Math 121 Assignment 8

Due Friday April 1

1. Find the centre, radius and interval of convergence of each of the following power series.
(a) $\sum_{n=0}^{\infty} \frac{1+5^{n}}{n!} x^{n}$
(b) $\sum_{n=1}^{\infty} \frac{(4 x-1)^{n}}{n^{n}}$.
2. Expand
(a) $1 / x^{2}$ in powers of $x+2$.
(b) $x^{3} /\left(1-2 x^{2}\right)$ in powers of x.
(c) $e^{2 x+3}$ in powers of $x+1$.
(d) $\sin x-\cos x$ about $\frac{\pi}{4}$.
(e) the Maclaurin series of $\ln \left(e+x^{2}\right)$.
(f) the Maclaurin series of $\cos ^{-1} x$.

For each expansion above, determine the interval on which the representation is valid.
3. Find the sums of the following series.
(a) $\sum_{n=0}^{\infty} \frac{(n+1)^{2}}{\pi^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n(n+1)}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 2^{n}}$,
(d) $x^{3}-\frac{x^{9}}{3!\times 4}+\frac{x^{15}}{5!\times 16}-\frac{x^{21}}{7!\times 64}+\frac{x^{27}}{9!\times 256}-\cdots$
(e) $1+\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\frac{x^{6}}{7!}+\frac{x^{8}}{9!}+\cdots$
(f) $1+\frac{1}{2 \times 2!}+\frac{1}{4 \times 3!}+\frac{1}{8 \times 4!}+\cdots$
(g) $1-\frac{x}{2!}+\frac{x^{2}}{4!}-\cdots$
4. This problem outlines a srategy for verifying whether a function f is real-analytic. Recall the nth order Taylor polynomial of f centred at c :

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

and set $E_{n}=f(x)-P_{n}(x)$.
(a) Use mathematical induction to show that

$$
E_{n}(x)=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} f^{(n+1)}(t) d t
$$

provided $f^{(n+1)}$ exists on an interval containing c and x. The formula above is known as Taylor's formula with integral remainder.
(b) Use Taylor's formula with integral remainder to prove that $\ln (1+$ $x)$ is real analytic at $x=0$; more precisely, that the Maclaurin series of $\ln (1+x)$ converges to $\ln (1+x)$ for $-1<x \leq 1$.
5. Find the Maclaurin series for the functions:
(a)

$$
L(x)=\int_{1}^{1+x} \frac{\ln t}{t-1} d t
$$

(b)

$$
M(x)=\int_{0}^{x} \frac{\tan ^{-1} t^{2}}{t^{2}} d t
$$

6. Evaluate the limits
(a)

$$
\lim _{x \rightarrow 0} \frac{\left(e^{x}-1-x\right)^{2}}{x^{2}-\ln \left(1+x^{2}\right)}
$$

(b)

$$
\lim _{x \rightarrow 0} \frac{\sin (\sin x)-x}{x(\cos (\sin x)-1)}
$$

(c)

$$
\lim _{x \rightarrow 0} \frac{x^{3}-3 S(x)}{x^{7}} \quad \text { where } S(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t
$$

(d)

$$
\lim _{x \rightarrow 0} \frac{\left(x-\tan ^{-1} x\right)\left(e^{2 x}-1\right)}{2 x^{2}-1+\cos (2 x)} .
$$

7. (a) Estimate the size of the error if the Taylor polynomial of degree 4 about $x=\pi / 2$ for $f(x)=\ln \sin x$ is used to approximate $\ln \sin (1.5)$.
(b) How many nonzero terms of the Maclaurin expansion of $e^{-x^{4}}$ are needed to evaluate $\int_{0}^{1 / 2} e^{-x^{4}} d x$ correct to five decimal places? Evaluate the integral to that accuracy.
8. Find the Fourier series of the 3-periodic function

$$
f(x)= \begin{cases}t & \text { if } 0 \leq t<1 \\ 1 & \text { if } 1 \leq t<2 \\ 3-t & \text { if } 2 \leq t<3\end{cases}
$$

9. Verify that if f is an even function of period T, then the Fourier sine coefficients b_{n} of f are all zero and the Fourier cosine coefficients a_{n} of f are given by

$$
a_{n}=\frac{4}{T} \int_{0}^{T / 2} f(t) \cos (n \omega t) d t, \quad n=0,1,2, \cdots
$$

where $\omega=2 \pi / T$. State and verify the corresponding result for odd functions f.
10. Prove that the binomial coefficients satisfy:

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

