Math 121 Assignment 7 Due Friday March 11

1. For each of the following sequences, evaluate the limit, if it exists:

$$(a)a_n = \frac{n^2 - 2\sqrt{n} + 1}{1 - n - 3n^2}, \quad (b)a_n = n - \sqrt{n^2 - 4n}, \quad (c)a_n = \frac{(n!)^2}{2n!}.$$

2. Determine whether the limit of the sequence

$$a_1 = 3, a_{n+1} = \sqrt{15 + 2a_n}$$

exists, and if so, find the limit.

3. Find the sums of the series

(a)
$$\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \cdots$$
,
(b) $\frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \frac{1}{1+2+3+4} + \cdots$.

- 4. When dropped, an elastic ball bounces back up to a height three quarters of that from which it fell. If the ball is dropped from a height of 2 meters, and is allowed to bounce up and down indefinitely, what is the total distance it travels before coming to rest?
- 5. Decide whether the following statements are true or false. If true, prove it. If not, give a counterexample.

 - (a) If $\sum a_n$ diverges and $\{b_n\}$ is bounded, then $\sum a_n b_n$ diverges. (b) If $a_n > 0$ and $\sum a_n$ converges, then $\sum (a_n)^2$ converges. (c) If $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges. (d) If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum (-1)^n a_n$ converges absolutely.
- 6. Determine the convergence or otherwise of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{2^{2n} (n!)^2}{(2n)!}$$
 (b) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$ (c) $\sum_{n=10}^{\infty} \frac{1}{n \ln n (\ln \ln n)^2}$

7. Determine the values of x for which the series below converge absolutely, converge conditionally or diverge.

$$(a)\sum_{n=1}^{\infty} \frac{(2x+3)^n}{n^{1/3}4^n} \quad (b)\sum_{n=1}^{\infty} \frac{1}{n} \left(1+\frac{1}{x}\right)^n \quad (c)\sum_{n=1}^{\infty} \frac{(2n)!x^n}{2^{2n}(n!)^2}$$