt{2}+1}{\sqrt{3}} \text { units. }
\end{aligned}
$$

28. The area of the cone obtained by rotating the line $y=(h / r) x, 0 \leq x \leq r$, about the y-axis is

$$
\begin{aligned}
S=2 \pi \int_{0}^{r} x \sqrt{1+(h / r)^{2}} d x & =\left.2 \pi \frac{\sqrt{r^{2}+h^{2}}}{r} \frac{x^{2}}{2}\right|_{0} ^{r} \\
& =\pi r \sqrt{r^{2}+h^{2}} \text { sq. units. }
\end{aligned}
$$

